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Mixed-Mode Crack Propagation Calculations in a Pure Hexahedral Mesh

G. Dhondt1

Abstract: An algorithm is described which allows for
the automatic calculation of crack propagation due to
cyclic loading under mixed-mode conditions. The core
of the procedure deals with the insertion of an arbitrarily
formed crack into a virgin 20-node brick element mesh,
thereby generating new quadratic bricks. One especially
difficult aspect is the extension of the triangulation of the
crack surface up to the boundary of the crack front ele-
ments. In the present article the technique is applied to
linear elastic calculations using the stress intensity fac-
tor concept and a Paris-type law. However, other crack
propagation parameters and crack propagation laws can
be used equally well.

keyword: Crack,propagation,low cycle fatigue,mixed-
mode,hexahedra

1 Introduction

Structures often fail by breaking into several parts.
This implies that an initial crack has propagated either
abruptly or due to cyclic loading. Here, the focus is on
cyclic crack propagation. In industrial applications it is
extremely important to be able to predict crack propa-
gation. Indeed, material defects acting as initial cracks
cannot always be avoided. These initial cracks will
grow as two-dimensional surfaces in a three-dimensional
body. Their shape depends on the loading characteris-
tics, the geometry of the structure and the material prop-
erties. Generally, an initially plane crack can warp due
to mixed-mode conditions. Therefore, a procedure to
calculate crack propagation must be capable of dealing
with arbitrarily curved crack shapes in three-dimensional
space.

A lot of effort is still being spent to design such soft-
ware. This treatise is not meant to be exhaustive. I would
just like to attract the attention to a couple of different
approaches. One of the first techniques used the bound-
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ary element method [Wawrzynek, Martha, and Ingraf-
fea (1988), Aliabadi (1997), Wen, Aliabadi, and Young
(2004)]. This method looks very attractive since only the
boundary of the structure has to be meshed. Indeed, one
of the most difficult tasks in crack propagation calcula-
tions is the development of an automatic remeshing pro-
cedure, capable of coping with any feasible crack geome-
try. This problem is greatly reduced if meshing is limited
to the free surface.

Alternatively, one can use extended finite elements
[Gravouil, Moës, and Belytschko (2002)]. This is a re-
cent technique, in which the crack propagation is inde-
pendent of the mesh. Therefore, the method has similar
advantages as the boundary element method, and this to
an even higher degree: the problem of remeshing does
not arise.

In another, more traditional approach the finite ele-
ment method is used[Schöllmann, Fulland, and Richard
(2003), Richard, Fulland, Buchholz, and Schöllmann
(2002), Buchholz, Chergui, and Richard (2004)]. There,
the crack front is surrounded by a flexible cylinder con-
sisting of hexahedral elements, whereas the remaining
space is filled with tetrahedral elements. In fact, the
structure without crack is meshed with tetrahedra and
only the immediate neighborhood of the crack front is
remeshed.

Finally, there is the hexahedral technique developed at
MTU and discussed in the present article. The technique
has a long history: the first articles describing the proce-
dure appeared in 1998 [Dhondt (1998)]. It has been ap-
plied to aero engine components on a regular basis since
1995. The technique has been proven to yield excel-
lent results for Mode-I applications, exhibiting amazing
capabilities describing crack propagation across corners
and other geometric discontinuities [Dhondt (2005)]. An
extension to real three-dimensional mixed-mode crack
propagation calculations has long been proposed and ap-
plied to a three-point bending specimen. However, the
artificial extension of the triangulation of the crack shape
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always remained a problem. In the present article, a
new technique is presented to solve that problem and an
overview is given of all necessary steps to apply the pro-
cedure. A couple of applications to the corner crack spec-
imen illustrate the technique.

2 Modification of the mesh

To start, a suitable crack description must be chosen. Due
to its flexibility and ease of operation it was decided to
use a triangulation of the crack. Thus, the initial crack is
triangulated at the start of the procedure, and each crack
increment is triangulated as well and connected to the tri-
angular mesh of the previous increment. Now, the prob-
lem is obviously reduced of inserting a triangular mesh
into a 20-node brick mesh.

To this end, all edges of the 20-node brick mesh are cata-
logued according to whether they are cut by the triangu-
lation or not. An edge of a 20-node brick element con-
tains two end nodes and one middle node. If the inter-
section point on such an edge with the crack lies very
close to one of the end nodes, all elements having this
edge in common will be likely to yield very long and nar-
row or maybe very small elements after cutting. Thus, a
first step aims at an improvement of the cutting geome-
try by moving the nodes of the intersected edges in such
a way that the intersection point lies closer to the geo-
metric middle point along the edge. Figure 1 shows how
this mesh modification procedure works. Element edge
p3-p4-p5 is cut by the triangulation in a point pi close
to p3. The distances from the intersection point pi to p3

and p5 are d1 and d2, respectively. The nodes are labeled
such that d1 ≤ d2. The quantity d = (d1 + d2)/2 is the
mean of d1 and d2. If |d −d1|/d < 0.2, the intersection
point is deemed close enough to the middle node and no
modification is made. Else, the radii R1 = (d1 +d)/2 and
R2 = (d2 +d)/2 are calculated for future use.

Whether p3 and p5 are really moved depends on the
existence of suitable element edges p1 − p2 − p3 and
p5− p6 − p7. Focusing on p1− p2− p3, an element edge
is looked for which:

1. does not belong to the elements containing edge
p3 − p4 − p5.

2. makes an angle α ≤ 60◦ with the extension of p3 −
p4 − p5 (Fig. 1).

3. is not cut twice or more by the triangulation.

p7

p6

p5

p4

p3

p2

R4
d2

α

triangulation

pi

d1

p1

R2

R3

R1

d4

d3

Figure 1 : Mesh modification

If no suitable edge p1 − p2 − p3 is found, node p3 is not
moved. If more than one suitable edge is found, the one
with the smallest α is taken. If the search for p1 and p2

was successful, the distance d3 from p1 to the intersec-
tion point pi is determined. If R1 > 0.75d3, which can
occur if element edge p1 − p2 − p3 is much smaller than
p3 − p4 − p5, node p3 is not moved. Finally, R3 is deter-
mined by R3 = (d3 + R1)/2 and node p3 is moved to a
position on p1 − p2 − p3 on a distance R1 from pi, node
p2 is moved onto a distance R3 from pi. Ultimately, the
same procedure applies to element edge p5− p6− p7. Fi-
nally, all midside nodes not already moved belonging to
any edges of which one of the end nodes was moved, are
moved into the middle of their end nodes. The new posi-
tion of p2, p3, p4, p5 and p6 is shown by the grey circles
in Fig. 1.

3 Extension of the triangulation

Not all elements of the uncracked mesh are completely
cut. Those elements which contain the crack front are
only partially cut. For the subsequent procedure it is im-
portant that each element is either completely cut, or not
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Figure 2 : Crack front element (topology 1)

cut at all. Therefore, for elements containing the crack
front the cutting produced by the triangulation has to be
extended into the complete element.

The procedure to do so is explained in Fig. 2. It shows
a crack front element, i.e. an element cut by the crack
front. The front cuts two faces of the element in points
p2 and p4. Let us call these faces crack front faces and
the points crack front points. The crack front points are
found by calculating the intersection of a coarse trian-
gulation of the element faces with a piecewise straight
approximation of the crack front. In the figure the tri-
angulation is represented by the shaded area. It is as-
sumed that a crack front element contains at most two
crack front points. Fig. 3 and Fig. 4 show two other pos-
sibilities in which a crack front element can be cut by
the crack front. If a crack front element is cut more than
twice by the crack front a finer mesh should be used for
the uncracked structure.

Within each crack front face the triangulated crack shape
cuts exactly one of the face’s vertices. The intersection
point for the face containing p2 is called p1, the intersec-
tion point for the face containing p4 is called p3. Now,
the crack shape is extended within the crack front ele-
ment by defining a bilinear function through the points
p1−p2−p4−p3. This is shown by the thick dashed lines
in Fig. 2-Fig. 4 and illustrated schematically in Fig. 5.
Notice that the defining points can be degenerated to a set
of only three distinct points (Fig. 2). The extension is de-
scribed by the local coordinates u and v running from p4

to p3 and from p4 to p2, respectively. The extension cuts
some additional edges of the crack front elements sym-
bolized by the gray circles in Fig. 2-Fig. 4. Notice that al-
though the edges in the figures are straight, this does not
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Figure 3 : Crack front element (topology 2)
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Figure 4 : Crack front element (topology 3)

necessarily have to be the case. The intersection of the
bilinear shape with a quadratic edge of a 20-node brick
element, represented by q1−q2−q3 in Fig. 5 is found by
solving the following nonlinear set of equations:

(1−u)(1−v)p4p4p4 +u(1−v)p3p3p3 +uvp1p1p1 +v(1−u)p2p2p2 =
1
2 (q1q1q1−2q2q2q2 +q3q3q3)w2 + 1

2(q3q3q3 −q1q1q1)w+q2q2q2, (1)

where the boldface symbols stand for the vectors corre-
sponding to the points and w is a parameter between -1
and +1. This set of equations can be solved using a stan-
dard Newton-Raphson procedure.
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Figure 5 : Determination of new cutting points

Summarizing, the extension of the crack shape through-
out the complete crack front elements involves the fol-
lowing steps:

1. determining the intersection of the mesh with the
crack front, leading to the crack front elements,
crack front faces and crack front points p2 and p4.

2. calculating the intersection of the edges of the crack
front faces with the triangulated crack shape: this
yields points p1 and p3. Points p1 to p4 define a
bilinear shape which is used as an extension of the
crack shape.

3. cutting the extended shape with all edges of the
crack front element.

Two different, adjacent crack front elements share one
crack front face. If there is only one crack front, then
n crack front elements correspond to n + 1 crack front
faces. Problems can arise if two different crack front
faces share the same edge. This is illustrated in Fig. 6.

The bilinear extension of the crack surface in element 1
is determined by points p1 − p2 − p3 − p4. It cuts edge
pa − pb, which belongs to one of the crack front faces of
element 1, in point i1. The bilinear extension of the crack
surface in element 2, which is adjacent to element 1, is
defined by points p′1− p′2 − p′3 − p′4. It cuts edge pa− pb,
which belongs to both crack front faces of element 2, in
point i2. Since the crack front faces are not necessarily
plane, the points i1 and i2 can be different: the extension
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Figure 6 : Two different crack front faces sharing an
edge

of the crack surface, as outlined before, is not necessarily
continuous across element boundaries.

To resolve this problem the crack front elements are or-
dered according to their adjacency. The crack front faces
are determined and edges belonging to different crack
front faces are singled out. Then, the crack front elements
are treated in their adjacency order. Focussing on Fig. 6,
the crack front points p2 and p4 for element 1 are deter-
mined, followed by the crack shape intersection points
p1 and p3. Subsequently, a check is performed whether
any crack front face of the element at stake contains a
common edge. This is the case for the crack front face to
which p4 belongs, since it contains edge pa − pb. Now,
the point on the straight line through pa and pb closest
to the straight line through p1 and p4 is determined (in
Fig. 6 this is point i1) and used in the bilinear extension
instead of point p4. This means that the bilinear exten-
sion in element 1 is now based on p1 − p2 − p3 − i1 in-
stead of p1 − p2 − p3 − p4. For element 2 a similar pro-
cedure is applied: first, the crack front points p′2, p′4, p′1
and p′3 are determined. Then, a check is made whether
the crack front faces which belong to the element contain
any common edges. This is the case for both crack front
faces: both of them contain edge pa − pb. A check of the
data base reveals that this common edge has already been
cut in point i1. This point replaces points p′2 and p′4 in the
bilinear extension in element 2. Consequently, the bilin-
ear extension in element 2 is based on p′1 − i1 − p′3 − i1.
This guarantees a continuous extension across neighbor-
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ing elements.

Summarizing, the procedure now reads:

1. determine the intersection of the crack front with all
elements, leading to the crack front elements, crack
front faces and crack front points p2 and p4.

2. sort the crack front elements according to their ad-
jacency.

3. check for common edges, i.e. edges belonging to
two different crack front faces and catalogue them.

4. start a loop over all crack front elements in adja-
cency order performing the following actions:

(a) determine the intersection of the edges belong-
ing to the crack front faces with the crack
shape triangulation leading to points p1 and
p3.

(b) check whether any crack front face belonging
to the element contains a common edge. If this
is not the case, do nothing. Else, if the com-
mon edge has not yet been encountered dur-
ing the treatment of a previous crack front el-
ement, the point on the common edge closest
to the line through points p1 and p2 or p3 and
p4 (depending on the crack front face) is de-
termined and called the common edge interse-
tion point. Subsequently, the crack front point
is replaced by the common edge intersection
point in the bilinear crack extension definition.

(c) determine the intersection of the bilinear crack
extension with those edges which have not
been intersected yet.

4 Cutting topologies

After the crack triangulation has been extended to the
boundaries of the crack front elements, all cut elements
are catalogued according to the way in which they are
cut. A distinction is made between simple and complex
cutting topologies. A topology is simple if the following
two conditions are satisfied:

1. each edge of the element is cut at most once by the
triangulation

2. the topology leads to at most two parts after cutting.

In general, both conditions are satisfied in fracture calcu-
lations since the fracture surface is usually smooth and
does not exhibit high curvature. If this is not the case
a finer mesh for the uncracked structure should be used.
To determine the category to which a specific element
belongs, all vertex nodes of the element are labeled with
0 or 1, according to whether the node lies on the one
side of the crack shape or on the other side. If there
are more 1’s than 0’s the labels are reversed. The ver-
tex nodes in Fig. 7 with the black circles represent 1, the
other 0. Thus, comparison with the schematic drawings
in Fig. 7 allows for a unique classification of the element
at stake. The notation 1-7 in Fig. 7 means that one cor-
ner node lies on one side of the triangulation, whereas all
other seven nodes lie on the other side. The numbers in
brackets show the number of variations for each scheme.
For instance, for topology 1-7(a) there are eight ways in
which to choose a corner node.

There is only one simple topology for cases 1-7, 2-6 and
3-5. Case 4-4 corresponds to four simple topologies. For
each of the simple topologies a remeshing scheme has
been developed satisfying the following requirements:

1. only genuine 20-node brick elements are generated,

2. compatibility between different topologies is as-
sured.

The ensuing remeshing schemes are similar to the mid-
point subdivision proposed by Li et al [Li, McKeag, and
Armstrong (1995)]. However, the new nodes in the mid-
dle of the faces are generated using slightly different
rules to improve the shape of the resulting elements. The
remeshing for topology 1-7 is shown in Fig. 8 and Fig. 9.
For the other schemes the reader is referred to [Dhondt
(2001)].

In all schemes only genuine 20-node brick elements are
generated without recourse to tetrahedra or other element
types. All faces of the newly generated elements have
four different corner nodes. Furthermore, by remesh-
ing topologically identical faces of the mother element
in exactly the same way, compatibility between different
topologies is guaranteed.

5 Inserting the crack front

At this stage the crack shape has been inserted into the
mesh. Now, the crack front can be modeled. To this
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Figure 7 : Classification of the simple topologies

end, all elements adjacent to the crack front are identi-
fied. What follows is again a two-step procedure. First,
the edges of the elements are moved to improve the cut-
ting geometry. Then, the elements are remeshed.

The modification of the element edges is necessary to as-
sure that the geometry of the elements after remeshing is
not too bad. This is illustrated in Fig. 10 and Fig. 11. A
plane crack shape is used to simplify the visualization. In

Figure 8 : Remeshing topology 1-7

Figure 9 : Remeshing topology 1-7

Fig. 10 some of the elements are cut in a rather bad way:
either very small or long and narrow elements will result
after cutting. By moving the edges of the elements using
a method similar to the one in section 2 the position of
the elements with respect to the crack front is much im-
proved, Fig. 11. Of course, care must be taken that the
crack nodes stay in the crack shape during the modifica-
tion.

After the modification of the element boundaries sur-
rounding the crack front, crack-tip elements can be gen-
erated. This involves the creation of collapsed elements
at the crack tip, surrounded by a few concentric layers
of regular elements, thus ensuring the correct calculation
of the asymptotic stress field. For the collapsed elements
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Figure 10 : Mesh before modification

Figure 11 : Mesh after modification

the so-called quarter-point elements (with the crack-tip
nodes kept together) are taken, yielding a 1/

√
r strain

singularity at the crack tip [Barsoum (1976)].

Looking at Fig. 12 and Fig. 13 it is noticed that the crack
front can cut the element faces in two different ways: ei-
ther two opposite edges are cut or two edges meeting in
a common node. Other, more fancy cases can be thought
of, for instance a crack front cutting one edge of a face
twice. However, this seldom occurs in practice and can
be avoided by choosing a finer mesh.

In case two opposite edges are cut, the element subdivi-
sion is performed according to Fig. 12. At the crack front
three crack-tip elements are generated, surrounded by a
couple of layers (the amount of layers can be determined
by the user) of regular elements. Notice that new end
nodes have been generated on three faces of the original

element only. In particular, the face of the element oppo-
site to the one in the crack plane has not been changed.
Consequently, the mesh refinement is restricted to one
layer of elements on each side of the crack plane. All
new nodes are obtained by linear interpolation, the only
exception being the new middle nodes along the crack
front which are in addition projected onto the crack front.
If the projection leads to degenerate elements (marked
by a negative Jacobian in at least one of the integration
points) it is not performed.

The second case is shown in Fig. 13 and can be reduced
to the first case by bisecting the element along a diag-
onal plane through the common node of the intersected
edges. The resulting halves are upgraded to 20-node ele-
ments by expanding the edge through the common node
and not part of the crack plane into a face by repeatedly
using the nodes on this edge in the topology of the new
elements. Each of the new elements is now meshed fol-
lowing the scheme of Fig. 12. At this point two important
comments on the second case are due. First, the division
of the element in two halves requires the generation of
an additional mid-side node on the face opposite to the
one in the crack plane. This node should be linked to the
side nodes of this face using a multiple point constraint.
Second, at the common node (Fig. 13) collapsed half-
point elements are generated with nodes which are kept
together at the collapsed face. It can be shown that this
type of element does not exhibit a singular behaviour at
the collapsed face [Dhondt (1993)].

With the above algorithm all elements which are cut by
the crack front are remeshed to yield crack-tip elements.
This information is collected into a new input deck for
the finite element program. It is clear that all other in-
formation in the uncracked structure which was attached
to the elements which are being remeshed has to be re-
distributed too. This applies, for instance, to pressure
loading attached to the surface.

6 Crack propagation

Using the technique explained in the previous sections,
the stress distribution at the crack tip can be determined
by a generic finite element code, e.g. CalculiX [Dhondt
and Wittig (1998-2005)]. By comparing this stress field
with the analytical asymptotic stress field the stress inten-
sity factors KI , KII and KIII can be determined [Dhondt
(2002)]. Based on these stress intensity factors the Sih
criterion [Richard (1985)] yields a crack propagation di-
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Figure 12 : Mesh refinement at the crack front for a crack
cutting two opposite sides of an element

Figure 13 : Mesh refinement at the crack front for a crack
cutting two sides having a node in common

rection and an equivalent stress intensity factor. Substi-
tuting this equivalent factor into the Paris law leads to a
crack increment size. However, other criteria and other
crack propagation laws exist and the most appropriate
criterion and law may depend on the application.

Once a new crack front was determined, the whole proce-
dure can start over again. However, in practice, the crack
propagation increment due to one cycle is very small (e.g.

10−4 mm/cycle) leading to a K-distribution which is only
marginally different from the original one. Furthermore,
the difference is probably smaller than the numerical in-
accuracies involved. Therefore, it is more appropriate to
calculate the crack propagation for N > 1 cycles leav-
ing the K-distribution constant during these N cycles.
In the calculations performed with the present method it
has proven fruitful, instead of keeping N fixed during the
complete crack propagation calculation from initial crack
to rupture, to fix the maximum allowed crack propagation
increment along the crack front (in units of length). Since
the crack propagation increases for increasing K-values,
the location along the crack with the highest K-values
will dictate the number of cycles.

Although the preceding paragraph indicates that the cal-
culation of the new crack front is relatively simple, the
crack propagation process is additive and can easily lead
to instabilities. Each step uses the information of the pre-
vious one and one slightly jumpy K-distribution can be
enough to jeopardize the iteration steps to follow. A lot
of time and trial and error was spent to create a robust
procedure. It consists of several steps. The procedure
reads as follows:

7 Examples

1. First, the original crack shape and the finite element
crack geometry are read. The original shape is as-
sumed to be piecewise quadratic, except at the start
of the calculation, where it can also be straight or
elliptical. It generally does not stop at the free sur-
face of the structure and penetrates to some extent
into free space. The finite element geometry con-
tains the nodes on the crack front and is a piecewise
quadratic approximation to the original crack shape.
It starts and ends exactly at the intersection of the
original crack shape with the free surface.

2. The K-distribution at the crack front is calculated
from the stresses in the reduced integration points
ahead of the crack tip and plotted along the crack
front. Sometimes this distribution exhibits some ir-
regular behavior, e.g. a zig-zag or erroneous values
due to a particularly bad geometry. Especially, the
end points of the crack front are more prone to error
than the subsurface points. To remove the zig-zag
in a node, the K-value in this node is replaced by
the mean of itself and the value it would get by lin-
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early connecting its neighbors. The end nodes are
replaced by linear extrapolation from the two most
close subsurface neighbors. In addition, a B-spline
approximation is performed.

3. In the next step, 2n + 1 equidistant sample points
are taken along the finite element crack front and
projected on the original crack shape to ensure the
greatest possible accuracy. The K-values in those
sample points are obtained by evaluation of the B-
spline determined in the previous step. The num-
ber of sample points should be chosen such that
a spline approximation through the sample points
models the original shape with sufficient accuracy.
The examples in the next section were calculated
with n=49.

4. In the sample points the crack propagation direc-
tion is calculated. For subsurface points this is in
a plane normal to the original crack shape, for sur-
face points it is within the free surface. However,
for geometrically widening components, where the
tangent plane at the free surface in propagation di-
rection may cut the structure this would lead to a
new crack front not intersecting the free surface any
more. Therefore, the tangent plane at the free sur-
face is rotated about a straight line in its plane and
locally perpendicular to the crack shape over π/8
into free space and the crack propagation increment
is appropriately increased in magnitude in order to
ensure the correct crack propagation at the free sur-
face.

5. Based on the maximum allowed crack propagation
increment along the crack front, the number of cy-
cles is determined and a new crack shape is calcu-
lated. This shape should intersect the free surface of
the structure and penetrate to some extent into free
space.

6. The new crack shape is represented in polar coordi-
nates (with the origin located somewhere within the
crack) and a B-spline smoothing is performed.

7. Finally, a set of 2n + 1 equidistant points is deter-
mined on the smoothed contour yielding a piecewise
quadratic propagated crack shape suitable as input
for the next calculation. The equidistance of the
points increases the numerical stability of the next

iteration. Again, for the examples in the next sec-
tion n=49 was taken.

In this section, three examples are discussed. The geom-
etry in all examples is the same: it is the middle section
of a corner crack specimen and measures 8x8 mm2 in
cross section. The initial crack is straight and has a crack
depth of 2.5 mm.

In the first example the loading is a pure tensile force,
leading to mode I conditions at the crack tip. The tensile
stress in the deformed configuration is shown in Fig. 14.

Fig. 15 shows some crack propagation fronts whereas
in Fig. 16 the crack length is plotted versus the num-
ber of cycles. It is well known that the stress intensity
factors for a straight crack in a corner crack specimen at-
tain their maximum in the middle of the specimen, and
drop towards the free surface. Therefore, the crack prop-
agation is more pronounced in the middle of the speci-
men. During the calculation the maximum crack propa-
gation increment was increased at a certain point to re-
duce the computational time. This corresponds to the
jump in crack front density visible in Fig. 15. Notice
that, apart from the jump, the maximum crack propaga-
tion increment is kept constant and not the number of cy-
cles. In fact, for a constant crack propagation increment
the number of cycles steadily decreases while the crack
propagates. This can also be seen in Fig. 16.

In the second example an additional force parallel to
the crack plane and perpendicular to the crack front was
added. This leads to an additional symmetric KII distri-
bution and a small KIII contribution (Fig. 17).

Due to mode-II the crack turns. This is most clear at the
free surface, where the KII/KI ratio is highest. Fig. 18
shows the mesh for the largest crack front (cut along the
crack) and Fig. 19 shows the triangulation of the crack
at that stage. During propagation each crack increment is
triangulated separately and connected to the triangulation
of the previous crack. The highest deviation from the
crack plane takes place at the start of the calculation.

The third example involves oppositive forces of the kind
applied in example two. This basically leads to torsion.
This is clearly visible in Fig. 20, which shows the mesh
for the last crack front and Fig. 21, which depicts the
triangulation.

At one free surface the crack turns upwards, at the other
it turn downwards.
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Figure 14 : Normal stress on the crack plane

Figure 15 : Crack fronts during propagation
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Figure 16 : Crack length versus number of cycles

Figure 17 : K-distribution along the initial crack (example 2)
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Figure 18 : Mesh for the largest
crack front (example 2)

Figure 19 : Triangulation of the largest crack (example 2)
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Figure 21 : Triangulation of the largest crack (example 3)

Figure 20 : Mesh for the largest crack front (example
3)

8 Conclusions

The method developed at MTU to calculate mixed-mode
crack propagation was enhanced by including an appro-

priate crack shape extension procedure. This removes the
need to extend the crack shape through the whole struc-
ture. The applications show that the procedure works
well for simple specimens. The next step is the appli-
cation to real components.
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