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Applications of DTALE: Damage Tolerance Analysis and Life Enhancement [3-D
Non-plannar Fatigue Crack Growth]

S. N. Atluri 1

Abstract: The solution of three-dimensional cracks
(arbitrary surfaces of discontinuity) in solids and struc-
tures is considered. The BEM, developed based on the
symmetric Galerkin BIEs, is used for obtaining the frac-
ture solutions at the arbitrary crack-front. The finite el-
ement method is used to model the uncracked global
(built-up) structure for obtaining the stresses in an oth-
erwise uncracked body. The solution for the cracked
structural component is obtained in an iteration proce-
dure, which alternates between FEM solution for the un-
cracked body, and the SGBEM solution for the crack
in the local finite-sized subdomain. In addition, some
crack growth models are used to advance the crack front
in fatigue and other stable-carck-growth situations. The
crack-surface mesh is also changed correspondingly in
the BEM model, while the FEM model for the uncracked
structure is kept unchanged. The automatic crack growth
analysis is achieved by repeating the fracture analysis,
and the life of the structural components is estimated.
Furthermore, the initial crack size and shape in a struc-
ture, as emanating from a microscopic defect, can be
determined by utilizing the automatic crack-growth fea-
ture. Some state-of-the-art numerical solutions are also
presented to indicate the type of problems that can now
be solved using currently available techniques. All these
methodologies are embedded in a user-friendly software,
DTALE (Damage Tolerance Analysis and Life Enhance-
ment), which is available for commercial use , in the
safety evaluation and life-estimation of a variety of struc-
tures. Life enhancement methodologies with deliberate
introduction of residual stress-fields, is also a feature of
DTALE.

keyword: damage tolerance analysis, life enhance-
ment, arbitrary 3D surface crack, finite element method,
symmetric Galerkin boundary element method, the alter-
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nating method.

1 Introduction

The calculation of fracture mechanics parameters (such
as the stress intensity factors of Modes I, II and III), for
arbitrary non-planar three-dimensional surface and inter-
nal cracks, remains an important task in the structural in-
tegrity assessment and damage tolerance analysis [Atluri
(1997)]. The three-dimensional stress analyses of crack
configurations have received a lot of attention in the last
two decades. Various methods have been investigated
to obtain the stress-intensity factors for surface cracks:
the finite element method (FEM), the boundary element
method (BEM), the coupled FEM-BEM method and the
FEM-BEM alternating method, as summarized in [Atluri
(1986)]. They were used successfully for this purpose.

The finite element method is generally regarded as the
most powerful numerical method since it can handle
complicated geometries and loading conditions. The
fracture mechanics problems are solved by using singu-
larity elements [Tan, Newman and Bigelow (1996); Raju
and Newman (1979)] or displacement hybrid elements
[Atluri and Kathireasan (1975)], or by using certain path-
independent and domain-independent integrals based on
conservative laws of continuum mechanics [Nikishkov
and Atluri (1987); Shivakumar and Raju (1992)]. Unfor-
tunately, these methods require an explicit finite-element
modeling of cracks, such as in HKS/ABAQUS. They en-
counter a serious difficulty in the mesh generation when
they are applied to three-dimensional problems, with the
extremely high human labor cost for creating appropriate
meshes for cracks in structural components of arbitrary
geometry. In addition, it is almost impossible to keep
creating the meshes with high quality, during crack prop-
agation.

It is well known that boundary element methods (BEM)
have distinct advantages over domain approaches in solv-
ing of linear elastic fracture mechanics problems. In
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BEM, the mesh should be generated only for the bound-
ary of the structure, and for the crack surface. Conse-
quently, it is simpler to create a boundary element mesh,
in comparison to a finite element mesh for a body with
a crack. The traditional (collocation) boundary element
method has certain features, which make it suitable for
the solution of crack problems. Recent publications on
the dual boundary element method [Cisilino and Aliabadi
(1999)] can serve as an example of application of tra-
ditional BEM to linear and non-linear fracture mechan-
ics problems. The symmetric Galerkin boundary ele-
ment method (SGBEM) [Han and Atluri (2002, 2003a)]
has been recently developed, based on a weakly singu-
lar weak-form of integral equations. The system ma-
trix shows symmetry and sign-definiteness. The SGBEM
overcomes some drawbacks of the traditional boundary
element methods, including the nonsymmetrical matrix
of the equation system, and the hypersingular kernels.
Another advantage of the SGBEM is that, after a spe-
cial transformation to remove the singularity from ker-
nels, the system matrices can be integrated with the use
of usual Gaussian quadrature rule [Andra (1998); Erich-
sen and Sauter (1998)]. But from the numerical point of
view, the SGBEM, like all BEM approaches, entails fully
populated coefficient matrices, which hinders their appli-
cation to large-scale problems with complex geometry.

The coupled FEM-BEM approaches are also proposed
for fracture analyses by limiting the employment of the
BEM to the fractured region [Keat, Annigeri and Cleary
(1988); Frangi and Novati (2002)]. The SGBEM shows
its special advantage in such a coupled approach, with
its symmetric system matrices and sign-definiteness. An
obvious disadvantage of this approach is that, both the
mesh of fractured region for BEM and the mesh for the
remaining part for FEM should be modified when it is
necessary to analyze cracks of different sizes and loca-
tions, including crack-growth.

The alternating method, generally known as the
Schwartz-Neumann alternating method, obtains the solu-
tion on a domain that is the intersection of two other over-
lapping domains [Kantorovich and Kriylov (1964)]. The
procedure has been applied to fracture mechanical anal-
yses. Normally the two domains are defined to be: one, a
finite body without the crack; and the second, an infinite
body with cracks. The solution is obtained by iterating
between the solution for the uncracked finite body (usu-
ally using FEM), and the cracks in an inifinite region ob-

tained with collocation BEM or SGBEM. Each solution
can be solved by various methods [Atluri (1997); Nish-
ioka and Atluri (1983); Vijaykumar and Atluri (1981);
Wang and Atluri (1996)]. For a complex geometry
with the arbitrary cracks, the alternating procedure has
been implemented by iterating between the FEM and the
SGBEM [Nikishkov, Park and Atluri (2001); Han and
Atluri (2002)]. In [Nikishkov, Park and Atluri (2001)],
two solutions are employed iteratively: 1. The FEM
solution for stresses in the uncracked global structure;
2. The SGBEM solution for the crack in an inifinite
body – thus only the crack surfaces are modeled in the
SGBEM. This approach has been applied to the embed-
ded cracks with high accuracy. It also demonstrated the
flexibility in choosing the overlapping domains for dif-
ferent crack configurations. From a computational point
of view, it also shows its efficiency in saving both compu-
tational and human labor time, by leveraging the existing
FE models. This work has been extended in [Han and
Atluri (2002)], in which he solution is obtained by alter-
nating between two finite domains: the global uncracked
structure is solved by using the FEM, and a local cracked
subdomain is solved by using the SGBEM. It eliminates
the need for evaluating the singular integral of tractions
at the free surface, during the alternating procedure when
surface crack problems are considered. At the same time,
it limits the employment of the SGBEM only for the local
cracked subdomain, and reduces the computational cost
and memory requirements, since the SGBEM entails the
fully populated system matrix. In additon, the alternat-
ing method may be also extended for the crack problems
by using the truely meshless methods, through the mesh-
less local Petrov-Galerkin approach (MLPG), pioneered
by Atluri and his colleagues [Atluri(2004); Atluri, Han
and Shen(2003); Han and Atluri (2003b, 2004a, 2004b)].

The present work discusses the recent development of the
alternating method based on FEM and SGBEM, embed-
ded in a commercial-quality software, DTALE: “Dam-
age Tolerance Analysis and Life Enhancement ”. With
DTALE, the BEM is applied only for the local crack sub-
domain, and reduces the computational cost and memory
requirements. With the use of the built-in FEM solver,
DTALE can handle much more complex structural com-
ponents than pure BEM solvers. In addition, DTALE
provides an interface to commercial FEM codes (such as
NASTRAN, ABAQUS and MARC) to retrieve the FEM
solutions of uncracked structures. From the modeling
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point of view, this approach makes the full use of the ex-
isting FE models to avoid any model regeneration, which
is extremely high in human labor cost. The presently
proposed procedure is demonstrated by solving both the
embedded and surface cracks problems. The stress in-
tensity factors are calculated and compared with the ear-
lier published solutions. The good agreements show that
the FEM-SGBEM alternating method between two finite
domains is very efficient and highly accurate for 3D ar-
bitrary crack problems. DTALE is also used to solve the
problem of mixed-mode fatigue-growth of an initially-
semi-circular surface flaw which is inclined to the direc-
tion of tensile loading in a thick plate. In addition, the au-
tomatic determination of the initial crack is also demon-
strated by using the DTALE.

2 Formulation of the non-hyper-singular symmetric
Galerkin boundary element method

The non-hypersingular displacement and traction BIEs
for a linear elastic, homogeneous, isotropic solid, are
summarized in this section. Consider a linear elastic,
homogeneous, isotropic body in a domain Ω, with a
boundary ∂Ω. The Lame’ constants of the linear elas-
tic isotropic body are λ and µ; and the corresponding
Young’s modulus and Poisson’s ratio are E and υ, respec-
tively. We use Cartesian coordinates ξi, and the attendant
base vectors ei, to describe the geometry in Ω. The solid
is assumed to undergo infinitesimal deformations. The
equations of balance of linear and angular momentum
can be written as:

∇∇∇ ·σσσ+ f = 0; σσσ = σσσt ; ∇∇∇ = ei
∂

∂ξi
(1)

The constitutive relations of an isotropic linear elastic ho-
mogeneous solid are:

σσσ = λ III (∇∇∇ ·uuu)+2µ εεε (2)

It is well known that the displacement vector, which is a
continuous function of ξξξ, can be derived, in general, from
the Galerkin-vector-potential ϕϕϕ such that:

uuu = ∇∇∇2ϕϕϕ− 1
2(1−υ)

∇∇∇(∇∇∇ ·ϕϕϕ) (3)

Consider a point unit load applied in an arbitrary direc-
tion ep at a generic location x in a linear elastic isotropic
homogeneous infinite medium. It is well-known that the

displacement solution is given by the Galerkin-vector-
displacement-potential:

ϕϕϕ∗p = (1−υ)F∗ep (4)

in which F∗ is a scalar function, as

F∗ =
r

8πµ(1−υ)
for 3D problems (5)

and

F∗ =
−r2 lnr

8πµ(1−υ)
for 2D problems (6)

where r = ‖ξξξ−x‖
The corresponding displacements are derived, by using
Eq. (3), as:

u∗p
i (x,ξξξ) = (1−υ)δpiF∗

,kk −
1
2

F∗
,pi (7)

and the gradients of the displacements in (7) are:

u∗p
i, j(x,ξξξ) = (1−υ)δpiF

∗
,kk j −

1
2

F∗
,pi j (8)

By taking the fundamental solution u∗p
i (x,ξξξ) in Eq. (7)

as the test functions, one may write the weak-form of the
equilibrium Eq. (1). The traditional displacement BIE
can be written as,

up(x) =
∫

∂Ω
t j(ξξξ)u∗p

j (x,ξξξ) dS

−
∫

∂Ω
ni(ξξξ)u j(ξξξ)σ∗p

i j (x,ξξξ) dS
(9)

Where σ∗p
i j is the stress field of the fundamental solution,

as

σ∗p
i j (x,ξξξ) ≡ Ei jklu

∗p
k,l

= µ[(1−υ)δpiF
∗
,kk j +υδi jF

∗
,pkk −F ∗

,pi j ]

+µ(1−υ)δp jF
∗
,kki

(10)

Instead of the scalar weak form of Eq. (1), as used for the
displacement BIE, we may also write a vector weak form
of Eq. (1), by using the tensor test functions u∗p

i, j (x,ξξξ)
in Eq. (8) [as originally proposed in Okada, Rajiyah,
and Atluri (1989), Okada and Atluri(1994)], and derive
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a non-hypersingular integral equation for tractions in a
linear elastic solid [Han and Atluri (2003)],

−tb(x) =
∫

∂Ω
tq(ξξξ)na(x)σ∗q

ab(x,ξξξ) dS

+
∫

∂Ω
Dpuq(ξξξ)na(xxx)Σ∗

abpq(x,ξξξ) dS
(11)

where Σ∗
abpq is another derived kernel function, which

were first given by Han and Atluri [2]

Σ∗
i jpq(x,ξξξ) = Ei jklenlpσ∗k

nq(x,ξξξ)

= µ2[(einpF, jqn −einpδ jqF,bbn

+eintetqke jpmF,kmn)
+υ(einqδ jpF,bbn +e jnqδipF,bbn)]

(12)

and the surface tangential operator Dt is defined as,

Dt = nrerst
∂

∂ξs
(13)

The singularity of u∗p
i is O(1/r), as the second derivatives

of F∗are included. The singularities are O(1/r2) for σ∗p
i j

and Σ∗
abpq because of the third derivatives of F∗. There-

after, the displacement and traction BIEs in Eqs. (9)
and (11) have the non-hyper-singularities only. It should
be noted that these two integral equations for up(x) and
tb(x) are derived independently of each other. On the
other hand, if we derive the integral equation for the
displacement-gradients, by directly differentiating up(x)
in Eq. (9), a hyper-singularity is clearly introduced due
to the forth derivatives.

Furthermore, Eqs. (9) and (11) may be satisfied in weak-
forms over the boundary surface ∂Ω, by using a Galerkin
scheme. One may obtain the symmetric Galerkin dis-
placement and traction BIEs after applying Stokes’ theo-
rem, as

1
2

∫
∂Ω

t̂p(x)up(x)dSx

=
∫

∂Ω
t̂p(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

∂Ω
t̂p(x)dSx

∫
∂Ω

Di(ξξξ)u j(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

∂Ω
t̂p(x)dSx

∫ CPV

∂Ω
ni(ξξξ)u j(ξξξ)φ∗p

i j (x,ξξξ) dSξ

(14)

− 1
2

∫
∂Ω

tb(x)ûb(x)dSx

=
∫

∂Ω
Daûb(x)dSx

∫
∂Ω

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

∂Ω
tq(ξξξ) dSξ

∫ CPV

∂Ω
na(x)ûb(x)φ∗q

ab(x,ξξξ)dSx

+
∫

∂Ω
Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(15)

where G∗p
i j , φ∗p

i j and H∗
i jpq are kernel functions and given

as [Han and Atluri (2003)],

For 3D problems,

G∗p
i j (x,ξξξ) =

1
8π(1−υ)r

[(1−2υ)eip j +eik jr,kr,p] (16a)

φ∗p
i j (x,ξξξ) =

1
4πr2 δp jr,i (16b)

H∗
i jpq(x,ξξξ) =

µ
8π(1−υ)r

[4υδiqδ jp −δipδ jq

−2υδi jδpq +δi j r,pr,q +δpqr,ir, j

−2δipr, jr,q−δ jqr,ir,p]

(16c)

For 2D problems,

G∗p
i j (x,ξξξ) =

1
4π(1−υ)

[−(1−2υ) lnr eip j +eik jr,kr,p]

(17a)

φ∗p
i j (x,ξξξ) =

1
2πr

δp jr,i (17b)

H∗
i jpq(x,ξξξ) =

µ
4π(1−υ)

[−4υ lnrδiqδ jp

+ lnrδipδ jq +2υ lnrδi jδpq

+δi j r,pr,q +δpqr,ir, j

−2δipr, jr,q−δ jqr,ir,p]

(17c)

For a crack problem shown in Fig. 1, the boundary sur-
face ∂Ω includes the prescribed displacement surface Su,
the prescribed traction surface St , and the crack surface
Sc. We apply the weak-form displacement integral equa-
tion on the prescribed displacement boundary surfaces Su

and obtain the formulation as:
1
2

∫
Su

t̂p(x)up(x)dSx

=
∫

Su

t̂p(x)dSx

∫
∂Ω

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫
∂Ω

Di(ξξξ)u j(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫ CPV

∂Ω
ni(ξξξ)u j(ξξξ)φ∗p

i j (x,ξξξ) dSξ

(18)
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tS p

uS

u

cS

Ω

Figure 1 : A linear elastic isotropic domain containing
cracks (Original problem)

We apply the weak-form traction integral equation on the
prescribed traction boundary surfaces St and obtain the
similar formulation as:

− 1
2

∫
St

tb(x)ûb(x)dSx

=
∫

St

Daûb(x)dSx

∫
St+Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

St+Su

tq(ξξξ) dSξ

∫ CPV

St

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

St

Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(19)

We also apply the weak-form traction integral equation
on the crackSc, which are conceived as a set of prescribed
traction boundary surfaces. We have

− 1
2

∫
Sc

tb(x)ûb(x)dSx

=
∫

Sc

Daûb(x)dSx

∫
St+Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

St+Su

tq(ξξξ) dSξ

∫ CPV

Sc

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

Sc

Daûb(x)dSx

∫
∂Ω

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(20)

The SGBEM requires the C0 continuous trial and testing
functions over the boundary surface ∂Ω = Su ∪ St ∪ Sc.
This can be satisfied after discretization. Special atten-
tion should be paid to the crack surfaces. The displace-
ment discontinuities, u(x) = u+(x+)− u−(x−), must be
zero around the crack fronts where u+(x+) = u−(x−). A

special treatment is also required to enforce the C0 con-
tinuities for the surface cracks that intersect the normal
boundary surface Su ∪ St . In the present work, quarter-
point singular elements are adopted and the displacement
discontinuities are set to zero explicitly for the crack
front. In addition, the weak-form can be also written for
the local sub boundary, by using the generate MLPG ap-
proach. It has been presented in [Alturi, Han and Shen
(2003)].

3 Schwartz-Neumann Alternating Method

The Schwartz-Neumann alternating method is based on
the superposition principle. The solution on a given do-
main is the sum of the solutions on two other overlap-
ping domains. The alternating method converges uncon-
ditionally when there are only traction boundary condi-
tions specified on the body. In the present work, the over-
lapping domains are the given finite domain, but with-
out the cracks; a local portion of the original given do-
main as described below. The local subdomain can be
selected to include only the traction boundary conditions
so that the alternating procedure converges uncondition-
ally. To take advantages of both the FEM and SGEM,
the FEM, which is a robust method for large-scale elas-
tic problems, is used to solve the whole uncracked global
structure. The SGBEM, which is most suitable the crack
analyses, is used for modeling a local finite-sized subdo-
main containing embedded or surface cracks. The size
of SGBEM domain is also limited in order to improve
the computational efficiency, by avoiding an overly-large
fully populated system matrix.

We consider a structure containing cracks, as shown in
Fig. 1. The crack surfaces are denoted collectively as
Sc. The alternating method uses the following two prob-
lems to solver the original one. Let us define that the
domain for the FEM, denoted as ΩFEM in Fig. 2(a), is
the same as the original domain Ω but no cracks are in-
cluded. All the prescribed tractions p are applied to the
FEM domain on SFEM

t , as well as all the prescribed dis-
placement u on SFEM

u . Another domain ΩSGBEM is de-
fined for the SGBEM as shown in Fig. 2(b), which is a
local finite-sized subdomain containing all the cracks. It
is clear that the same crack surfaces are inherited from
the original ones, as SSGBEM

c . We define the boundary
conditions in a way that the shared overall boundary be-
tween these two domains is defined as the traction free
surface of the SGBEM domain, denoted as SSGBEM

t with
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pSGBEM = 0. The intersection surface SI is treated as the
boundary of the SGBEM domain with the prescribed dis-
placements, denoted as SSGBEM

u . We can also restrict all
prescribed displacements, uSGBEM, to be zero on SSGBEM

u .
One obvious advantage of this approach is that two over-
lapping domains are limited to the local portion contain-
ing the cracks, without any restriction to the remaining
portion. This distinguishing feature makes it possible
that all other structure elements can be used in the FEM
domain, which are widely used in industry. It also al-
lows the present alternating approach to be implemented
within any commercial FEM solver without any restric-
tion. Another advantage is that the independence of the
crack model and finite element model of the body allows
one to easily change the crack model in order to simulate
crack growth or perform the parametric study.

To solve the original problem, the superposition of the
two alternate problems, FEM and SGBEM, yields the
original solution for the prescribed displacements u and
tractions p with cracks. The detailed procedures are de-
scribed as follows.

1. Using FEM, solve the problem on domain ΩFEM

with all externally prescribed displacements and trac-
tions, but without the cracks. The tractions on crack sur-
faces SSGBEM

c can be obtained as pSGBEM
c ≡−pFEM

c .

2. Using SGBEM, solve the local problem on domain
ΩSGBEM only with the tractions on the crack surface. The
prescribed displacements uSGBEMon SSGBEM

u are set to
zero as well as the zero prescribed tractions pSGBEMon
SSGBEM

t . The only loads are the non-zero tractions on the
crack surfaces, i.e., pSGBEM

c on SSGBEM
c . Then the trac-

tions on the intersection surface SI are obtained as a part
of the SGBEM solution explicitly, denoted as pSGBEM

u on
SSGBEM

u .

3. Applying the tractions on the intersection surface
as the residual forces to the FEM domain, denoted as
pFEM ≡ −pSGBEM

u on SI in Fig. 2(c), re-solve the FEM
problem and obtain the traction pSGBEM

c on crack surfaces
SSGBEM

c .

4. Repeat steps 2 and 3 until the residual load pFEM is
small enough.

5. By adding the SGBEM solution to the FEM one, the
original one is obtained.

We now examine the solution with the given boundary
and loading conditions for the original problem (denoted
by superscript Org):

t
FEM
t SS = pp FEM =

u
FEM
u SS =

uu FEM =

cS

FEMΩ

IS
FEM
cp

(a) the uncracked body for FEM

SGBEM
tS

0=SGBEMp

c
SGBEM
c SS =

SGBEMΩ

ISGBEM
u SS =

0=SGBEMu SGBEM
cp

SGBEM
up

(b) the local SGBEM domain containing cracks

t
FEM
t SS =

u
FEM
u SS =

cS

FEMΩ

IS

FEMp

(c) FEM model subjected to residual loads

0
tS pp FEM =

uS

uu FEM =

cS

Ω

IS
FEM
c

SGBEM
c pp −=

0=

=
SGBEM

FEM

p

pp

SGBEMFEM pp −=

0=SGBEM

FEM

u

u

(d) alternating solution for the original problem

Figure 2 : Superposition principle for FEM-SGBEM al-
ternating method
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i) for the given traction on St , we have pFEM = p and
pSGBEM = 0 and get

pOrg = pFEM + pSGBEM = p on St (21)

ii) for the given displacement on Su, the SGBEM domain
does not contain any portion of Su and thus, we obtain

uOrg = uFEM = u on St (22)

iii) for the crack surface Sc, we define that tractions for
SGBEM modelpSGBEM

c equal to −pFEM
c from the FEM

solution, and thus the tractions on crack surfaces are zero
as in the original problem, i.e.,

pOrg
c = pFEM

c + pSGBEM
c = 0 on Sc (23)

iv) for the intersection surface SI , we define that the resid-
ual tractions on FEM model pFEM equals to −pSGBEM

from the SGBEM solution, and obtain

pOrg
c = pFEM

c + pSGBEM
c = 0 on SI (24)

We also specify that the zero displacements for the
SGBEM model, i.e. uSGBEM = 0 on SI , and thus, there no
displacement discontinuities along the intersection sur-
face,

uOrg = uFEM on SI (25)

As shown in Fig. 2 (d), the solution obtained here satis-
fies all the boundary and loading conditions for the orig-
inal problem. From the uniqueness of the elastic linear
problem, we obtain the solution for the original problem

From a computational point of view, the present approach
is very efficient in saving the CPU time. This results
from two reasons. The first reason is that some terms
for SGBEM equations are ignored, and Eqs. (18), (19)
and 3 can be simplified as follows

For weak-form displacement integral on SSGBEM
u

0 =
∫

Su

t̂p(x)dSx

∫
Su

t j(ξξξ)u∗p
j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫
St+Sc

Di(ξξξ)u j(ξξξ)G∗p
i j (x,ξξξ) dSξ

+
∫

Su

t̂p(x)dSx

∫ CPV

St+Sc

ni(ξξξ)u j(ξξξ)φ∗p
i j (x,ξξξ) dSξ

(26)

For weak-form traction integral on SSGBEM
t

0 =
∫

St

Daûb(x)dSx

∫
Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

Su

tq(ξξξ) dSξ

∫ CPV

St

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

St

Daûb(x)dSx

∫
St+Sc

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(27)

For weak-form traction integral on SSGBEM
c

− 1
2

∫
Sc

tb(x)ûb(x)dSx

=
∫

Sc

Daûb(x)dSx

∫
Su

tq(ξξξ)G∗q
ab(x,ξξξ) dSξ

−
∫

Su

tq(ξξξ) dSξ

∫ CPV

Sc

na(x)ûb(x)φ∗q
ab(x,ξξξ)dSx

+
∫

Sc

Daûb(x)dSx

∫
St+Sc

Dpuq(ξξξ)H∗
abpq(x,ξξξ) dSξ

(28)

Keq = 4

√
K4

I +6K2
I K2

II +K4
II +

K4
III

(1−υ)2 (29)

The second reason is that the residual forces applied to
the FEM problem are obtained as a part the SGBEM
solution explicitly. There is no extra computer time to
determine the forces, which is normally needed when
the alternating procedure is performed between the solu-
tions for the uncracked finite body and the infinite body
containing cracks. The singular residual forces may be
encountered when the surface cracks are included the
later cases, which introduces the numerical errors dur-
ing the alternating procedures. Therefore the surface
crack solutions near the free surface are not accurate,
which is well known as the boundary-layer effect. In
some researches, the fictitious extended cracks are used
with imaginary tractions to reduce such errors [Nishioka
and Atluri (1983)]. Unfortunately, the fictitious extended
portion and the imaginary tractions are hard to be defined
when the arbitrary non-planar surface cracks are consid-
ered. In the present work, the original solution is ob-
tained accurately by using the non-singular alternating
method with the weak singular SGBEM.

4 Automatic crack growth

The crack growth analysis plays an important role in the
damage tolerance analysis for determining the life of the
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2h

2w

t

2a

σ

σ

0

0

ϕ
2a

Figure 3 : a semi-circular crack in a plate under tension

Figure 4 : Mesh of a semi-circular crack in a plate for
the SGBEM

structure. Several models can be used to predict the di-
rection and extension of cracks. The models for crack
extension use in the equivalent K factorsfor the mixed
mode and the stress ratio, such as the Paris, Walker and
Forman fatigue models. In the current implementation,

2a

4a

2a

(a)

(b)

(c)

Figure 5 : Models of a semi-circular crack in a plate for
FEM-SGBEM alternating method: (a) local finite body
defined in the plate, (b) the FEM model without the crack
and (c) the local SGBEM model with the crack
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Figure 6 : Normalized stress intensity factors (KI/
√

πa) for a semi-circular crack in a plate

the equivalent K factor is calculated as

Thereafter, the rate of crack extension is governed by the
corresponding models as

da
dN

= f (Keq,R, ...) (30)

The maximum circumfeential stress theory is used for the
direction, as

KI sinα+KII(3cosα−1) = 0 (31)

Once the crack extension and direction are obtained, the
crack can be advanced by adding another layer of the el-
ements around the crack front to grow the crack. As one
of the most important feature of the alternating method,
the FEM model keeps unchanged and is solved only once
during the crack growth because the models for the FEM
and BEM are fully decoupled. It makes that the alternat-
ing method is very efficient for crack-growth problems.
In addition, the mesh generation is robust because only
the 3D surface mesh is required for the advanced crack
surface, instead of embedding the new crack surface into
a finite body.

5 Numerical Examples

5.1 Semi-circular surface cracks

In order to verify the accuracy of the present alternating
method for treating surface cracks in finite bodies, we
first consider a semi-circular surface crack in a plate as
shown in Fig. 3. Uniform tensile stresses σ0 are applied
at two opposite faces of the plate in the direction perpen-
dicular to the cracks. a is the radius of the semi circular
crack. The plate configuration considered is character-
ized by the geometric ratios h

a = 5, w
a = 5 and t

a = 2.5.
The passion ratio ν = 0.3 is chosen.

We first use the SGBEM method to simulate the en-
tire problem with the mesh shown in Fig. 4. Then we
solve the problem with the alternating method. The FEM
model is created for the uncracked body, shown in Fig.
5(b), with the uniform tensile stresses being applied at
the top and bottom surfaces. The local SGBEM model is
also created in the plate, shown in Fig. 5(a). It is similar
to the model in Fig. 4 for pure SGBEM solution, so that
we create the mesh for this local finite body with similar
meshes for the boundary and crack surfaces. The front
and back surfaces are free and others are the prescribed
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2h

w

w

a

ϕ
a

σ0

σ0

Figure 7 : a quarter-circular crack in a square bar under
tension

displacement ones.

This problem is a pure mode-I problem and has been
solved by using the FEM [Raju and Newman (1979)]
and the SGBEM [Frangi, Novati, Sprinthetti and Rovizzi
(2002)]. The analytical solution is available for the in-
finite plate. The ratios chosen for this prolem are large
enough to represent a crack in the infinite plate. As
shown in Fig. 6, a comparison of the normalized stress
intensity factors by using the SGBEM-FEM alternat-
ing method with the referenced solutions shows a good

Figure 8 : Mesh of a quarter-circular crack in a square
bar for the SGBEM

agreement for all crack-front locations. It is well known
that that the stress intensity factors tend to zero in a
boundary layer where the crack front approaches free
surface of the body, when a surface crack breaks the outer
surface at a right angle. This effect is also confirmed by
using alternating method.

5.2 A quarter-circular crack in a square bar

The second example for the surface crack is a square bar
which contains a quarter-circular crack, as shown in Fig.
7. Uniform tensile stresses σ0 are applied at the two ends.
Let a denote the radius of the quarter-circular crack, and
the other dimensions are defined as w

a = 5 and h
a = 4. The

Poisson ratio ν = 0.3 is chosen here. The dimensions are
chosen to be the same as those used in Li, Mear and Xiao
(1998) for comparison purpose.

Again, we use both the SGBEM for the entire domain;
and the FEM-SGBEM alternating method to solve this
problem with the meshes in Figs. 8 and 9, respectively.
The local SGBEM domain is created by truncating the
square bar as shown in Fig. 9(a). Then the top and
bottom surfaces are subjected to the zero prescribed dis-
placements and others are free.
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(a) (b) (c)

Figure 9 : Models of a quarter-circular crack in a square bar for FEM-SGBEM alternating
method: (a) local finite body defined in the plate, (b) the FEM model without the crack and
(c) the local SGBEM model with the crack
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Figure 11 : a corner crack at a circular hole in a finite-thickness plate under tension

2a

4a

(a) (b) (c)

Figure 12 : Models of a corner crack at a circular hole in a finite-thickness plate for FEM-SGBEM alternat-
ing method: (a) local finite body defined in the plate, (b) the FEM model without the crack and (c) the local
SGBEM model with the crack
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Figure 14 : Inclined semi-circular surface crack specimen
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Numerical results are displayed in Fig. 10 in terms of
the normalized stress intensity factor contribution along
the crack front. A good agreement is observed, as well
as those points near the free surface. Again the boundary
effect is also evidenced by the alternating method.

5.3 Corner crack at a circular hole in a finite-
thickness plate

As the third example, the corner crack at a circular hole
in a plate is considered and shown in Fig. 11. This exam-
ple has been considered by many investigators for three
dimensional fracture analyses with various methods. The
geometry is characterized by the ratios: h

t = w
t = 8,

R
t = 1.5 and a

t = 0.5. The passion ratio is taken as
ν = 0.3.

This problem is analyzed by using the alternating method
only. The meshes adopted are depicted in Fig. 12(b)-
(c), in which only half of the specimen was analyzed due
to symmetry. The FEM model has about 3300 degrees
of freedom (DOFs). In the contrast, the FEM models
used in Tan, Newman and Bigelow (1996) had more than
16000 DOFs in conjunction with special singularity el-
ements for the crack front. The local SGBEM model is
cut by three planar surfaces around the crack with zero
prescribed displacements, as shown in Fig. 12 (a). All
boundary and crack surfaces are discretized with about
500 quadrilateral elements, and with 24 elements along
the crack front.

The normalized stress intensity factors along the crack
front are plotted in Fig. 13. The results are compared
to the available published solutions [Tan, Newman and
Bigelow (1996)]. The boundary effects are obtained for
two ends of the crack front near to the free surface, and
the boundary layer at the lateral free surface is thinner
than the FEM solution.

5.4 Nonplanar fatigue growth of an inclined semi-
circular surface crack in a plate

Fatigue-growth of an inclined surface crack in a plate is
considered. As shown in Fig. 14, the modified ASTM
E740 specimen has been tested for the mixed-mode fa-
tigue growth [Forth, Keat and Favrow (2002)]. The spec-
imens were taken from actual parts made from 7075-T73
aluminum. The crack orientation φ = 30◦ is used. Max-
imum tensile stresses σ0 = 15.88ksi are applied with a
load ratio R = 0.7. The Forman equation is chosen to
advance the crack and front and determine the fatigue

cycles:

da
dN

= C

(
1− f
1−R

∆K

)n (1−∆Kth/∆K)p

(1−Kmax/Kcrit)
q (32)

where the growth rate da
dN is based on empirical material

constantsC, n, p and q; f depends on the ratio R; ∆Kth is
the threshold value of ∆K; Kcrit is the critical stress inten-
sity factor. This model is details in the reference manual
of NASGARO 3.0 [NASA, NASGRO (2001)]. The ma-
terial constants are taken as C = 1.49×10−8, n = 3.321,
p = 0.5, q = 1.0, KIe = 50ksi

√
in, KIC = 28ksi

√
in,

∆Kth = 3.0ksi
√

in, C+
th = 2.0, C−

th = 1.0, Rcl = 0.7,α =
1.9, Ak = 1.0, Bk = 1.0, Smax/σ0 = 0.3, σY S = 60ksi and
σUT S = 74ksi.

We model the uncracked specimen with the mesh as in
Fig. 15b for FEM. The local SGBEM model is located
in the central portion that contains the inclined surface
crack, as illustrated in Fig. 15a with the attendant mesh
being shown in Fig. 15c. The top and bottom surfaces
are cutting surfaces and subjected to the zero prescribed
displacements while others are free.

First, the initial crack is analyzed and stress intensity fac-
tors are normalized by K0 = σ0

√
πa and shown in Fig. 16.

Good agreements are obtained in comparison with other
results [Shivakumar and Raju (1992); He and Hutchinsen
(2000); Nikishkov, Park and Atluri (2001)].

The crack growth is simulated by adding one layer of
elements along the crack front, in each increment. The
newly added points are determined through the K so-
lutions. 15 advancements are performed. The fatigue
load cycles are calculated and compared with the exper-
imental data [Forth, Keat and Favrow (2002)], shown in
Fig. 17. The normalized stress intensity factors during
the crack growing are given in Fig. 18, which are also
normalized by K0 = σ0

√
πa. KI keeps increasing while

KII and KIII are decreasing during the crack growth. It
confirms that this mixed-mode crack becomes the mode-
I dominated one while growing. The shape of the final
crack is very similar to the experimental photograph in
Fig. 19. It is clear that while the crack, in its initial
configuration, starts out as a mixed-mode crack, after a
substantial growth, the crack configuration is such that it
is in a pure mode-I state.
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0.
5"

(a) (b) (c)

Figure 15 : Models of an inclined surface crack in a tensile plate for FEM-SGBEM alternating method: (a)
local finite body defined in the specimen, (b) the FEM model for the specimen without the crack and (c) the
local SGBEM model with the crack

5.5 Automatic detection of an initial nozzle corner
flaw

As the final example, the initial crack at a nozzle corner
is detected by using the program DTALE, which employs
the present alternating method. The geometries of the
nozzle and of the flaw in a longitudinal plane are shown
in Fig. 20. Two types of initial flaws, as shown in Fig. 21,
one a quarter-circular flaw (MATH) of depth a =9.5cm
and a similar “natural” flaw (EXPR) obtained in a pho-
toelastic test [Smith, Jolles and Peters (1976)] were as-
sumed in the damage tolerance analysis. In most analy-
ses, the experimental results are not available. The shape,
size and orientation of the initial flaw need to be assumed
based on the users’ experience, which is not easy. An al-
ternative way is to do the parametric study by creating
many initial flaws based on the combination of the pa-
rameters of the shape, size, and orientation. From the
computational point of view, it is not efficient, if other
parameters are also considered including load cases and
boundary conditions.

In the present study, one may determine the initial flaw by
utilizing the automatic crack-growth function in DTALE.
At the beginning, a smaller initial crack is introduced as
the crack seed, and the program grows the crack seed
with the same loading and boundary conditions. The
present study, the Walker’s fatigue model is used to grow

the crack seed, without the threshold value of the stress
intensity factor. After several advancements of the crack
seed, the larger crack flaw can be obtained with the
proper shape and orientation. As shown in Fig. 21, an
initial crack seed is given as the black portion. The au-
tomatically detected portion of the initial flaw is shown
in gray, which agrees with the experimental results. The
fatigue model for the small crack can be used here for
more accurate initial crack detection, because it fits the
development of the initial crack well.

6 Conclusions

In this paper the Schwartz-Neumaan alternating method
has been extended to analyze surface cracks. It is shown
that the singular traction integral is avoided during the
alternating procedure between the FEM and SGBEM,
when both solutions are based on finite bodies. This ap-
proach shows a strong computational competitiveness, in
comparison to the normal alternating methods, by avoid-
ing the stress calculation on the boundary surfaces of
FEM models. Indeed, the alternating procedure con-
verges unconditionally by imposing the proposed pre-
scribed displacements and tractions in the present ap-
proach. The accuracy and efficiency of the proposed ap-
proach have been verified on some 3D problems with
published solutions by using other methods. The soft-
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Figure 19 : Final crack of an inclined surface crack in a tensile plate: (a) the final crack after 15 increments by using
FEM-SGBEM alternating method, (b) the photograph of the final crack taken from the specimen, (c) the final crack
in the uncracked body, (d) the intersection path of the final crack with the free surface of the specimen, ABCD
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Figure 20 : Surface-flaw near a pressure-vessel-nozzle
junction

Figure 21 : Geometry of an intermediate-test-vessel
nozzle configuration

Figure 22 : Automatic initial crack detection
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ware pacakge, DTALE, has been developed based on the
present method. DTALE can be seen to have a wide
industrial application, in estimating the life of a variety
of safety-critical structures. With DTALE, the effect of
residual stresses in a structure, due to processes such as
welding, cold-working, shot-peening, etc., on the life of
the structure, including a possible life-enhancement, can
also be assessed.
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