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ABSTRACT: Root-zone temperature (RZT) strongly affects plant growth, nutrient uptake and tolerance to
environmental stress, making its regulation a key challenge in greenhouse cultivation in cold climates. This study
aimed to assess the potential of passive techniques, namely black polyethylene mulch and row covers, for modifying
RZT dynamics in lettuce (Lactuca sativa L.) production and to evaluate the predictive performance of the eXtreme
Gradient Boosting (XGBoost) algorithm. Experiments were conducted in Iğdır, Türkiye, over a 61-day period, with
soil temperature continuously monitored at depths of 1–30 cm under mulched and non-mulched conditions, alongside
measurements of greenhouse air temperature both with and without row covers. The application of row covers
increased internal air temperature by 5.8◦C, while mulching raised RZT by 0.6–1.3◦C, with effects diminishing at
deeper layers. XGBoost modeling achieved high predictive accuracy, with RMSE values of 0.150–0.189◦C and R2 values
above 0.99, and feature-importance analysis indicated that neighboring soil depths were the strongest predictors of
RZT. These findings show that integrating row covers and mulching can stabilize the root-zone microclimate without
active heating. The XGBoost model provides a robust tool for forecasting soil temperature and supports sustainable
greenhouse production in cold regions.
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1 Introduction

The continuous growth of the global population has intensified the demand for both food and energy,
underscoring the need for efficient and sustainable greenhouse systems. Within controlled environment
agriculture, root-zone temperature (RZT) is a primary driver of water and nutrient uptake, root metabolism,
and overall plant vigor. Modest RZT elevation (+3◦C) enhances biomass, pigments, and metabolite profiles
by improving nutrient acquisition and activating root metabolism in lettuce across different air-temperature
regimes [1]. Complementary evidence indicates that controlling RZT through targeted heating methods
improves photosynthesis, yield, and quality with favorable energy use compared with bulk-air heating [2].
Moreover, seasonal energy assessments suggest that on-site renewables can supply a substantial fraction of
the RZT heating/cooling demand, reinforcing the thermal efficiency and low-carbon potential of root zone
focused strategies [3]. Implementation-oriented work further highlights timing and control for example,
morning RZT elevation and heat pump assisted RZT control to translate RZT management into consistent
productivity gains [4,5].
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Mulching and row covers are widely adopted passive microclimate strategies that regulate soil and
near-surface air temperatures. Recent field studies show that plastic mulches reduce soil heat loss and
increase soil temperature while dampening daily thermal fluctuations an effect most pronounced during cold
periods [6–9]. For cool-season vegetables such as lettuce (Lactuca sativa L.), mulching has been associated
with improved yield and quality traits under open-field and protected settings, including biodegradable or
bio-based covers [10,11]. Likewise, row covers/low tunnels extend the growing season by retaining heat
and humidity and by buffering against frost, and they are used not only in open-field systems but also inside
Mediterranean-type greenhouses during early crop stages to enhance the microclimate and reduce pest
pressure [12,13]. Integrating row covers with mulching within greenhouses therefore provides additional
thermal buffering and contributes to passive energy conservation a practical complement to active climate
control when energy costs or night temperatures are limiting [12,13].

Direct, continuous measurement of root-zone temperature (RZT) at scale often requires specialized
instrumentation and maintenance, which limits practicality for large-area or long-term deployments;
consequently, many studies favor indirect estimation or modeling approaches [14,15]. In parallel, the
literature documents a broad toolbox of empirical, semi-empirical, and physics-based models for soil
temperature dynamics ranging from calibrated air-to-soil transfer relations to land-surface/crop models and
climate-model evaluations [16–18]. More recently, machine learning (ML) methods have gained prominence
for capturing nonlinear responses among environmental drivers and soil thermal behavior, with hybrid and
explainable ML frameworks delivering strong accuracy across depths and conditions [19,20].

Beyond conventional tree-based models, a wide spectrum of ML algorithms has been applied to soil
temperature estimation. Recent studies confirm that artificial neural networks (ANNs) and their hybrids can
accurately forecast soil temperature across depths and climates, often surpassing linear baselines [19,21].
Support Vector Machines (SVM) and MARS remain strong non-linear contenders in comparative reviews
and benchmarks, particularly when inputs include radiation, air temperature, humidity, and wind speed [22].
In parallel, deep learning architectures most notably CNNs and CNN-LSTM hybrids have demonstrated
state-of-the-art performance for hourly and spatiotemporal soil-temperature prediction [23,24]. That
said, the higher data and compute demands of deep models can limit routine deployment in production
greenhouse settings; consequently, efficient gradient-boosting approaches (e.g., XGBoost) are frequently
favored as a practical compromise between accuracy, speed, and interpretability for environmental modeling
workflows [25,26].

Among contemporary ML algorithms, XGBoost has emerged as a powerful and efficient ensemble
method, combining gradient-boosted trees with regularization to deliver strong accuracy and fast training
on nonlinear, high-dimensional data. Comparative studies in agri-environmental contexts consistently
report superior or top tier performance of XGBoost relative to baselines such as Random Forest (RF)
and Support Vector Machines (SVM) including greenhouse microclimate prediction and crop quality
regression while maintaining practical computational efficiency [27–29]. Broader benchmarks and domain
applications likewise showXGBoost outperforming RF in complex classification/regression tasks, reinforcing
its suitability as a default, high-performing learner in agricultural modeling workflows [30–32].

Despite extensive research on the individual effects of mulching and row covers, a study explicitly
examining their combined influence on root-zone temperature in greenhouse systems particularly when
analyzed within advanced machine learning frameworks has not been reported in the open literature. To
bridge this research gap, the present study explores the thermal dynamics of RZT under mulched and
non-mulched row cover treatments in a greenhouse environment. Specifically, it assesses the predictive
performance of the XGBoost algorithm in modeling soil temperature at the effective root zone depth of
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lettuce (10 cm) [33]. By integrating passive thermal management techniques with data-driven modeling, this
research aims to establish a sustainable and computationally efficient framework for optimizing greenhouse
production under cold climatic conditions.

In this context, the present study has three main contributions. First, it provides a detailed experimental
quantification of how the combined use of row covers and black polyethylene mulch modifies the vertical
root-zone temperature profile (1–30 cm) for winter lettuce in an unheated greenhouse under a strongly
heating-dominated continental climate. Second, it develops high-accuracy XGBoost models for predicting
RZT at the effective root depth (10 cm) under both mulched and non-mulched conditions, using multi-depth
soil temperatures and routine climatic variables as inputs. Third, it links the model-based feature-importance
and sensitivity results to soil-physics and crop-physiology concepts and discusses how such interpretable,
IoT-ready models can support passive microclimate management and decision making in sustainable
greenhouse production.

2 Material and Methods

2.1 Study Area

The experiment was conducted in Iğdır, located in the Erzurum-Kars section of Northeastern Anatolia
(39◦55.2′ N, 44◦03.0′ E) at an elevation of 850 m above sea level (Fig. 1). The region is characterized by a
continental climate with strong seasonality, cold winters, and hot, dry summers. Long-term meteorological
records (1941–2024) indicate mean monthly temperatures ranging from −3.3◦C in January to 25.9◦C in
July, with maximum average values peaking at 33.4◦C in midsummer. Minimum temperatures regularly
drop below −8.0◦C in January. Precipitation follows a bimodal distribution, with May representing the
wettest month (46.9 mm), while August and September are distinctly dry despite high temperatures.
Sunshine duration varies between 2.4 h (December) and 10.1 h (July), reflecting substantial variation in
solar radiation availability [34]. This climatic regime imposes thermal and hydrological constraints on
agricultural production, particularly in unheated greenhouse systems.

 

Figure 1: Global location of study area.
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2.2 Experimental Greenhouse and Measurement System

The study was carried out in a 525 m2 (35 m × 15 m) greenhouse at the Agricultural Research and
Application Center of Iğdır University. The greenhouse structure consisted of polycarbonate side walls
and a polyethylene roof, equipped with side ventilation openings corresponding to 2.5% of the floor area.
Row covers were 1.0 m in width and 0.9 m in height, with an approximate internal volume of 21 m3

per tunnel (Fig. 2). A total of 12 row covers were installed, of which six were supplemented with black
polyethylene mulch (175 µm thickness) and six were maintained as non-mulched controls. Three commercial
lettuce cultivars (Carmesi, El Maria, and Fiyonk) were planted with a row spacing of 40 cm and intra-row
spacing of 30 cm. This design enabled comparative evaluation of mulched versus non-mulched row cover
treatments under identical greenhouse conditions. Ventilation was applied during midday hours when
indoor temperatures exceeded 25◦C, and kept closed otherwise to minimize convective heat loss.

  

Figure 2: Row covers inside an experimental greenhouse.

Environmental parameters were monitored throughout the 61 days growing period, ending with
harvest on 3 January 2023. Temperature sensors (HOBO UX-120-006M, Onset Computer Corporation, USA)
were deployed to record outdoor air temperature, greenhouse indoor temperature, and inside the row
covers. Root zone temperature (RZT) was continuously measured at depths of 1, 10, 20, and 30 cm in both
mulched and non-mulched tunnels. The temperature sensors had an operational range of −20◦C to 80◦C
with an accuracy of ±0.2◦C. Relative humidity inside the row covers was measured using Elitech RC-4HC
loggers, which have a measurement range of 10–99% and an accuracy of ±3%.

As neither manufacturer provided a specific calibration procedure in the user manuals, a two-point
check method was applied to evaluate differences among the sensors. For quality control, all probes were
placed side by side for 24 h in a controlled indoor environment; no sensor deviated beyond the accuracy
specified by the manufacturer. Additional meteorological parameters, including solar radiation and wind
speed, were obtained from the automated weather station at the Agricultural Research and Application
Center of Iğdır University. Measurements were recorded at 5-min intervals and subsequently aggregated
into hourly and daily averages for analysis.

In the outdoor environment, air temperature, relative humidity, solar radiation and wind speed were
measured, whereas inside the greenhouse the air temperature and, within the row covers, air temperature
and relative humidity were monitored. In addition, soil temperature was measured at depths of 1, 10, 20 and
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30 cm beneath the row covers. The experimental design and sensor layout are presented in Fig. 3. Raw
5-min records were downloaded from the HOBO and Elitech loggers as CSV files and merged in RStudio
based on their time stamps. All time series were converted to local time (GMT+3) and aligned to a common
5-min grid. The cleaned 5-min data were then aggregated to hourly means for all variables; only hours
with a complete set of predictors and a valid target value (Tym10 or Tnm10) were retained.

Figure 3: Schematic description of application and sensor layout.

2.3 Uncertainty Analysis

Measurement uncertainties were assessed using the method proposed by [35]. If the experimental
result 𝜔R is a function of independent variables (x1, x2, x3, x4, . . . , xn), combined uncertainty is given by
Eq. (1);
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Here R is a calculated result, x1, x2, x3, . . . , xn are the measured values. 𝜔1, 𝜔2, 𝜔3, . . . , 𝜔n is the
uncertainty of the values x1, x2, x3, . . . , xn measured respectively. 𝜔R is the absolute uncertainty of the
outcome R and 𝜔R is the percentage uncertainty of the outcome R. In this study, the experiments are
conducted at 4.06% uncertainty.

2.4 Statistics and Machine Learning Model

Greenhouse environments represent complex, nonlinear systems in which multiple meteorological and
biological factors interact dynamically. Machine learning (ML) techniques are well suited for modeling such
systems due to their ability to approximate nonlinear functions. In this study, all statistical analyses and
the eXtreme Gradient Boosting (XGBoost) algorithm were implemented in R (v.2025.05.0-496) [36] using
the XGBoost package together with the supporting libraries car, rstatix, caret, tidyverse, ggplot2, corrplot,
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dalex and psych. The full dataset, consisting of 1272 hourly observations, was randomly partitioned into
a training set (70%) and an independent test set (30%), and separate XGBoost models were fitted for the
mulched and non-mulched treatments.

XGBoost was selected as the primary modeling framework for several reasons. First, the dataset
corresponds to a typical medium-sized tabular problem with a moderate number of predictors, a setting
in which gradient-boosted decision trees are known to perform strongly and often outperform or match
artificial neural networks and deep-learning architectures while requiring less hyperparameter tuning
and computational effort [37,38]. Second, recent studies on soil and root-zone temperature prediction
have reported that boosting ensembles, and XGBoost in particular, achieve equal or superior accuracy
compared with random forest, support vector regression, multilayer perceptrons and other classical methods
across different depths and climatic conditions [21,22,29,39,40]. In addition, XGBoost provides built-in
feature-importance measures and is readily compatible with post-hoc interpretation tools such as partial
dependence and sensitivity analysis, which aligns with the aim of this study to link the dominant predictors
to soil-physics and crop-physiology processes.

To examine whether air temperatures measured at different heights inside the greenhouse (0.5, 1.0,
1.5 and 2.0 m) could be pooled, a one-way analysis of variance (ANOVA) was applied with height as a
fixed factor and hourly indoor temperature as the response variable. The null hypothesis stated that the
mean greenhouse air temperature is identical at all four elevations, and the alternative that at least one
height differs. As no significant differences were detected (p > 0.05), the vertical temperature profile was
considered homogeneous, and the temperature at 0.5 m (canopy level), together with the average across all
heights, was used in the subsequent descriptive analyses.

To evaluate the effect of mulch on root-zone temperature at the effective depth, an independent-samples
t-test was performed to compare the mean soil temperature at 10 cm under mulched (Tym10) and
non-mulched (Tnm10) tunnels. The null hypothesis was that the mean Tym10 and Tnm10 values are equal,
and the alternative that mulching alters the mean RZT. Assuming independence of hourly observations
between treatments and approximate normality of the residuals, the test was conducted at α = 0.05. The
resulting p-value (<2.2 × 10−16) provided strong evidence against the null hypothesis and confirmed that
mulch application significantly increased root-zone temperature.

Descriptive statistics and correlation analysis were first inspected to verify that the distributions of
the variables were well behaved and to identify potential multicollinearity among predictors. Because
XGBoost is a tree-based method and therefore scale-invariant, no standardization or normalization of the
continuous variables was applied. The input features included solar radiation (Rad), wind speed (Vw),
relative humidity (TambRh, TrcymRh, TrcnmRh), air temperature (Tamb, TgRh, Trcym, Trcnm) and soil
temperatures at 1, 20 and 30 cm depth (Tym1, Tym20, Tym30 or Tnm1, Tnm20, Tnm30). The model outputs
were the predicted RZT at 10 cm depth (Tym10 for mulched and Tnm10 for non-mulched conditions).
Model performance was evaluated using root mean square error (RMSE), mean absolute error (MAE)
and the coefficient of determination (R2). Ten-fold cross-validation on the training set was adopted for
hyperparameter tuning, and feature-importance and sensitivity analyses were conducted to assess model
robustness and interpretability. A schematic diagram of the modeling workflow is given in Fig. 4.

Hyperparameter tuning of the XGBoost models followed current best-practice recommendations
for gradient-boosting algorithms. A regular grid was defined over seven key hyperparameters: the
number of boosting rounds (nrounds), maximum tree depth (max_depth), learning rate (eta), minimum
loss reduction required to split a node (gamma), column subsampling fraction (colsample_bytree),
minimum child weight (min_child_weight), and row subsampling fraction (subsample). Candidate values
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were specified to span shallow to moderately deep trees and conservative to more aggressive learning
rates (e.g., nrounds ∈ (100, 200, 400), max_depth ∈ (3, 6, 9), eta ∈ (0.05, 0.10, 0.20), gamma ∈ (0, 0.05),
colsample_bytree ∈ (0.6, 0.7, 0.8), min_child_weight ∈ (1, 3, 5), subsample ∈ (0.6, 0.7, 0.8). For each
combination in the grid, 10-fold cross-validation was repeated on the training set, and the configuration that
minimized the cross-validated RMSE was selected as optimal. The final tuned models for Tym10 and Tnm10
corresponded to nrounds = 200, eta = 0.10, gamma = 0, colsample_bytree = 0.70, min_child_weight = 3 and
subsample = 0.70, with max_depth = 9 for the mulched case and 6 for the non-mulched case, as reported in
Table 1.

 
Figure 4: Roadmap of the model with XGboost algorithm.

Table 1: Hyperparameter optimization for XGBoost algorithm.

Parameters With Mulch Without Mulch

nrounds 200 200
max_depth 9 6
eta 0.1 0.1
gamma 0 0
colsample_bytree 0.7 0.7
min_child_weight 3 3
subsample 0.7 0.7

After tuning, the best hyperparameter set for each treatment was used to refit the model on the
entire training subset, and predictions were generated for both the training and test data. Model accuracy
was quantified using root mean square error (RMSE), mean absolute error (MAE), and the coefficient of
determination (R2), computed according to Eqs. (3)–(5). In addition, feature importance was derived from the
trained XGBoost models using gain, cover and frequency statistics, while model-agnostic sensitivity analysis
based on mean dropout loss was carried out with the Dalex package to evaluate the impact of removing each
input variable on prediction error. Together these steps provide a transparent and reproducible pipeline
from raw sensor data to tuned, validated models for estimating root-zone temperature under mulched and
non-mulched greenhouse conditions.
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XGBoost has some superior properties like speed, accuracy, flexibility and is supported by the
open-source community. Thanks to these properties, it is very popular in data science competitions
like Kaggle. It is a gradient boosting algorithm that progresses by correcting the errors in the previous
model with each new model. During training of the model, a classification and regression tree (CART) is
created, and each tree is retrained using the residuals (errors) of the previous tree (Eq. (2)).

𝑌𝑖 = ∑
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where Yi is the predictions of the i-th sample after iterations. K is the representation of all CART trees,
fk(xi) is prediction results of xi in k-th tree.

Some evaluation criteria have been determined in the literature to measure performance of models
created to predict output data. These criteria to be used specifically for this study are Root Mean Square
Error (RMSE; Eq. (3)), Mean Absolute Error (MAE; Eq. (4)), Coefficient of Determination (R2; Eq. (5)).
Evaluation of the algorithms depends on goodness of fit criteria that are defined as follows [41,42]:
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where n is the total number of samples used for training and testing, 𝑦𝑖 is the actual value that was measured,
𝑦𝑖𝑝 is the value that was predicted, and 𝑦 is the mean of the measured values. Algorithms and performance
metrics were both computed with the help of the R software (v.2025.05.0-496).

3 Results

3.1 Temperature and Humidity Changes in Open and Closed Environments

Meteorological parameters that are important for greenhouse production are given in Fig. 5, showing
daily averages of outdoor temperature, wind speed, and radiation. Continuous monitoring at 5-min intervals
revealed substantial thermal variation, with recorded temperatures ranging from −11.40◦C (min) to 27.65◦C
(max), establishing a mean ambient temperature of 4.83◦C throughout the study duration.

Air temperature in the greenhouse was monitored at four vertical heights (0.5 m, 1 m, 1.5 m, and 2 m)
to evaluate thermal stratification. Statistical analysis (p > 0.05) confirmed no significant differences between
elevation levels, justifying the use of average hourly values for subsequent analysis. During the cultivation
period, greenhouse temperatures exhibited considerable variation, ranging from −5.2◦C (minimum) to
33.3◦C (maximum), with a average of 8.3◦C. The maximum temperature (33.3◦C) occurred on 18 November
2022 at 13:35 local time, prompting immediate activation of ventilation windows and circulation fans to
mitigate heat stress. Conversely, the minimum temperature (−5.2◦C) was recorded on 11 December 2022
at 07:00. Average hourly temperature changes of ambient, greenhouse and row covers (with and without
mulch) were given in Fig. 6.
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Figure 5: Average hourly changes in solar radiation, wind speed and outside surface heat transfer coefficient on the
reference day.

Figure 6: Hourly profiles of ambient temperature (Tamb), greenhouse temperature (Tg) and characteristic
temperatures of the row covers Tcnm (without mulch) and Tcym (with mulch) configurations.

During the experimental period, greenhouse demonstrated significant thermal buffering capacity.
When the minimum outdoor temperature reached −11.4◦C, the corresponding indoor air temperature
was maintained at −5.4◦C, representing a 6.0◦C temperature difference. On average, the greenhouse
interior maintained 3.4◦C temperature elevation above outdoor conditions throughout the cultivation
period. Subzero temperatures were recorded within the greenhouse interior on 11 nocturnal periods (18%
of cultivation period for nights).

These suboptimal thermal conditions, particularly detrimental to lettuce (Lactuca sativa L.) cultivation,
were effectivelymitigated through the implementation of row cover interventions. Themean air temperature
inside the row cover with mulch was 2.36◦C higher than that of the greenhouse interior, while the row
cover without mulch was on average 1.92◦C warmer. During the coldest hours of the day throughout the
cultivation period, the mulched row cover maintained a temperature 3.46◦C above that of the greenhouse
interior, whereas the non-mulched row cover was 3.40◦Cwarmer. Supplemental thermal protection provided
by row covers proved critical in maintaining viable growing conditions during these harsh cold events.
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Previous studies have documented the thermal regulation capacity of row covers under varying
environmental conditions. Lopez-Martinez [8] reported a mean temperature increase of 2.8 ± 1.2◦C in
greenhouse with row covers under Mediterranean climate conditions compared to control areas without
tunnel protection. Similarly, Ref. [43] observed that row covers in open-field settings maintained daytime
temperatures approximately 4◦C higher than ambient conditions.

Consistent with these findings, experimental results demonstrate that row covers incorporating
black plastic mulch exhibited superior thermal performance compared to non-mulched tunnels. Mulching
functioned as an effective thermal energy reservoir, absorbing and storing solar radiation-derived heat during
daylight hours and subsequently releasing this stored energy into the tunnel microenvironment during
nocturnal periods. This diurnal heat flux modulation contributed significantly to nighttime temperature
maintenance. Furthermore, the row cover structure itself provided critical insulation by suppressing
convective heat transfer between the soil surface and the plant canopy air layer. This dual mechanism
combining the thermal mass effect of mulch with the convective barrier properties of the tunnel structure
resulted in enhanced temperature stability throughout the diurnal cycle.

Experimental results indicated minimal variation in average humidity levels between mulched and
non-mulched tunnel environments, with mean values of 82.9% and 82.6%, respectively. Maximum and
minimum humidity conditions were recorded within mulched tunnels (19.8–95.1%) and non-mulched
tunnels (17.5–99.9%), as illustrated in Fig. 7. A distinct diurnal pattern was observed in both treatments,
characterized by declining relative humidity levels corresponding to increased daytime temperatures
and solar radiation intensity. These findings demonstrate consistent microclimate behavior across both
cultivation methods and align with established literature on protected agricultural systems, particularly
the works of [9] regarding humidity fluctuations in controlled environments and [44] on low-tunnel
microclimate dynamics. The parallel responses between treatments suggest that mulch application had
negligible effects on humidity regulation, with solar-mediated thermal changes serving as the primary
driver of humidity variation in both systems.

Figure 7: Air humidity inside the row covers with and without mulch.

3.2 Soil Temperatures

Soil temperatures on root zone were measured throughout the growing period. Mulch application
positively affected root zone temperatures. Surface soil temperatures exhibited diurnal variations inversely
correlated with row cover air temperatures, with daytime values remaining lower than tunnel air
temperatures but exceeding them during nocturnal periods. This thermal hysteresis pattern is attributable
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to the soil’s higher thermal mass and slower thermal response compared to air. The analysis showed clear
vertical thermal gradients in the soil profile. At 1 cm depth, temperatures ranged from 6.6 to 24.0◦C (mean
13.7◦C); at 10 cm from 8.1 to 24.1◦C (mean 14.1◦C); at 20 cm from 10.0 to 24.1◦C (mean 14.7◦C); and at 30 cm
from 10.8 to 24.1◦C (mean 15.1◦C) (Fig. 8). With increasing depth, diurnal fluctuations decreased and mean
temperature increased, confirming the soil’s buffering capacity and the effectiveness of mulch in stabilizing
root-zone conditions.

 

Figure 8: Soil temperatures on different depth with mulch.

Fig. 9 illustrates the diurnal evolution of soil temperature at different depths under mulched tunnel
conditions. Near-surface soil layers exhibit pronounced day–night fluctuations in response to changes
in the tunnel air environment, whereas deeper layers display progressively damped and smoother
temperature curves. This attenuation of diurnal amplitude with depth confirms the strong thermal buffering
capacity of the soil–mulch system and indicates that the root zone is effectively shielded from short-term
atmospheric fluctuations.

  

Figure 9: Diurnal variation of soil temperature at different depths in the mulched tunnel daytime (left),
nighttime (right).
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For the non-mulched tunnels, hourly averages were calculated from the data recorded at five-minute
intervals. At the soil surface (1 cm), the minimum, maximum, and average temperatures were recorded
as 5.1◦C, 25.2◦C, and 12.4◦C, respectively. At a depth of 10 cm, the corresponding values were 7.5◦C (min),
24.1◦C (max), and 13.3◦C (mean); at 20 cm depth, 9.1◦C, 24.1◦C, and 13.9◦C; and at 30 cm depth, 9.6◦C,
24.1◦C, and 14.5◦C, respectively (Fig. 10). These results indicate that temperature fluctuations decrease with
increasing soil depth, leading to more thermally stable conditions in the subsurface layers.

Figure 10: Soil temperatures on different depths without mulch.

Fig. 11 shows hourly soil temperature profiles in the non-mulched tunnel at different depths. Near
the surface (1 cm), soil temperature closely follows the diurnal cycle and exhibits a relatively wide range
(about 9.8–15.9◦C), whereas deeper layers are more thermally buffered. At 30 cm depth, temperatures
remain almost constant (approximately 14.1–14.9◦C) throughout the day, confirming that subsurface soil
experiences markedly reduced short-term fluctuations compared with the upper soil layer.

  

Figure 11: Diurnal variation of soil temperature at different depths in the non-mulched tunnel daytime (left),
nighttime (right).
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Temperature differences between mulched and non-mulched tunnel soils as a function of time of
day and soil depth are presented in Fig. 12. The greatest difference was observed at the 1 cm soil depth,
particularly during periods without solar radiation. The influence of the mulch application diminished with
increasing soil depth.

 

Figure 12: Soil temperature differences between tunnels with and without mulch.

Libik [45] reported increases in soil temperature of 5.9◦C at 08:00 and 6.8◦C at 14:00 in a 0.5 m high row
cover cultivated with watermelon in an open field. Similarly, Ref. [46] found that average daily maximum
and minimum soil temperatures were higher 4–5 ◦C and 1–3 ◦C compared to uncovered treatment.

3.3 Statistics and XGBoost Results of Experiment

An independent samples t-test was conducted to compare the means of Tym10 and Tnm10. The
analysis revealed that the mean of Tym10 (14.0135) was significantly higher than that of Tnm10 (13.1589),
with a t-value of 8.7737 and 2484.6 degrees of freedom. The associated p-value was less than 2.2 × 10−16,
indicating that the observed difference is highly statistically significant at the α = 0.05 level. Furthermore,
the 95% confidence interval for the mean difference ranged from 0.6636 to 1.0457, confirming that the
difference between the two means is both statistically and practically meaningful. Based on these results, it
can be concluded that there is a significant difference between Tym10 and Tnm10 (Table 2).

Table 2: T -test results between Tym10 and Tnm10.

Variable Value

Mean (Tym10) 14.01354
Mean (Tnm10) 13.15888

t-value 8.7737
Degrees of freedom (df) 2484.6

p-value <2.2 × 10−16
Confidence interval (95%) (0.6636, 1.0457)

Radiation (Rad) exhibited a highly skewed distribution (skew = 3.1) and extreme variability, with a
mean of 59.4, a standard deviation of 117.5, and a wide range of 805.1, indicating substantial fluctuations
in solar radiation during the measurement period. Wind speed (Vw) showed minimal variability (mean
= 0.1, SD = 0.3) and was slightly positively skewed. Ambient relative humidity (TambRh) and ambient
temperature (Tamb) had moderate variability, with the former negatively skewed (skew =−0.8) and the latter
approximately symmetric. Soil temperature and humidity measurements at different depths and positions
(e.g., Trcym, Trcnm, Tnm10, Tym10) showed relatively stable distributions, with standard deviations
ranging between 1.4◦C and 2.1◦C and means generally between 10◦C and 15◦C. Most temperature-related
variables displayed near-normal distributions, with skewness and kurtosis values close to zero. The soil
moisture-related parameters (e.g., TrcymRh, TrcnmRh) also had consistent values but exhibited some degree
of left skewness. The standard errors (SE) for all variables were low, indicating reliable estimates of the
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means. These properties indicate that the dataset is suitable for subsequent inferential and machine-learning
analyses (Table 3).

Table 3: Descriptive statistics of experimental data.

n mean sd median min max range skew kurt se

Rad

12
72

59.4 117.5 0.0 0.0 805.1 805.1 3.1 11.4 3.3
Wv 0.1 0.3 0.0 0.0 2.1 2.1 2.3 6.0 0.0
TambRh 78.1 16.1 82.0 32.0 99.0 67.0 −0.8 −0.2 0.5
Tamb 4.9 5.8 3.9 −9.6 23.8 33.4 0.7 0.9 0.2
TgRh 8.1 6.6 6.8 −5.0 29.8 34.8 0.9 0.4 0.2
Trcym 10.5 5.4 9.3 −0.1 29.7 29.8 1.0 0.8 0.2
TrcymRh 84.0 13.3 88.0 27.2 95.0 67.9 −2.3 5.3 0.4
Trcnm 10.0 5.4 8.8 −0.9 30.8 31.7 1.1 1.0 0.2
TrcnmRh 84.3 15.2 92.0 27.2 96.1 68.9 −1.7 2.1 0.4
Tym1 13.7 3.1 13.3 7.1 23.5 16.4 0.6 0.2 0.1
Tym10 14.0 2.6 13.9 8.5 20.4 11.9 0.2 −0.8 0.1
Tym20 14.7 2.3 14.8 10.2 18.7 8.5 −0.1 −1.4 0.1
Tym30 15.1 2.2 15.2 10.9 18.9 8.0 −0.2 −1.4 0.1
Tnm1 12.3 3.0 11.8 5.8 21.9 16.1 0.8 0.4 0.1
Tnm10 13.2 2.3 13.1 7.9 18.7 10.9 0.1 −0.7 0.1
Tnm20 13.9 2.1 14.0 9.4 17.8 8.4 −0.2 −1.1 0.1
Tnm30 14.4 2.1 14.7 9.9 18.1 8.3 −0.3 −1.2 0.1

The correlation heatmap illustrates the strength and direction of linear relationships among
environmental variables, root-zone conditions, and soil temperatures at various depths undermulched tunnel
conditions (Fig. 13). As expected, strong positive correlations were observed among the soil temperature
variables (Tym1, Tym10, Tym20, Tym30), with coefficients exceeding 0.95, indicating consistent thermal
behavior across soil depths. Tym10, the focal variable, showed its strongest correlations with Tym20
(r = 0.99) and Tym30 (r = 0.97), suggesting that soil heat propagation is uniform in the mulched setting.
Additionally, positive correlations were noted between Tym10 and Trcym (r = 0.92) and TrcymRh (r = 0.89),
reflecting the influence of root-zone conditions on subsurface soil temperature. Conversely, air humidity
parameters such as TambRh (r = −0.24) and TgRh (r = −0.34) were negatively correlated with Tym10,
indicating that higher humidity is generally associated with lower soil temperatures, likely due to reduced
solar radiation and evapotranspiration. Radiation (Rad) exhibited a moderate positive correlation with
Tym10 (r = 0.40), suggesting that solar input contributes to subsurface heating, although this effect may be
modulated by the mulch layer. Wind speed (Vw) and ambient temperature (Tamb) had weaker or negligible
correlations with Tym10 (r = 0.00 and r = −0.04, respectively), implying minimal direct influence under
these specific conditions. Overall, the clustering pattern reinforces the separation between subsurface
thermal dynamics and atmospheric variables, highlighting the insulating and buffering role of mulch in soil
temperature regulation.

The correlation heatmap illustrates the strength and direction of linear relationships among
environmental parameters, root-zone conditions, and soil temperatures at various depths under
non-mulched (bare soil) conditions. Strong positive correlations were observed among the soil temperature
variables (Tnm1, Tnm10, Tnm20, Tnm30), with coefficients exceeding 0.85, indicating a consistent thermal
profile across soil depths in the absence of mulch. Tnm10, the central variable of interest, exhibited its
strongest associations with Tnm20 (r = 0.97), Tnm30 (r = 0.96), and Vw (r = 0.93), suggesting that soil heat
distribution and vapor water content are closely linked under open-surface conditions. Radiation (Rad) also
correlated highly with Tnm10 (r = 0.93), reinforcing the role of solar input in driving soil heating where
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no mulch barrier is present. Conversely, atmospheric humidity indicators such as TambRh (r = −0.67)
and TrcnmRh (r = −0.60) were strongly negatively correlated with Tnm10, implying that higher relative
humidity coincides with cooler soil conditions likely due to decreased radiation and enhanced evaporative
cooling. Interestingly, Trcnm showed a weak negative correlation with Tnm10 (r = −0.20), suggesting a more
complex or indirect relationship between transpiration and mid-depth soil temperature. The hierarchical
clustering structure further emphasizes the clear distinction between subsurface thermal-radiative variables
and ambient humidity-related parameters, reflecting the lack of buffering insulation in the bare-soil setting
and the stronger sensitivity of soil temperature to atmospheric fluctuations.

  
Figure 13: Pearson’s correlation analysis of Tym10 and Tnm10.

Table 4 summarizes the goodness-of-fit metrics for the XGBoost models developed to predict soil
temperature at 10 cm depth under mulched (Tym10) and non-mulched (Tnm10) tunnel conditions, evaluated
on both training and test datasets. The root mean square error (RMSE) and mean absolute error (MAE)
values are notably low across all scenarios, indicating high predictive accuracy. For the training sets, the
RMSE was 0.102 for Tym10 and 0.069 for Tnm10, while the MAE values were 0.076 and 0.053, respectively.
Corresponding test set errors were slightly higher, with RMSE values of 0.189 (Tym10) and 0.150 (Tnm10),
and MAE values of 0.126 and 0.106, suggesting minimal overfitting and strong model generalization.
Furthermore, the coefficient of determination (R2) values exceeded 0.99 for both training and test sets in
both conditions, demonstrating that the models captured nearly all the variance in the target variable.
These results confirm the robustness and reliability of the XGBoost models in accurately estimating soil
temperature at 10 cm depth under both mulched and non-mulched environments.

A full multi-model benchmark including random forest, support vector regression, multilayer
perceptrons or deep sequence models was not conducted in this study, which is a limitation. However,
the achieved RMSE values of 0.150–0.189◦C and R2 values above 0.99 for 10-cm RZT are already
comparable with, or better than, the performance ranges reported in recent studies that employed ensemble
boosting, self-training, hybrid deep-learning and other advanced AI approaches for soil temperature
prediction [21,22,29,47–49]. Moreover, comparative reviews and benchmarking studies on soil temperature
estimation and tabular environmental data more broadly indicate that gradient boosting decision trees
and XGBoost in particular—are consistently among the top-performing algorithms and often outperform
deep neural networks on medium-sized tabular datasets [37,38,50]. These findings suggest that, while
future work should systematically compare XGBoost with random forest, deep neural networks and hybrid
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architectures under multi-season and multi-site conditions, the present choice of XGBoost as the main
modeling framework is well justified for the data scale and application targeted here.

Table 4: Goodness of fit criteria values for train and test sets.

Metrics Train (Tym10) Test (Tym10) Train (Tnm10) Test (Tnm10)

RMSE 0.102 0.189 0.069 0.150
MAE 0.076 0.126 0.053 0.106
R2 0.999 0.994 0.999 0.995

Relationship between observed and predicted values for the Tym10 and Tnm10 datasets was given in
Fig. 14, respectively. In both subfigures, the data points align closely along the fitted quadratic regression
line, indicating a strong agreement between observed and predicted values. Fig. 14a means the model
explains about 99.41% of the variation in Tym10 values, reflecting a highly accurate predictive performance
with minimal deviation from the ideal 1:1 line and Fig. 14b shows that 99.55% of the variation is captured
by the model, indicating even slightly better performance. The near-unity slope coefficients in both figures
(approximately 1.01 and 1.02, respectively) and the very small quadratic terms suggest a predominantly
linear relationship, with only minor non-linearity. Overall, these results demonstrate the model’s excellent
generalization capability and robustness in predicting both Tym10 and Tnm10 temperatures under the
given conditions.

Table 5 presents the results of feature importance and sensitivity analyses for the XGBoost model
developed to estimate soil temperature at 10 cm depth (Tym10) under mulched tunnel conditions. The
metrics used for importance analysis Gain, Cover, and Frequency indicate how often and how effectively
each feature contributes to the model’s predictive performance, while the Mean Dropout Loss quantifies
the sensitivity of the model to the exclusion of each variable. Among the input features, Tym20 emerged as
the most influential according to Gain (0.472), followed by Tym1 (0.319) and Tym30 (0.185), suggesting that
soil temperatures at adjacent depths (20 cm, 1 cm, and 30 cm) are the primary determinants of temperature
at 10 cm. However, sensitivity analysis based on Mean Dropout Loss ranked Tym1 as the most sensitive
feature (203.784), slightly surpassing Tym20 (182.682), indicating that the model’s performance deteriorates
more significantly when Tym1 is removed. This discrepancy suggests that while Tym20 contributes more
consistently during model training, Tym1 may carry more critical information under certain conditions.
Radiation (Rad) ranked fourth in both importance and sensitivity, confirming its role as a secondary but
still relevant factor. Other atmospheric and root-zone variables such as TrcymRh, TgRh, Trcym, TambRh,
and Vw were found to have limited influence, with minimal gain and low dropout loss values, indicating a
lesser role in the estimation of Tym10 under mulched conditions. Overall, the analysis confirms that soil
temperature at other depths exerts the greatest influence on Tym10, while aboveground environmental
variables contribute marginally in the presence of mulch.

Table 6 reports the feature importance and sensitivity analysis results for the XGBoost model predicting
soil temperature at 10 cm depth (Tnm10) under non-mulched row cover conditions. Among the input
features, Tnm20 was identified as the most influential variable across all metrics, with the highest gain
(0.759), cover (0.215), frequency (0.170), and mean dropout loss (86.092), indicating its dominant role in the
model’s predictive capacity and stability. Tnm1 ranked second in both importance and sensitivity, also
contributing substantially to the model (gain = 0.175; dropout loss = 57.414), which emphasizes the strong
vertical coherence in soil temperature dynamics near the 10 cm layer in the absence of mulch. Tnm30,
while showing moderate importance (gain = 0.044), ranked much lower in sensitivity (6th), suggesting it
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contributes useful but less critical information to the model. In contrast, environmental and atmospheric
variables such as radiation (Rad), relative humidity (TgRh, TrcnmRh, TambRh), Trcnm, and wind speed
(Vw) were associated with low gain and minimal dropout losses, reflecting their relatively limited influence
under mulch-free conditions.

Figure 14: Relationship between observed and predicted Tym10 (a) and Tnm10 (b) values with 1:1 graphs.

Table 5: Feature importance and sensitivity analyses results for Tym10.

Importance
Level

Sensitivity
Level Feature Gain Cover Frequency Mean Dropout

Loss

1 2 Tym20 0.472 0.160 0.135 182.682
2 1 Tym1 0.319 0.201 0.152 203.784
3 3 Tym30 0.185 0.112 0.120 44.493
4 4 Rad 0.013 0.083 0.088 43.663
5 5 TrcymRh 0.005 0.134 0.135 21.248
6 6 TgRh 0.003 0.123 0.145 21.110
7 8 Trcym 0.002 0.113 0.114 9.882
8 7 TambRh 0.001 0.064 0.096 10.532
9 9 Vw 0.000 0.010 0.015 2.634

Notably, Rad and TgRh showed slightly elevated sensitivity levels compared to their importance
rankings, hinting at their situational relevance despite weaker average contributions. Overall, the analysis
highlights that, similar to the mulched scenario, soil temperatures at adjacent depths are the most decisive
factors in estimating Tnm10. However, the relatively lower dropout loss values across all features, compared
to the mulched case, suggest a more uniform distribution of influence and possibly reduced complexity in
thermal dynamics in the absence of a mulch layer.

In XGBoost modeling, four key metrics Gain, Cover, Frequency, and Mean Dropout Loss are commonly
employed to evaluate feature importance and assess each variable’s contribution to model performance.
Gain represents the improvement in accuracy (i.e., information gain) brought about by a feature when it is
used to split decision nodes; thus, it is widely regarded as the most informative metric for determining a
feature’s predictive value. Cover reflects the proportion of training samples affected by a feature’s splits,
thereby indicating the extent to which a variable influences broader segments of the dataset. Frequency
(also referred to as weight) denotes how often a feature is used to split nodes across all trees in the model,
capturing its structural relevance in the ensemble. While these threemetrics focus on a feature’s involvement
during model construction, Mean Dropout Loss serves as a measure of sensitivity by quantifying the average
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increase in model loss when a given feature is removed. A higher dropout loss suggests that the model
heavily relies on that feature to maintain predictive accuracy. Taken together, these metrics provide a
comprehensive understanding of both the structural and functional importance of each input variable within
the XGBoost framework, allowing researchers to identify critical predictors and assess model robustness.

Table 6: Feature importance and sensitivity analyses results for Tnm10.

Importance
Level

Sensitivity
Level Feature Gain Cover Frequency Mean Dropout

Loss

1 1 Tnm20 0.759 0.215 0.170 86.092
2 2 Tnm1 0.175 0.220 0.176 57.414
3 6 Tnm30 0.044 0.094 0.095 5.654
4 3 Rad 0.008 0.069 0.070 8.238
5 5 Trcnm 0.006 0.096 0.122 6.043
6 4 TgRh 0.005 0.131 0.136 7.546
7 7 TrcnmRh 0.002 0.096 0.126 4.473
8 8 TambRh 0.002 0.058 0.091 2.990
9 9 Vw 0.000 0.020 0.014 1.196

4 Discussion

The results show that combining row covers and mulching provides clear thermal benefits for lettuce
in unheated greenhouses. Row covers increased in-tunnel air temperature, while the mulch raised root-zone
temperature (RZT), with effects that attenuated with depth. These outcomes are consistent with recent
evidence that floating row covers used inside Mediterranean-type greenhouses improve air and near-surface
microclimates during early crop stages and that new passive heating configurations continue to be evaluated
for mild-winter settings [8]. On the soil side, contemporary studies in protected and field systems confirm
that mulches reduce heat loss, damp daily thermal swings and elevate soil temperatures, with these effects
being most pronounced in cold periods and early growth stages; similar warming has also been reported
for biodegradable films [9,51].

Consistentwith these trends, our dataset showed the largest warming near the surface and a diminishing
effect with depth, reflecting the soil’s thermal buffering. Comparable depth-dependent profiles and
improved hydrothermal status with mulching have been reported in greenhouse vegetables and cold-zone
production [9]. In lettuce and other leafy crops, modest RZT elevation (+3◦C) enhances biomass and
metabolite profiles by stimulating nutrient uptake and root metabolism, underscoring the agronomic
relevance of the passive RZT gains documented here [1].

From amodeling perspective, XGBoost achieved very high accuracy for 10-cm RZT under both mulched
and non-mulched conditions. This aligns with recent greenhouse and agro-environmental studies in which
XGBoost consistently performs at or near state-of-the-art, often surpassing RF/SVM baselines, and with
newer time-series architectures proposed specifically for greenhouse soil-temperature forecasting [25,29,52].
Feature-importance and sensitivity analyses revealed that soil temperatures at adjacent depths were the
dominant predictors of RZT, whereas atmospheric parameters such as solar radiation, wind speed and
relative humidity played only marginal roles.

From a physical standpoint, the dominance of soil temperatures at 1, 20 and 30 cm in the XGBoost
models reflects the essentially one-dimensional vertical conduction of heat within the soil profile. Classical
solutions of the heat diffusion equation show that a sinusoidal temperature forcing at the surface propagates
downward as a damped thermal wave, whose amplitude decreases exponentially with depth while the
phase is shifted in time; as a result, temperatures at neighbouring depths (e.g., 10, 20 and 30 cm) remain
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highly correlated and exhibit very similar diurnal cycles [53,54]. The temperature at 10 cm is therefore
governed primarily by the thermal gradient immediately above and below this depth, and the multi-depth
soil profile effectively integrates the past influence of atmospheric forcing. Once the thermal state of the
surrounding layers is known, additional meteorological variables such as solar radiation, air temperature,
wind speed or humidity provide relatively little marginal explanatory power, because their effect on the root
zone has already been “embedded” in the multi-depth soil signal [55,56]. Plastic mulches are also known to
partially decouple surface soil temperature from the atmosphere by changing net radiation and soil heat
flux, thus creating weaker diurnal fluctuations in the lower layers [57–59]. Under mulched conditions this
behaviour is further amplified. Plastic and organic mulches modify the surface energy balance by altering
net radiation, suppressing evaporation and sensible heat exchange and changing soil heat flux, thereby
buffering subsurface temperatures against short-term atmospheric fluctuations [60]. Experimental studies
consistently show that mulches raise minimum soil temperatures, narrow the diurnal temperature range
and shift the damping depth of the thermal wave, so that deeper layers experience smaller and more delayed
oscillations compared with bare soil [10,61]. In this context, it is physically plausible that the XGBoost
models assign the highest importance to the temperatures of adjacent soil layers, which carry both the
conductive coupling within the profile and the cumulative imprint of mulch-modified surface forcing, while
instantaneous atmospheric drivers appear as secondary predictors.

From a physiological perspective, this pattern is consistent with the shallow root system of lettuce, for
which the majority of roots are confined to the upper 20–30 cm of soil, with a high root length density in
the 0–10 or 10–20 cm layers [62]. Root-zone temperature in this window strongly affects nutrient uptake,
root metabolism and biomass accumulation, so small changes in the 10-cm layer—and in the adjacent depths
that buffer it—translate directly into differences in plant performance. Recent studies on lettuce have shown
that increasing RZT by only a few degrees can markedly enhance growth and metabolite profiles, whereas
overly cold or overly warm root zones reduce root activity and yield [1,63,64]. Thus, the feature-importance
results are agronomically plausible: the model relies most heavily on the thermal state of the root zone
itself (neighbouring depths), whereas more distal atmospheric variables play a secondary role once soil
temperatures are included.

This indicates that vertical heat transfer within the soil profile exerts a stronger influence on RZT
than external meteorological drivers, a finding supported by previous observations of strong soil thermal
coupling [65]. The homogeneity of prediction errors further suggests that the model was not biased toward
particular time periods or environmental conditions, reinforcing its robustness across diurnal and seasonal
variations. Recent work on parsimonious RZT models similarly emphasizes strong vertical and temporal
coherence in soil thermal fields and high explanatory power from proximal depths [66].

Practically, integrating row covers with mulching offers a low-cost, low-carbon pathway to stabilize
RZT and reduce reliance on bulk-air heating. Contemporary heating studies also advocate local/root-zone
heating as an efficient alternative that maintains plant performance while cutting energy demand; prototype
systems using air-source heat pumps for RZT control have been validated in recent trials [67]. Beyond energy
savings, maintaining a more stable RZT enhances root activity, nutrient uptake and microbial processes,
which are critical for plant growth during cold seasons. This is particularly relevant for regions such as Iğdır,
where unheated greenhouses are often unusable during winter months due to extreme cold. By enabling the
cultivation of crops like lettuce that require relatively low thermal and light inputs, passive techniques such
as mulching and row covers extend the growing season and diversify production opportunities. Looking
forward, coupling passive measures with data-driven forecasting (e.g., transformer-based predictors) and
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digital-twin control concepts could further improve decision-making under variable winter conditions and
support scalable deployment in commercial greenhouses [25,68].

The application of machine learning in this context offers additional benefits. Unlike purely empirical
models, XGBoost provides flexibility in incorporating diverse agronomic and meteorological parameters
while maintaining computational efficiency. The model’s ability to capture nonlinear interactions makes it
suitable for predicting soil temperature under different crops, soil types andmanagement practices. However,
further research is required to test the model under varying climatic conditions and with additional plant
species. Moreover, integrating field data with real-time meteorological forecasts could enhance predictive
capacity and support decision-making in greenhouse management.

The magnitude and vertical pattern of root-zone temperature modification observed in this study are
broadly consistent with previous reports on mulching and low tunnels, but under a distinct microclimatic
setting. In our unheated continental greenhouse, the combination of row covers and black polyethylene
mulch increased RZT at 10 cm depth by 0.6–1.3◦C relative to the non-mulched treatment, with the
strongest effects near the soil surface and diminishing influence at deeper layers. Similar depth-dependent
responses were reported for plastic mulch and low tunnels in open-field or mild-climate systems, where soil
temperature increases of approximately 0.7–3.3◦C at shallow depths have been documented compared with
bare soil [69,70]. These somewhat lower absolute gains in our study likely reflect the additional buffering
effect of the greenhouse envelope, yet they confirm that mulching and row covers remain effective passive
tools for RZT stabilization even under harsh winter conditions.

Compared with studies that relied on active root-zone heating, such as water-based floor heating,
sand-embedded heating or air-source heat pumps, we achieved more modest but still agronomically
meaningful RZT elevation without any external energy input. For example, Bi [2] and Myung [5] reported
RZT increases of several degrees and substantial yield improvements in cucumber and paprika using
water-based or heat-pump-driven systems.

Quantitatively, the XGBoost models developed here yielded RMSE values of 0.150–0.189◦C and R2

values above 0.99 on the independent test sets for 10-cm soil temperature, which places their performance at
the upper end of what has been reported for soil and root-zone temperature prediction. Recent ensemble and
hybrid machine-learning studies, including XGBoost, CatBoost, LightGBM and deep learning architectures,
typically report R2 values between about 0.90 and 0.99 and RMSE values on the order of 0.3–1.5◦C depending
on depth, time step and climatic variability [29,39,71]. The results therefore confirm that gradient-boosting
approaches are highly suitable for greenhouse soil temperature modeling, especially when multi-depth soil
information is available.

Distinction of the present work is that RZT was modeled under combined passive micro-climate
management (row covers + mulch) and under a strongly heating-dominated continental climate, whereas
most previous ML-based studies have focused either on open-field conditions or on different greenhouse
heating concepts (e.g., PCM-based storage or active root-zone heating) [2,40,72]. In this respect, our
study complements earlier work on root-zone temperature control for lettuce and other vegetables [64,73]
by demonstrating that high-accuracy, interpretable XGBoost models can be trained using readily
available climatic and soil-depth inputs, specifically targeting the effective root depth relevant for crop
management decisions.

5 Conclusions

This study evaluated the combined effects of row covers and mulching on root-zone temperature (RZT)
in lettuce grown under unheated greenhouse conditions and tested an XGBoost model for RZT prediction.
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Row covers increased internal air temperature by 5.8◦C, while mulching raised RZT by 0.6–1.3◦C, with the
largest changes occuring in the upper 10 cm of soil. Together, these measures created a more favourable
microclimate for lettuce growth during cold periods.

The XGBoost models successfully predicted RZT at 10 cm depth with high accuracy, achieving RMSE
values of 0.150–0.189◦C and R2 = 0.99 under both mulched and non-mulched conditions. Feature importance
and sensitivity analyses revealed that adjacent soil depths were the dominant predictors of RZT, whereas
meteorological variables contributed only marginally. These results confirm the strong vertical thermal
coupling within the soil profile and highlight the reliability of machine learning approaches for soil
thermal modeling.

From a practical standpoint, integrating row covers and mulching into greenhouse production systems
provides an energy-efficient alternative to conventional heating, reducing fossil fuel dependency and
promoting environmental sustainability. Beyond energy conservation, maintaining a more stable RZT
enhances root activity, nutrient uptake and microbial processes, thereby supporting plant growth under
suboptimal thermal conditions.

Operationally, the calibrated XGBoost model can be embedded as a lightweight predictive module
within intelligent greenhouse architectures. Using routinely measured soil temperatures at 1, 20 and 30 cm
together with standard climate variables, the model can generate short-term forecasts of RZT at the effective
root depth and feed these predictions into IoT-based controllers or decision-support platforms. In automated
systems, this information may be used to trigger rule-based actions such as closing row covers before
forecasted cold nights, adjusting ventilation or irrigation schedules, or refining set-points in active root-zone
heating and PCM-assisted storage systems. Recent smart-greenhouse and decision-support studies have
shown that similar sensor- and ML-driven frameworks can improve microclimate control and reduce energy
use while maintaining crop comfort, confirming the practical feasibility of such integration [74–76]. In
low-input smallholder greenhouses, the same model could be delivered through a simple mobile or web
interface that translates predicted RZT into recommendations on when to install or remove row covers,
apply secondary mulches or delay transplanting during cold spells, thereby providing accessible decision
support without requiring high-cost automation.

6 Limitations and Future Work

This study has several limitations that also point to directions for future work. The present findings are
based on a single crop (lettuce), one unheated greenhouse at a single location and one winter production
season, so the trained models are calibrated to a specific combination of climate, soil conditions, greenhouse
design and crop rooting pattern; their direct transfer to other regions, soil types or crops with deeper or
differently structured root systems cannot be assumed without additional validation. Likewise, interannual
variability in winter severity and management practices was not captured, which may influence the
robustness of the learned relationships under more extreme or atypical years. Future research should
therefore extend the proposed modeling framework to different crops, soil types and climatic conditions,
and rely on multi-season, multi-site datasets to externally validate and, if necessary, recalibrate the
XGBoost models, examine their generalizability and explore domain-adaptation strategies across locations
and crops. A further limitation is that several potentially influential hydro-physical variables, such as
continuous soil-moisture measurements and detailed substrate properties (e.g., texture, bulk density, organic
matter content and hydraulic characteristics), were not available and thus could not be incorporated,
even though previous studies have shown that soil water content and texture affect both the amplitude
and phase of soil-temperature dynamics, thermal conductivity and heat capacity, and ultimately plant
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performance under mulched or covered conditions. Consequently, the current models rely on multi-depth
soil temperatures and standard climate variables as proxies for these processes rather than explicitly
representing the hydro-physical state of the root zone. Future work should integrate in-situ soil-moisture
sensing and site-specific soil-physical characterization into the feature set and, in parallel, couple XGBoost
predictions with real-time meteorological forecasts and precision-agriculture technologies to further
improve RZT-prediction accuracy, enhance model transferability across soils, crops and greenhouse systems,
and support the development of more broadly applicable, IoT-ready decision-support tools for sustainable
greenhouse production in heating-dominated regions.

Acknowledgement: The author gratefully acknowledges Assoc. Prof. Serdar Sarı and Assoc. Prof. Ali İhsan Atalay
for their invaluable assistance with the field study. This study is dedicated to the memory of my friend, Prof. Dr.
Ecevit Eyduran, who passed away at a young age.

Funding Statement: The author received no specific funding for this study.

Availability of Data and Materials: The data that support the findings of this study are available from the
Corresponding Author, [HKK], upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Hayashi S, Levine CP, Yu W, Usui M, Yukawa A, Ohmori Y, et al. Raising root zone temperature improves plant
productivity and metabolites in hydroponic lettuce production. Front Plant Sci. 2024;15:1352331. [CrossRef].

2. Bi X,WangX, Zhang X. Effects of different root zone heatingmethods on cucumber. Horticulturae. 2022;8(12):1137.
[CrossRef].

3. Liantas G, Chatzigeorgiou I, Ravani M, Koukounaras A, Ntinas GK. Energy use efficiency and carbon footprint of
greenhouse hydroponic cultivation using public grid and PVs as energy providers. Sustainability. 2023;15(2):1024.
[CrossRef].

4. Levine CP, Hayashi S, Ohmori Y, Kusano M, Kobayashi M, Nishizawa T, et al. Controlling root zone temperature
improves plant growth and pigments in hydroponic lettuce. Ann Bot. 2023;132(3):455–70. [CrossRef].

5. Myung J, Cui M, Lee B, Lee H, Shin J, Chun C. Development of a root-zone temperature control system
using air-source heat pump and its impact on the growth and yield of paprika. Aob Plants. 2024;16(5):plae047.
[CrossRef].

6. Gheshm R, Brown RN. The effects of black and white plastic mulch on soil temperature and yield of crisphead
lettuce in southern new England. HortTechnology. 2020;30(6):781–8. [CrossRef].

7. Amare G, Desta B. Coloured plastic mulches: impact on soil properties and crop productivity. Chem Biol Technol
Agric. 2021;8(1):4. [CrossRef].

8. López-Martínez A,Molina-Aiz F,Moreno-TeruelM, Peña-Fernández A, Baptista F, Valera-Martínez D. Low tunnels
inside Mediterranean greenhouses: effects on air/soil temperature and humidity. Agronomy. 2021;11(10):1973.
[CrossRef].

9. Ma Z, Ma J, Chai Y, Song W, Han F, Huang C, et al. Mulching improves the soil hydrothermal environment, soil
aggregate content, and potato yield in dry farmland. Agronomy. 2024;14(11):2470. [CrossRef].

10. Zhang P, Zhang Z, Xiao M, Chao J, Dai Y, Liu G, et al. Effects of organic mulching on moisture and temperature
of soil in greenhouse production of tomato under unheated greenhouse cultivation in the cold zone of China.
Food Sci Nutr. 2023;11(8):4829–42. [CrossRef].

11. Marasovic P, Kopitar D, Peremin-Volf T, Andreata-Koren M. Effect of biodegradable nonwoven mulches from
natural and renewable sources on lettuce cultivation. Polymers. 2024;16(7):1014. [CrossRef].

https://doi.org/10.3389/fpls.2024.1352331
https://doi.org/10.3390/horticulturae8121137
https://doi.org/10.3390/su15021024
https://doi.org/10.1093/aob/mcad127
https://doi.org/10.1093/aobpla/plae047
https://doi.org/10.21273/horttech04674-20
https://doi.org/10.1186/s40538-020-00201-8
https://doi.org/10.3390/agronomy11101973
https://doi.org/10.3390/agronomy14112470
https://doi.org/10.1002/fsn3.3460
https://doi.org/10.3390/polym16071014


Phyton-Int J Exp Bot. 2026;95(1):16 23

12. Bonachela S, Sánchez-Guerrero MC, López JC, Medrano E, Hernández J. Evaluation of new passive heating
systems for low-cost greenhouses in a mild-winter area. Horticulturae. 2025;11(7):752. [CrossRef].

13. USDA-NRCS. Low Tunnel System Fact Sheet (Alaska). Natural Resources Conservation Service; 2024 [cited 2025
Jan 1]. Available from: https://www.nrcs.usda.gov/.

14. Li M, Sun H, Zhao R. A review of root zone soil moisture estimation methods based on remote sensing. Remote
Sens. 2023;15(22):5361. [CrossRef].

15. Kim D, Zarei M, Lee S, Lee H, Lee G, Lee SG. Wearable standalone sensing systems for smart agriculture. Adv
Sci. 2025;12(16):2414748. [CrossRef].

16. Zhao H, Sassenrath GF, Kirkham MB, Wan N, Lin X. Daily soil temperature modeling improved by
integrating observed snow cover and estimated soil moisture in the USA Great Plains. Hydrol Earth Syst
Sci. 2021;25(8):4357–72. [CrossRef].

17. Amato MT, Giménez D. Predicting monthly near-surface soil temperature from air temperature and the leaf area
index. Agric For Meteor. 2024;345:109838. [CrossRef].

18. Zhou J, Zhang J, Huang Y. Evaluation of soil temperature in CMIP6 multimodel simulations. Agric For Meteor.
2024;352:110039. [CrossRef].

19. Biazar SM, Shehadeh HA, Ali Ghorbani M, Golmohammadi G, Saha A. Soil temperature forecasting using a
hybrid artificial neural network in Florida subtropical grazinglands agro-ecosystems. Sci Rep. 2024;14(1):1535.
[CrossRef].

20. Yan C, Na T, Zhen Q, Sun Y, Liu K. Prediction of air temperature and humidity in greenhouses via artificial
neural network. PLoS One. 2025;20(6):e0325650. [CrossRef].

21. Mampitiya L, Rozumbetov K, Rathnayake N, Erkudov V, Esimbetov A, Arachchi S, et al. Artificial intelligence to
predict soil temperatures by development of novel model. Sci Rep. 2024;14:9889. [CrossRef].

22. Taheri M, Schreiner HK, Mohammadian A, Shirkhani H, Payeur P, Imanian H, et al. A review of machine learning
approaches to soil temperature estimation. Sustainability. 2023;15(9):7677. [CrossRef].

23. Farhangmehr V, Cobo JH, Mohammadian A, Payeur P, Shirkhani H, Imanian H. A convolutional neural network
model for soil temperature prediction under ordinary and hot weather conditions: comparison with a multilayer
perceptron model. Sustainability. 2023;15(10):7897. [CrossRef].

24. Farhangmehr V, Imanian H, Mohammadian A, Cobo JH, Shirkhani H, Payeur P. A spatiotemporal CNN-LSTM
deep learning model for predicting soil temperature in diverse large-scale regional climates. Sci Total Environ.
2025;968:178901. [CrossRef].

25. Wang F, Wang Y, Chen W, Zhao C. An improved iTransformer with RevIN and SSA for greenhouse soil
temperature prediction. Agronomy. 2025;15(1):223. [CrossRef].

26. Liu W, Han T, Wang C, Zhang F, Xu Z. Predicting indoor temperature of solar green house by machine learning
algorithms: a comparative analysis and a practical approach. Smart Agric Technol. 2025;12:101096. [CrossRef].

27. Jeon YJ, Kim JY, Hwang KS, Cho WJ, Kim HJ, Jung DH. Machine learning-powered forecasting of climate
conditions in smart greenhouse containing netted melons. Agronomy. 2024;14(5):1070. [CrossRef].

28. M’hamdi O, Takács S, Palotás G, Ilahy R, Helyes L, Pék Z. A comparative analysis of XGBoost and neural network
models for predicting some tomato fruit quality traits from environmental and meteorological data. Plants.
2024;13(5):746. [CrossRef].

29. Alizamir M, Wang M, Ikram RMA, Ahmed KO, Heddam S, Kim S. An efficient computational investigation
on accurate daily soil temperature prediction using boosting ensemble methods explanation based on SHAP
importance analysis. Results Eng. 2024;24:103220. [CrossRef].

30. Gökmen F, Uygur V, Sukuşu E. Extreme gradient boosting regression model for soil available boron. Eurasian
Soil Sci. 2023;56(6):738–46. [CrossRef].

31. Shao Z, Ahmad MN, Javed A. Comparison of random forest and XGBoost classifiers using integrated optical and
SAR features for mapping urban impervious surface. Remote Sens. 2024;16(4):665. [CrossRef].

32. Imani M, Beikmohammadi A, Arabnia HR. Comprehensive analysis of random forest and XGBoost performance
with SMOTE, ADASYN, and GNUS under varying imbalance levels. Technologies. 2025;13(3):88. [CrossRef].

33. Öz H. Effect of aNovel polyethylene mulch material on soil temperature and yield of lettuce (Lactuca sativa L.).
Gesunde Pflanz. 2023;75(5):2169–76. [CrossRef].

https://doi.org/10.3390/horticulturae11070752
https://www.nrcs.usda.gov/
https://doi.org/10.3390/rs15225361
https://doi.org/10.1002/advs.202414748
https://doi.org/10.5194/hess-25-4357-2021
https://doi.org/10.1016/j.agrformet.2023.109838
https://doi.org/10.1016/j.agrformet.2024.110039
https://doi.org/10.1038/s41598-023-48025-4
https://doi.org/10.1371/journal.pone.0325650
https://doi.org/10.1038/s41598-024-60549-x
https://doi.org/10.3390/su15097677
https://doi.org/10.3390/su15107897
https://doi.org/10.1016/j.scitotenv.2025.178901
https://doi.org/10.3390/agronomy15010223
https://doi.org/10.1016/j.atech.2025.101096
https://doi.org/10.3390/agronomy14051070
https://doi.org/10.3390/plants13050746
https://doi.org/10.1016/j.rineng.2024.103220
https://doi.org/10.1134/S1064229322602128
https://doi.org/10.3390/rs16040665
https://doi.org/10.3390/technologies13030088
https://doi.org/10.1007/s10343-023-00841-4


24 Phyton-Int J Exp Bot. 2026;95(1):16

34. TSMS. Climate classification. Ankara, Turkey: Turkish State Meteorological Service; 2025 [cited 2025 Jan 1].
Available from: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A

35. Holman JP. Experimental methods for engineers. 8th ed. New York, NY, USA: McGraw-Hill; 2021.
36. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for

Statistical Computing; 2025 [cited 2025 Jan 1]. Available from: https://www.R-project.org/.
37. Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you need. Inf Fusion. 2022;81:84–90. [CrossRef].
38. Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform deep learning on tabular

data? arXiv:2207.08815. 2022.
39. Tüysüzoğlu G, Bİrant D, Kiranoglu V. Soil temperature prediction via self-training: Izmir case. J Agric Sci.

2022;28:47–62. [CrossRef].
40. Kucukerdem HK, Ozturk HH. Machine learning-based prediction of root-zone temperature using bio-based

phase-change material in greenhouse. Sustainability. 2025;17(21):9455. [CrossRef].
41. Eyduran E, Akin M, Eyduran SP. Application of multivariate adaptive regression splines through R software.

Ankara, Turkey: Nobel Academic Publishing; 2019.
42. Zaborski D, Ali M, Eyduran E, Grzesiak W, Tariq MM, Abbas F, et al. Prediction of selected reproductive traits of

indigenous harnai sheep under the farm management system via various data mining algorithms. Pak J Zool.
2019;51(2):421. [CrossRef].

43. Gordon GG, Foshee WG, Reed ST, Brown JE, Vinson EL. The effects of colored plastic mulches and row covers
on the growth and yield of okra. HortTechnology. 2010;20(1):224–33. [CrossRef].

44. Kapanen A, Schettini E, Vox G, Itävaara M. Performance and environmental impact of biodegradable films in
agriculture: a field study on protected cultivation. J Polym Environ. 2008;16(2):109–22. [CrossRef].

45. Libik A, Siwek P. Changes in soil temperature affected by the application of plastic covers in field production of
lettuce and water melon. Acta Hortic. 1994;371:269–74. [CrossRef].

46. Hirai G. The effect of non-woven fabric floating row covers on the emergence, growth, and bulb yield of
direct-seeded Onions (Allium cepa L.) in a subarctic area. The Hortic J. 2019;88(1):67–75. [CrossRef].

47. Yin H, Wu Z, Huang Z, Luo Y, Liu X, Peng X, et al. A multivariate soil temperature interval forecasting method
for precision regulation of plant growth environment. Front Plant Sci. 2024;15:1460654. [CrossRef].

48. Azad N, He H. Generalization of multiple depths soil temperature estimation using LSTM and CNN. J Hydrol.
2025;661:133687. [CrossRef].

49. Geng Q, Wang L, Li Q. Soil temperature prediction based on explainable artificial intelligence and LSTM. Front
Environ Sci. 2024;12:1426942. [CrossRef].

50. Borisov V, Leemann T, Seßler K, Haug J, Pawelczyk M, Kasneci G. Deep neural networks and tabular data: a
survey. IEEE Trans Neural Netw Learning Syst. 2024;35(6):7499–519. [CrossRef].

51. Zhao H, Wang X, Jin P, Zhou J, Wang Y, Dong W, et al. Effects of biodegradable mulch films with different
thicknesses on the quality of watermelon under protected cultivation. Agronomy. 2025;15(10):2336. [CrossRef].

52. Uttsha MM, Haque AKMN, Banna TT, Deowan SA, Islam MA, Hasan Babu HM. Enhancing agricultural
automation through weather invariant soil parameter prediction using machine learning. Heliyon.
2024;10(7):e28626. [CrossRef].

53. Gulser C, Ekberli I. A comparison of estimated and measured diurnal soil temperature through a clay soil depth.
J Appl Sci. 2004;4(3):418–23. [CrossRef].

54. Ozgener O, Ozgener L, Tester JW. A practical approach to predict soil temperature variations for geothermal
(ground) heat exchangers applications. Int J Heat Mass Transf. 2013;62:473–80. [CrossRef].

55. Holmes TRH, Owe M, De Jeu RAM, Kooi H. Estimating the soil temperature profile from a single depth
observation: a simple empirical heatflow solution. Water Resour Res. 2008;44(2):2007WR005994. [CrossRef].

56. Gao Z, Tong B, Horton R, Mamtimin A, Li Y, Wang L. Determination of desert soil apparent thermal diffusivity
using a conduction-convection algorithm. J Geophys Res Atmos. 2017;122(18):9569–78. [CrossRef].

57. Tarara JM. Microclimate modification with plastic mulch. HortScience. 2000;35(2):169–80. [CrossRef].
58. KaderMA, Nakamura K, SengeM,MojidMA, Kawashima S. Effects of coloured plastic mulch on soil hydrothermal

characteristics, growth and water productivity of rainfed soybean. Irrig Drain. 2020;69(3):483–94. [CrossRef].

https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A
https://www.R-project.org/
https://doi.org/10.1016/j.inffus.2021.11.011
https://doi.org/10.15832/ankutbd.775847
https://doi.org/10.3390/su17219455
https://doi.org/10.17582/journal.pjz/2019.51.2.421.431
https://doi.org/10.21273/horttech.20.1.224
https://doi.org/10.1007/s10924-008-0091-x
https://doi.org/10.17660/actahortic.1994.371.34
https://doi.org/10.2503/hortj.okd-172
https://doi.org/10.3389/fpls.2024.1460654
https://doi.org/10.1016/j.jhydrol.2025.133687
https://doi.org/10.3389/fenvs.2024.1426942
https://doi.org/10.1109/tnnls.2022.3229161
https://doi.org/10.3390/agronomy15102336
https://doi.org/10.1016/j.heliyon.2024.e28626
https://doi.org/10.3923/jas.2004.418.423
https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.031
https://doi.org/10.1029/2007wr005994
https://doi.org/10.1002/2017jd027290
https://doi.org/10.21273/hortsci.35.2.169
https://doi.org/10.1002/ird.2431


Phyton-Int J Exp Bot. 2026;95(1):16 25

59. Chen N, Li X, Šimůnek J, Shi H, Hu Q, Zhang Y. Evaluating the effects of biodegradable and plastic film mulching
on soil temperature in a drip-irrigated field. Soil Tillage Res. 2021;213:105116. [CrossRef].

60. Pramanik P, Bandyopadhyay KK, Bhaduri D, Bhattacharyya R, Aggarwal P. Effect of mulch on soil thermal
regimes—A review. Int J Agric Environ Biotechnol. 2015;8(3):645. [CrossRef].

61. Li N, Tian F, Hu H, Lu H, Ming G. Effects of plastic mulch on soil heat flux and energy balance in a cotton field
in northwest China. Atmosphere. 2016;7(8):107. [CrossRef].

62. Murakami T, Yamada K, Yoshida S. Root distribution of field-grown crisphead lettuce (Lactuca sativa L.) under
different fertilizer and mulch treatment. Soil Sci Plant Nutr. 2002;48(3):347–55. [CrossRef].

63. Zhao Z, Cai Y, Gu C, Xu H, Teng Y, Guo W. The effects of root-zone temperature regulation on the growth and
quality of hydroponic lettuce in summer. Agronomy. 2025;15(12):2768. [CrossRef].

64. Moccio M, Dunn BL, Kaur A, Fontanier C, Zhang L. Effects of root zone temperature of hydroponic lettuce
affects plant growth, nutrient uptake, and vitamin a content. HortScience. 2024;59(2):255–7. [CrossRef].

65. Feng Y, Cui N, Hao W, Gao L, Gong D. Estimation of soil temperature from meteorological data using different
machine learning models. Geoderma. 2019;338:67–77. [CrossRef].

66. Cross JF, Owen JS Jr, Shreckhise JH, Fields JS, Nackley L, Altland JE, et al. Parsimonious models of root zone
temperature in soilless substrates through ensemble machine learning. Smart Agric Technol. 2025;12:101289.
[CrossRef].

67. Kim HY, Yu OY, Ferrell J. Case study: reducing heating energy consumption in a high tunnel greenhouse with
renewable energy and microclimate control by bench-top root-zone heating, bench covers, and under-bench
insulation. Discov Sustain. 2024;5(1):86. [CrossRef].

68. Kafi A, Sanfilippo A, Jovanovic R, Shannak S. A predictive greenhouse digital twin for controlled environment
agriculture. In: Proceedings of the 27th International Conference on Enterprise Information Systems; 2025 Apr
4–6; Porto, Portugal. [CrossRef].

69. Dhatt AS, Garg N, Singh R, Aujla IS. Effect of plastic low tunnel and mulch type on soil temperature, growth,
earliness and yield of brinjal under net-house and open field in Plains of North-Western India. J Hortic Sci.
2017;12(2):106–12. [CrossRef].

70. Snyder K, Grant A, Murray C, Wolff B. The effects of plastic mulch systems on soil temperature and moisture in
central Ontario. HortTechnology. 2015;25(2):162–70. [CrossRef].

71. Alizamir M, Ahmed KO, Heddam S, Kim S, Eun Lee J. Daily soil temperature prediction using hybrid deep
learning and SHAP for sustainable soil management. Eng Appl Comput Fluid Mech. 2025;19:2541686. [CrossRef].

72. Bumgarner NR, Bennett MA, Ling PP, Mullen RW, KleinhenzMD. Active and passive zonal heating creates distinct
microclimates and influences spring- and fall-time lettuce growth in Ohio. HortTechnology. 2012;22(2):228–36.
[CrossRef].

73. Kawasaki Y, Matsuo S, Kanayama Y, Kanahama K. Effect of root-zone heating on root growth and activity,
nutrient uptake, and fruit yield of tomato at low air temperatures. J Japan Soc Hort Sci. 2014;83(4):295–301.
[CrossRef].

74. Muzamil M, Gul D, Banday RUZ, Rasool S, Mohiuddin M, Masoodi U. Smart greenhouses: a viable option for
high-tech farming and food security. In: Handbook of Agricultural Technologies. Singapore: Springer Nature;
2025. p. 1–22. [CrossRef].

75. Săcăleanu DI, Matache MG, Ros,u S, G, Florea BC, Manciu IP, Peris,oară LA. IoT-enhanced decision support system
for real-time greenhouse microclimate monitoring and control. Technologies. 2024;12(11):230. [CrossRef].

76. Aborujilah A, Al-Sarem M, Abu-Zanona MA. Forecast-driven climate control for smart greenhouses: energy
optimization using LSTM model. Energies. 2025;18(21):5821. [CrossRef].

https://doi.org/10.1016/j.still.2021.105116
https://doi.org/10.5958/2230-732x.2015.00072.8
https://doi.org/10.3390/atmos7080107
https://doi.org/10.1080/00380768.2002.10409211
https://doi.org/10.3390/agronomy15122768
https://doi.org/10.21273/hortsci17560-23
https://doi.org/10.1016/j.geoderma.2018.11.044
https://doi.org/10.1016/j.atech.2025.101289
https://doi.org/10.1007/s43621-024-00276-5
https://doi.org/10.5220/0013479900003929
https://doi.org/10.24154/jhs.v12i2.9
https://doi.org/10.21273/horttech.25.2.162
https://doi.org/10.1080/19942060.2025.2541686
https://doi.org/10.21273/horttech.22.2.228
https://doi.org/10.2503/jjshs1.mi-001
https://doi.org/10.1007/978-981-99-0862-2_22-1
https://doi.org/10.3390/technologies12110230
https://doi.org/10.3390/en18215821

	Introduction
	Material and Methods
	Study Area
	Experimental Greenhouse and Measurement System
	Uncertainty Analysis
	Statistics and Machine Learning Model

	Results
	Temperature and Humidity Changes in Open and Closed Environments
	Soil Temperatures
	Statistics and XGBoost Results of Experiment

	Discussion
	Conclusions
	Limitations and Future Work
	References

