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ABSTRACT: Global warming is making plants more susceptible to heat stress. Hence, adjustments to crop production
systems are required for global food security. Heat stress (HS) poses a threat to the quality of ecosystems and
global food security due to its adverse effects on plant development. The degree to which HS affects physiological
disruptions, physical harm, and biochemical changes at various growth stages directly correlates with its effects on
physiological functions, plant growth, and crop production. One promising approach is soil modification using biochar,
which enhances soil health and promotes the development of microbial communities, ultimately improving plant
heat tolerance. Biochar enhances soil structure, improves moisture retention, and increases nutrient availability in hot
weather, thereby promoting plant growth and enhancing crop yields. Additionally, biochar, with its porous structure
and ability to provide a liming effect, increases the diversity and activity of soil microbes, thereby fostering advantageous
symbiotic relationships. These microbial communities support nutrient cycling, root growth, and general soil health,
strengthening biochar’s position as a long-term solution for climate-resilient farming. Earlier research concentrated on
the connection between biochar and heat stress or microbial populations; however, this review uniquely combines all
three elements, providing a fresh viewpoint on their interrelated functions in enhancing plant adaptability. Furthermore,
this study demonstrates the potential of biochar as a sustainable component for improving soil and supporting crops
that adapt to heat stress. It examines the processes underlying these interactions and provides recommendations for
future research strategies.
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1 Introduction
The continuous increase in global temperatures brought on by human activity and other means is one of

humanity’s main concerns worldwide. When the temperature increases beyond what a plant can withstand,
heat stress occurs, which interferes with the plant’s physiological functions (such as photosynthesis rate,
transpiration rate, and stomatal conductance) and biochemical functions (phenolic content, carotenoid
content, chlorophyll a, and chlorophyll b) [1]. This is triggered by prolonged exposure to high ambient
temperatures, particularly during critical growth phases such as fruiting and flowering. Furthermore, in
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agricultural fields, a lack of shade or protective cover increases direct exposure to sunlight, exacerbating
heat damage. The greater severity and frequency of heat waves are predicted as evidence of climate change.
Therefore, this decreases the growth, survival, and production of plants [2]. A new analysis by the National
Aeronautics and Space Administration (NASA) predicts that climate change will impact wheat and corn
output as early as 2030, with a 24% decrease in grain yields [3]. Other research estimated that rice grain
output declined by 10% with each 1○C increase, while wheat production is expected to fall by 3%–4% for
every 1○C increase [4].

Soil microbiology refers to various microorganisms in soil, including bacteria, fungi, archaea, protozoa,
and viruses, which interact with plants and the environment. Although these bacteria, fungi, and archaea
are essential for maintaining soil structure, cycling nutrients, and promoting plant development, they can
also harm plants and ecosystems in some situations. The majority of the biomass in the soil is composed
of bacteria (70%–90%), with fungus coming in second [5]. The third type of life, archaea, lives in extreme
conditions essential to maintaining ecological balance and soil health. They release nutrients, establish
relationships with plants through plant residues, and directly impact plant development. Additionally, they
improve soil fertility, create aggregates, and construct soil structures [6]. Fungi and bacteria are crucial for the
breakdown of organic matter, the inhibition of pathogen growth, the enhancement of nutrient cycling, and
the texture and structure of soil [7]. However, modifying the soil can help lessen the impacts of heat stress.

Biochar is a porous substance that is made by hydrothermally treating raw biomass or by pyrolyzing
it [8]. Pyrolysis is the term for the high-temperature thermal depolymerization of biomass without the
involvement of oxygen, where the carbon content of biomass transforms into aromatic carbon compounds
as well as amorphous and graphitic-type structures [9]. The biological, chemical, and physical characteristics
of soil, like cations, pH, nitrogen (N), phosphorus (P), and calcium (Ca), as well as soil water retention
and hydraulic conductivity, are improved by the addition of biochar. Additionally, biochar has outstanding
potential for enhancing the soil’s aggregation, porosity, and structure. Additionally, it encourages beneficial
bacteria in the soil to proliferate. These qualities make biochar a potentially beneficial solution for reducing
both global warming and food insecurity. Biochar can be utilized to enhance nutrient absorption and water-
holding capacity. The porous structure of biochar can improve the storage of water as well as the size and
distribution of minerals, acting as soil formers [10]. This indirectly supports high microbial activity and
survival in general. The liming action of biochar raises the pH and enhances the soil’s capacity to exchange
cations. This effect prevents nutrients from leaching by altering their availability. Furthermore, when the pH
rises, microbial nitrification increases, resulting in nitrate losses and reduced availability of ammonium, a
preferred nitrogen source of plants [11]. This might create adverse circumstances for plants, particularly in
calcareous soils, which could reduce output [11]. Biochar is a possible nutritional replenishment agent since
its nutrient content changes based on the input material and pyrolysis temperature [12]. The physicochemical
characteristics of the soil have changed due to the incorporation of biochar; under heat stress, organic
matter has improved, and bulk density has decreased. Furthermore, it was observed that the application of
biochar to rice plants increased their surface area, promoted root length, and resulted in a higher dry weight
during heat stress due to their lower bulk density of soil compared to the appropriate control [13]. Under
stressful circumstances, biochar can help plants thrive by retaining nutrients in contaminated soil, enhancing
microbial biomass and soil physicochemical properties, and boosting porosity and surface area, which helps
to hold onto soil moisture. These alterations imply that adding biochar improves the uptake of nitrogen and
its retention in above-ground tissues while encouraging root architecture, which eventually helps to lessen
the detrimental effects of heat stress on plants. It is expected that intense heat waves will occur in the future
because of the Earth’s rising temperature. Applying biochar to crops might be one way to increase their
resistance to the stress of high temperatures.
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Applying biochar to control soil biota is gaining popularity. The microbial population in the soil
is impacted by biochar through altering nutrient availability, signaling between plants and microbes, or
interactions with different microbial communities [14]. This is because the porous interior of biochar can
shield it from physical harm caused by soil compaction or changes in the soil fauna’s diet. In light of their
vulnerability to dehydration, the real surface protection of microorganisms within is, therefore, a crucial
consideration in handling biochar [10]. Biochar positively impacts the surface binding of gases, such as
CO2, generated in the soil. These indirect processes affect the makeup of microbial communities and the
microbiological activity of soils [15]. Less competition, a more suitable habitat, higher porosity, an abundance
of nutrients and organic materials and nutrients, and enhanced ability of the biochar’s surface to retain water
are all potential causes. By its nature, biochar also adjusts the soil’s pH, creating an environment ideal for
specific microbial communities. Several studies have been conducted concerning improving agricultural soil
microbes and enzymes by optimizing and applying biochar. Thus, knowledge about how biochar mitigates
plant heat stress by altering soil biota remains limited and incomplete. Therefore, this review’s goals are to
go over (i) heat stress’s adverse impacts on several plant characteristics; (ii) the role of biochar in mitigating
these effects; (iii) the way biochar helps soil microorganisms thrive; (iv) how biochar affects soil microbial
activity to tolerate heat stress; and (v) how microbial communities react when biochar is added to polluted
soils. To close knowledge gaps and create plants that are more resilient to future warming scenarios, we offer
recommendations for future research endeavors based on our current understanding.

2 Sources of Biochar
Biochar production occurs mainly through the pyrolysis process, where biomass breaks down ther-

mally within an atmosphere that limits oxygen availability. Temperature affects biochar’s physicochemical
characteristics as the process occurs between 300○C to 700○C [16]. The temperature level during pyrolysis
determines char stability through the amount of carbon content [17]. However, substances obtained from
low-temperature processes exhibit increased volatility. Different reactions happen during pyrolysis, espe-
cially dehydration, depolymerization, and isomerization, which modify the molecular structure of biochar
and affect its physical properties [18].

The effective utilization of biochar in soil amendments depends on its physicochemical properties,
which include a high surface area, together with cation exchange capacity and stability, because these
characteristics are essential for environmental application. The porous nature of biochar enhances its water
and nutrient retention capabilities, which makes it an effective solution to enhance soil fertility and plant
growth [19]. Biochar possesses stable carbon properties, enabling it to store carbon efficiently and slow the
pace of climate change. Research indicates that biochar properties can be optimized by selecting suitable
feedstocks and adjusting pyrolysis conditions. This leads to meeting specific environmental requirements
such as soil remediation and heavy metal adsorption [20]. Some raw materials show superior abilities for
toxin removal, which makes them suitable candidates for pollution control systems [21].

Biochar is derived from various organic feedstocks. Different types of organic waste (Fig. 1) can be used
for producing biochar. Generally, waste sources can be classified into forestry, agriculture, and municipal and
industrial waste. Forestry wastes comprise leaves of trees, barks, logs, and various types of plants resulting
from forestry operations, whereas agricultural wastes include wastes from plant cultivation and animal
farming. Plant farming wastes include crop residues, such as stalks, husks, leaves, and straw that remain
after harvesting rice, wheat, sugarcane, corn, and other crops. They also include leftover feeds like grains,
forages, and other materials, and harvest and processing waste, such as vegetable trimmings, fruit peels,
damaged produce, and by-products from food processing [22]. Livestock or animal farming wastes include
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the manure of different animals and birds, litter, and carcasses. Municipal and industrial waste includes trash
from industry, businesses, households, sewage treatment plants, building sites, and hospitals [23].

Figure 1: Different waste streams for the production of biochar

3 The Consequences of Heat Stress
Plant growth, development, and reproduction are impacted by the increased frequency, severity, and

extended duration of high temperatures brought on by global climate change (Fig. 2) [24]. Heat waves
and intermittent spikes in temperature have several detrimental effects on human society as well as the
environment, including the potential to affect global agricultural production and future food demand
significantly [25]. The rising temperature, when exceeding the threshold border for an extended duration,
causes heat stress and impairs the plant’s growth and development [26].

3.1 Lowering the Yield of Crops
Although plants can experience heat stress at any stage of development, some growth phases are more

susceptible to the effects of heat than others. Particularly in crops, heat stress has significant detrimental
effects throughout the thermally sensitive developmental stages of early establishment, blooming, and
gametogenesis [27]. Pollen grains are considered the most sensitive plant organ, and anthesis, or the early
flowering stage, is deemed the most susceptible developmental stage to heat stress [28]. The final yield
of grain is determined by the intricate relationships between several phenophases and their sensitivity to
external factors. Reduced fruit set, pollen, seed germination, and yield are some of the negative impacts [29].
Three consecutive days of high temperatures (33○C–40○C) during the anthesis and grain-filling stages
of wheat can significantly reduce grain size, weight, and number, resulting in substantial amounts of
malformed grains [30]. A single hot day can also severely damage plant organs and reduce grain yield by
shortening critical growth stages, such as blooming, anthesis, grain filling, and ripening [31]. Heat stress
during reproductive stages leads to significant yield losses. Among the reproductive stages, gametogenesis
in common bean [32], and flowering rice [27], sorghum [33], wheat [34], are highly sensitive to heat stress,
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leading to spikelet sterility and decreased seed and fruit numbers. High temperatures have a direct and
detrimental impact on endosperm cellularization during the early stages of seed development, which reduces
the sink capacity at the cellular level [29]. Consequently, inadequate seed or fruit filling leads to the sensitivity
of storage components’ biosynthesis, transportation, or catabolism to high temperatures. For instance, PGD3,
a plastidic 6-phosphogluconate dehydrogenase (6PGDH), is required for normal maize endosperm starch
generation, and elevated temperatures suppress PGD3’s activity [35]. Plants undergo physiological changes as
a result of heat stress. Plant development is impeded when the photosynthetic machinery is damaged, which
lowers transpiration because of stomatal closure and CO2 content, inhibits the rates of enzymes like ATP
synthases and photosynthetic enzymes, reduces the enhancement of leaves, and speeds up degression [36].
The metabolism of carbon absorption is changed to counteract the impacts of heat stress, remobilizing the
starch stored in the chloroplasts of plants and allowing them to withstand the stress phase and also escape
additional injury by producing energy, carbohydrates, as well as their derived metabolites [37,38].

Figure 2: Effects of Heat Stress on Plant Root and Shoot. GDH-glutamate dehydrogenase, GOGAT- glutamine oxog-
lutarate aminotransferase, GS-glutamine synthetase, HSF-heat shock factors, NR-nitrate reductase, TEs-transposon
elements, ↑-increase, ↓-decrease, blue represents an alteration in the shooting process, yellow represents an alteration
in the root process, and heat stress-related regulations are represented with orange

3.2 Decrease in the Rate of Photosynthesis
Photosynthesis is the basis of higher plant growth and production. It is an intricate heat-sensitive

physiological process. In addition to serving as a metabolic hub for photosynthesis, chloroplasts play a crucial
role in detecting heat stress and utilizing retrograde signaling to trigger the necessary physiological adap-
tation reactions [39]. Heat stress affects several photosynthesis-related activities, such as electron transport,
photophosphorylation, calvin cycle metabolism, photochemical reactions, and thylakoid membrane fluidity.
Rubisco activase (RCA) is rendered inactive by HS-induced damage to the chloroplast, and key chloroplast
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components are downregulated [40]. This leads to a reduction in photosynthetic efficiency [41], a redox
imbalance [42], and, in extreme situations, cellular death [43]. Due to the rapid and excessive production
of reactive oxygen species (ROS), which damage the photosynthetic apparatus by slowing down electron
transport, degrading proteins and pigments, and inactivating photosystem II (PSII) and photosystem I (PSI),
HS harms plants and ultimately reduces agricultural production [44]. According to Mustafa et al. [42],
wheat treated with HS (37○C ± 2○C) during the heading stage had lower levels of carotenoid (48.27%),
chlorophyll a (38.05%), chlorophyll b (56.52%), and total chlorophyll (44.12%). According to Wang et al. [40],
HS reduced the amounts of chlorophyll in leaves by raising the activity of chlorophyllase and chlorophyll-
degrading peroxidase, resulting in chlorosis or leaf senescence. Heat exposure largely impacts the initial
stages of photosynthesis, altering the properties of the chloroplasts’ membranes and blocking the energy
transfer process. Heat stress ranging from mild to severe primarily affects carbon metabolism in the stroma
of chloroplasts as well as photochemical reactions in the thylakoid lamellae by damaging photosynthetic
enzymes and proteins [40].

3.3 Plant Toxicity
The disturbance of redox equilibrium caused by high temperature leads to oxidative stress, which

produces reactive oxygen species (ROS) as well as disrupts the mechanisms that eliminate these toxic
forms of oxygen from different cell compartments [45]. The balance of generation and elimination of ROS
within cells is disturbed by elevated temperature, leading to the abundance of oxides such as H2O2 and
malondialdehyde (MDA). This, in turn, exposes plants to oxidative damage when they are facing oxidative
stress [46]. Apart from non-enzymatic methods such as ascorbate (ASA), glutathione(GSH), α-tocopherol,
and flavonoids), the detoxification of excess ROS generated by stressed cells entails the involvement of ROS-
scavenging enzymes like superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) [47]. It was
widely believed that the build-up of different ROS, like hydroxyl radicals, superoxide (O2-), singlet oxygen
(1O2), and hydrogen peroxide (H2O2), beyond the antioxidant capacity of plants, was extremely harmful and
might significantly impact plant growth. According to reports, excessive accumulation of ROS causes DNA
damage, protein oxidation, lipid peroxidation, as well as cell death [48]. The protein function and activity of
fruit cells are altered by oxidation driven by ROS, which also accelerates the ripening process [49]. A viable
method for producing heat-tolerant crop plants is to manipulate photosynthesis using enzymes involved in
the detoxification of ROS and rubisco activase [50].

3.4 Changes in Hormones and Gene Expression
Thermal stress reduces the synthesis of heat shock proteins (HSPs), their transcription and translation,

the generation of phytohormones and antioxidants, and modifications to cell structure that affect hormonal
equilibrium [51]. For cells of plants to withstand heat stress, temperature rise promotes the biosynthesis routes
of hormones like auxins, ABA, brassinosteroids (BRs), cytokinin (CK), ethylene (ET), jasmonate (JA), and
salicylic acid (SA). This leads to a higher accumulation in plant cells [51]. Plant gene products fall into three
categories. Heat shock proteins (Hsps), ubiquitin ligases, RNA helicases, ion transporters, and aquaporins
(AQPs) are among the proteins in the first group that most likely contribute to tolerance for heat stress [52].
RNA helicase, ubiquitin ligases, and HSPs mostly regulate the metabolism of proteins and RNA during
heat stress. Heat stress affects the expression of membrane channel proteins, including AQPs and SUTs,
which are involved in transporting water, small solutes, and carbohydrates. The second group comprises
transcription factors, mitogen-activated protein kinases, calcium-dependent protein kinases (CDPKs),
and other regulatory proteins [46]. They significantly impact the control of the transduction of signals,
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including the gene expression that responds to heat stress. It also modifies membrane fluidity, activating
Ca2+ channels and causing a Ca2+ influx [53]. When plants experience heat stress, signal transduction
pathways are activated by Ca2+ signals that are transduced by Ca2+ sensors to various substrates [46]. Low
hormone levels can function as a signal molecule under heat stress, regulating various biochemical as well
as physiological responses in vegetation. The internal regulatory lncRNA-miRNA-mRNA network is formed
by the interaction of miRNAs and lncRNAs with other substances such as DNA, RNA, and proteins, which
increases plant heat tolerance [52].

4 Role of Biochar on Plant Physiology and Development under High Temperature
Biochar is a kind of charcoal made by burning biomass or organic material in a low-oxygen atmosphere.

Improving soil, carbon sequestration, and reducing the effects of climate change are just a few uses for
biochar. In plant physiology, biochar’s enhancement influences root morphology optimization and nitrogen
efficiency. Plants can use water and nitrogen (N) more effectively due to this optimized root system,
which increases yields [54]. Biochar makes up for yield losses brought on by less N fertilizer application
by lowering soil N losses. It supports the partial factor productivity of nitrogen and steady yields of the
element [55]. Interestingly, a study team that applied biochar to maize discovered that plant height rose
by 4.13%–14.91% across all treatments and that the biomass of the leaves, roots, and steams significantly
increased as the amount of biochar applied increased [56]. Researchers discovered that the application of
biochar also improved physiological parameters associated with the reduction of drought stress in plants,
including electrolyte leakage (–42.5%), peroxidase (–13.14%), water use efficiency (38.41%), transpiration rate
(39.17%), stomatal conductance (42.76%), chlorophyll a (19.3%), chlorophyll b (22.24%), photosynthetic rate
(24.86%), catalase (24.11%), hydrogen peroxide (–18.03%) and superoxide dismutase (24.66%) [57]. Although
not affect the available soil water content, biochar has been demonstrated to enhance the ability of soil to
retain water. Applying biochar + P resulted in a 7% increase in the average grain production per plant of
rice compared to other temperature treatments and cultivars [58]. Applying biochar and P under extreme
temperatures increased antioxidant activity in both Huanghuazhan and IR-64 compared to other treatments.
Each antioxidant was tightly controlled in each cultivar leaf and xylem sap. Stress from high temperatures,
especially at night, causes plants to grow taller. Putting biochar on the ground, with or without P, improved
performance in his experiment [58]. Additionally, rice grain and related traits like the weight of 1000 grains,
spike filling rate, rachis dry weight, breadth, and size increased when biochar and P were applied under
extreme temperatures [58].

5 Using Biochar to Mitigate Plants’ Heat Stress
To facilitate long-term carbon sequestration, the distinctive characteristics of biochar may impact soil

bulk density and porosity [59]. Furthermore, it mitigates the adverse impacts of heat stress on rice, maize,
and potato crops [13]. The accumulation patterns of heat-shock proteins in plants, induced by heat stress and
crucial for developing heat stress resistance, are strongly linked to nitrogen availability. Applying biochar
amendments enhances this availability in soil [13]. Riaz et al. [60] have linked biochar to improvements in soil
quality, yields, crop growth and development, and soil fertility, as well as a decrease in the number of abiotic
stressors. Its large surface area, reactive functional groups, ability to exchange cations, and susceptible carbon
are all thought to contribute to these advantages. Heat stress causes plants to lose more water and release
less carbon dioxide, which lowers the photosynthetic rate and biomass output. The soil is supplemented
with Biochar to boost fertility and maintain long-term production. Controlling daily and seasonal soil
temperatures may also influence the thermal dynamics of the soil environment [59]. Regarding boosting soil
fertility and production, biochar is important in mitigating plant heat stress (Table 1).
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Table 1: Biochar application and its effect on heat stress response in various crops

Type of
biochar

Studied
crop

Dose Findings References

Acacia seyal
Biochar

Sorghum
bicolor

5 t/ha Increased yield and gas exchange
during drought, suggesting better

physiological responses to heat
stress

[61]

Cork powder
fly ash

Solanum
lycopersicum

Applied with
arbuscular

mycorrhizal
fungi

Enhanced tolerance to combined
heat and salinity stress

[62]

Cattle manure Arabidopsis
thaliana

10 g kg−1soil Enriched the expression of the
Zn-finger gene and DNAJ heat

shock protein

[63]

Coffee Waste
Biochar

Solanum
lycopersicum

10 t/ha Improved soil moisture retention,
which lessens the effects of heat

stress and improves growth
performance

[64]

Eucalyptus
biochar

Thymus
vulgaris

5% Considerably reduced the
heat-stressed thymus plants’

electrolytic cell leakage

[59]

Horse Manure
Biochar

Hordeum
vulgare

12 t/ha Increased microbial diversity and
nutrient cycling result in increased

resistance to heat stress

[65]

Lignocellulosic
Biochar

Glycine max 10 t/ha Increased yield and water usage
efficiency by mitigating the

detrimental impacts of salinity and
drought

[66]

Mixed
Agri-residual

Biochar

Vicia faba 9 t/ha Enhanced enzymatic activity and
enhanced nutritional availability to

prevent heat stress damage

[67]

Poplar Wood
Biochar

Lactuca
sativa

20 t/ha Favorable impacts on output and
growth under heat stress,

indicating enhanced soil qualities
and microbial activity

[68]

Rice-husk Oryza sativa 10 t/ha Enhanced physiological features
and root morphology. Decreased
expression of heat-shock proteins

improves tolerance to heat

[13]

Straw Oryza sativa 40 g kg−1 soil Heat stress mitigation,
improvement of root zone

environment

[13]

(Continued)
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Table 1 (continued)

Type of
biochar

Studied
crop

Dose Findings References

Sawdust
Biochar

Brassica
juncea

10 t/ha Discovered to greatly reduce the
impacts of heat stress while

increasing the amount of organic
matter in the soil

[69]

5.1 Reducing Emissions of Greenhouse Gases
Carbon dioxide, nitrous oxide, and methane are the main gases that contribute to atmospheric radiative

forcing. Other sources include wetlands, animals, fertilizers, agricultural practices, and human activities. The
amount of greenhouse gases (GHGs) released by biochar-supplemented soil depends on several variables,
including biomass types, temperature, pyrolysis conditions, and soil type [70]. The soil’s ability to function
as a source of N2O is reduced by adding more biochar because it increases the microbial immobilization of
readily available nitrogen. Adding biochar, for example, by increasing the microbial immobilization of the
readily available N in the soil, reduces the soil’s capacity to function as a N2O source [71]. It was found that
burning paddy straw released 2.09% of its N as N2O and resulted in the emission of 0.66, 7, and 70 percent
of C as CH4, CO, and CO2, respectively [72]. In addition to its ability to sequester carbon, biochar has the
ecological benefit of reducing the release of greenhouse gases in soils (Table 2).

Table 2: Impact of biochar application on greenhouse gas emissions reduction

Feedstock used
for biochar

Rate of
application (%)

Greenhouse gas emission reduction
(% compared to control)

References

CH4 N2O CO2

Bamboo 2–10 dw 12.5–72.9 12.4–81.6 5.5–72.6 [73]
Cornstalk 10 fw 15.5 – – [74]
Chicken
manure

2–10 dw 20.5–61.5 4.7–15.1 – [49]

Green waste 10 dw 77.8–83.3 68.2–74.9 – [75]
Hardwood +

Softwood (4:1)
27.4 dw 77.9–83.6 16.1–35.3 21.5–22.9 [76]

Holm oak 10 dw 95.1 14.2 52.9 [77]
Tobacco stalk 10 dw 41.7 64.9 26.1 [40]

Note: fw = fresh weight, dw = dry weight.

5.1.1 Nitrous Oxide (N2O) Emission
Through the use of biochar, the emission of nitrogen dioxide during the process of composting is

minimized by fixing the NH4
+ and NO3

– ions and thus diminishing the proportion of the inorganic nitrogen
utilized by the nitrifying and denitrifying microorganisms [78]. The outer layer of the biochar can actively
accept and lessen N2O by either biotic or abiotic processes [79]. The enzymes involved in N2O formation
and reduction during denitrification are the ones encoded by nirK/nirS and nosZ genes [80]. The biochar
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surface can absorb and reduce N2O through biological or abiotic reactions. The enzymes responsible for N2O
production and consumption during denitrification are encoded by the nirK/nirS and nosZ genes [80].

Studies conducted in the field and incubation have shown that soils treated with biochar may reduce
N2O emissions. For example, in a field experiment, paddy soil was treated with biochar made from heated
wheat straw (Triticum sativum) to 350○C–550○C. According to the findings, N2O emissions dropped by 50%
and 70% at application rates of 10 and 40 Mg ha−1 , respectively, but CH4 emissions rose by 31% and 49% [81].
Nevertheless, N2O emission from amended sandy loam was suppressed up to 98% in another investigation
that used hardwood biochar; this effect was independent of the biochar amendment’s enhancement of soil
aeration [82].

5.1.2 Carbon Dioxide (CO2) Emission
Recently, a study showed that composting biochar derived from pig dung significantly reduces CO2

emissions. Conversely, several studies have shown conflicting findings. For instance, it was discovered a surge
of 53.2% was discovered in the trend [83], whereas in another study it was discovered a decline of 26.1% [40].
These differences could be attributed to the fact that biochar enhances external organic matter, accumulates,
or provides the microorganisms a better habitat, thus enhancing their activity in capturing carbon [84].
Despite these implications, the reduced availability of O2 sources used by anaerobic bacteria in compost
heaps may reduce outputs of CH4 and N2O [78].

According to Luo et al. [85], adding biochar significantly impacts several soil properties, such as pH,
porosity, plant productivity, carbon and nitrogen dynamics, water content, and cation exchange capacity.
Each of these elements can significantly influence soil CO2 emissions. Scientific studies have demonstrated
that there might be substantial, negligible, or nonexistent influence on carbon dioxide emissions. For
example, adding sugar maple biochar to a temperate forest soil enhanced its CO2 emissions somewhat,
whereas adding 10% biochar to Douglas fir forest soil boosted CO2 fluxes dramatically [86]. On the other
side, the application of biochar drastically reduced CO2 emissions from pine forest soils by 31.5% [87]. The
four processes that underlie the mechanisms underlying biochar application’s effects on soil CO2emissions
are as follows: Biochar application has a large adsorption capacity; the labile organic carbon in biochar adds to
the soil’s variable organic carbon pool; biochar application influences soil physical and chemical properties,
which have an indirect impact on CO2 emissions [88].

5.1.3 Methane (CH4) Emission
Brassard et al. [89] found that biochar can decrease CH4 emissions from rice areas that are damp by

promoting soil microbial activity linked to CH4 oxidation and absorption, as well as enhancing soil porosity
and lowering bulk density. This decrease in CH4 production is due to the aerobic metabolic process of CH4
oxidation, which depends on the supply of oxygen is also a finding from Brassard et al. [89]. According to
the research of Hawthorne et al. [87], biochar treatment considerably reduced the amount of CH4 absorbed
by the soil and also boosted net CH4 oxidation. However, some studies show that adding biochar either
decreases soil CH4 absorption or has no effect on soil CH4 emissions [90]. For example, in Thailand, the
addition of biochar to soil during rice farming resulted in a considerable reduction in cumulative CH4
emissions, with a fall of 21.1% in the first season and 24.9% in the second [91]. Conversely, in agricultural
environments, co-applying biochar and nitrogen fertilizers to soil did not significantly alter CH4 fluxes [92].
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5.2 Enhancing the Conditions of the Soil
Biochar improves soil aggregation by adhering to organo-mineral complexes and mycorrhizal fungi and

increasing microbial activity [93]. Adding biochar to soil improves its pH, organic matter, porosity, moisture
retention, surface area, and electrical conductivity. High temperatures can cause sand soils to fracture [94]. In
this case, biochar helps address the microbial aggregation, proliferation, structure, and porosity of wildfire-
impacted soils [95]. To prevent wildfires from spreading and to produce biochar that is useful for land
reclamation associated with wildfires, dried vegetation like pine needles and leaf litter pine needles can be
used to create biomass charcoal [48]. An increase in temperature causes soils to absorb more energy than they
expel, which may change the thermal characteristics of the soil, such as reflectance, temperature, diffusivity,
and thermal conductivity [96]. The addition of biochar may enhance the thermal characteristics of soils by
managing the distribution of heat among soil particles, surface-energy partitioning, and the accumulation or
movement of water and heat in the soil; all of this impacts the soil microclimate [97]. Additionally, biochar
amendment enhances plant growth by increasing arylsulfatase, acid phosphatase, and urease, which are
crucial for the utilization of sulfur phosphates and nitrogen [98]. However, because high-dose amendments
contain resistant aromatic compounds, they may inhibit the growth of fungi. Phenolic compounds, metal
oxides, and silica promote the formation of exopolysaccharide biofilms by bacteria [99]. Biochar can promote
fungal biomass growth by increasing laccase and manganese peroxidase activities (Table 3).

Table 3: Enhancement of soil conditions through the application of different kinds of biochar

Applied biochar Dose of
applied
biochar

Enhancement of soil condition References

Acacia spp. Biochar 50 +
50 Mg ha−1

Higher pH and soil water-holding
capacity

[100]

Biochar made with
poultry manure

5% (w/w) Mitigation of hazardous chromium (VI)
in soil

[101]

Corn straw Biochar
modified with

iron-zinc oxide
combination

3% (w/w) Elevated dissolved organic carbon
(DOC), pH, and CEC, as well as the

bacterial community, including Chao1,
Shannon and Simpson, and lowered

DTPA-Cd

[102]

Composite modified
Biochar

1% (w/w) Soil-soluble K+, Ca2+, and Mg2+

increased, while soil-soluble Na+ and the
Na+ adsorption ratio dropped

[103]

Coconut Shell
Biochar

5% (w/w) Elevated levels of urease, acid
phosphatase, dehydrogenase, bacteria,
fungus, and actinomyces, as well as soil
pH and CEC; invertase was unaffected

[104]

Iron-modified
Biochar

3% (w/w) While total organic carbon increased, the
soil’s pH, available Fe, available As,

available Cd, available Pb, S-CAT, and UE
decreased

[105]

MgO-Biochar 4.5 Mg ha−1 Enhanced P availability [106]

(Continued)
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Table 3 (continued)

Applied biochar Dose of
applied
biochar

Enhancement of soil condition References

Particle size
modified Biochar

1% (w/w) While soil-soluble Na+ and the Na+
adsorption ratio dropped, soil-soluble K+,

Ca2+, and Mg2+ increased

[103]

Rhamnolipid-
modified
Biochar

2 wt% Dehydrogenase activity, bacterial and
fungal diversity indices, and CO2 and
CH4 emissions all increased, whereas

N2O emissions decreased

[107]

Rice husk, oil palm,
and cacao shell

Biochar

30 Mg ha−1 Raised the pH of acidic soil from 4.73 to
5, and raised the soil’s CEC

[108]

Sheep manure
Biochar

5% (w/w) Mitigation of hazardous chromium (VI)
in soil

[101]

S-modified rice
husk Biochar

5% (w/w) Total Hg concentrations in leachate
dropped while rising Leachate complete

elimination of mercury

[109]

Wheat Biochar 4 Mg ha−1 +

5 g KNO3

Enhanced P, K, and total N availability [110]

5.3 Strengthening the Soil’s Water Holding Capacity (WHC)
By improving the soil’s ability to store water, biochar additions may increase agricultural productivity

in dryland areas without irrigation and lower the need for irrigation water. In sandy loam soils, for example,
biochar derived from mango wood enhanced water retention by 11%, but in medium sandy soils, it increased
it by 137% [111]. Pine biochar application increases soil water retention and plant available water, improving
soil water relations for agricultural land use [112]. In silty loam soils, biochar derived from forest waste
increased plant-accessible water by 226%, whereas in other soil types, it dropped by 10% [113]. At other
matric potentials, there were no impacts seen, although soil water retention and stress-free available water
declined linearly with a biochar application rate. Despite these results, applying biochar to plants exposed to
high temperatures improves water retention and water consumption efficiency [114]. Yu et al. [115] reported
that the research found that raising the retort temperature from 250○C to 750○C increased water holding
capacity from 7% to 16%, with an additional 11% increase. The findings indicate that the potential of biochar
to increase the amount of water that can be held may significantly impact areas prone to drying up. These
findings also suggest that using biochar benefits increasing crop output and soil health.

5.4 Increasing the Organic Matter (OM) Composition of Soil
Applying biochar to arable soils is an important source of stable organic matter (OM) that might replace

conventional organic fertilizers. As biochar is high in OM, it can help increase the amount of OM in soil,
improving stability, filtration rate, soil structure, nutrient availability, and water-holding capacity [116]. These
enhancements increase the reservoir’s capacity to store nitrogen, phosphate, and sulfur while reducing its
susceptibility to erosion [117]. Compared to wood-produced biochar, biochar formed from manure has a
lesser surface area [118]. Elevated temperatures result in a decrease in oxygen and hydrogen levels, as well
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as an increase in carbon content [119]. Numerous biological and chemical processes in soil are impacted by
dissolved organic matter (DOM), a highly mobile and active organic matter component. The amount and
composition of DOM directly impact microbial activity, pollutant behavior, and the global C-cycle [120].

Furthermore, research has shown that biochar has the potential to both release native DOM into the
soil and simultaneously absorb intrinsic DOM [121]. Despite this, research shows that biochar may either
have no impact on soil DOM levels at all or significantly decrease DOM leaching by 20% via the adsorption
of DOM species in the soil that are similar to humic and have a high molecular weight [122]. The impact of
biochar on soil DOM is a complicated matter that depends on many variables, such as soil characteristics,
the features of the biochar, as well as the experiment design. Therefore, understanding how biochar releases
and adsorbs DOM in soil is crucial to understanding its impact on soil DOM [120].

5.5 Increasing Bulk Density of Soil
The addition of biochar significantly reduced the bulk density of sandy soil after ninety-one (91) days

of incubation, likely due to more water in the control columns. As bulk densities drop, plant roots may
get denser and longer [123]. This result has to be confirmed in fields with intact soil structure, crops, and
residues since several factors interact to alter bulk density, soil water penetration, and drainage [123]. Prober
et al. [124] reported that the addition of low bulk density biochar material led to a considerable drop in soil
bulk density after two years in mesic forests treated with 20 t ha−1 of green waste biochar. Furthermore,
adding biochar was shown to reduce the bulk density of the soil. This is probably because biochar has a
low bulk density. A mean decrease in bulk density of 12% was seen following biochar application in 19 out
of 22 soils, with reductions ranging from 3 to 31% [125]. Research was conducted by Toková et al. [126] to
observe the influence of biochar without nitrogen fertilizer on bulk density where results revealed that greater
biochar doses resulted to a gradual decrease in BD, but a considerable drop was seen when treated routinely at
20 t ha−1.

5.6 Heavy Metal Detoxification
Heavy metals in plants contribute to physiological difficulties that change the metabolism and linkages

between plants and nutrients, decreasing production and quality of crops [127]. But researchers have
demonstrated that, as a consequence of burning biomass at temperatures higher than 300○C, biochar may
retain organic contaminants and heavy metals. Additionally, with co-precipitation, ion exchange, metal ion
surface complexation, and physical adsorption, it may be mixed with soil as a remediation and amendment
agent to reduce the toxicity and bioavailability of heavy metals in contaminated soils [128]. Silver (Ag),
arsenic (As), mercury (Hg), cobalt (Co), nickel (Ni), chromium (Cr), chromium (Cr), lead (Pb), cadmium
(Cd) are some of the heavy metals that are considered harmful [129]. Besides, stress conditions due to the
presence of Pb, Cd, and As inhibit the formation of secondary metabolites, root elongation, leaf chlorosis,
and seed germination [127]. In this case, biochar with higher basal pH (>10), a pyrolysis temperature
(between 401○C–600○C), and nano sized particle (<2 mm) appeared to help reduce the absorption of Pb
and Cd in plants [130]. When applied to sandy soil, biochar increased soil pH by 4.5 units, reduced bulk
density by 3%–31%, and increased soil porosity from 42.5% to 56% when applied to maize straw charcoal at
10–60 t hm−2 [131]. Consequently, the bioavailability of heavy metals was considerably reduced by these
modified soil conditions [130]. According to Tan et al. [132], adding functional groups like OH and COOH to
biochar enhances the heavy metals’ ability to bind to complexes, which enhances adsorption. Additionally,
the minerals in biochar fix heavy metals, producing precipitates that are insoluble and decrease the metals’
mobility and availability in soil. Pb precipitated in biochar due to inorganic P decreased its availability and
mobility also [133]. To combat this situation, using biochar significantly enhanced proline accumulation,
antioxidant activity, and membrane protection against heavy metals [134]. The use of biochar significantly
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increased the proline accumulation, enhancing antioxidant activities and protecting the plants from oxidative
stress [134]. Also, the application of biochar promoted plant development in heavy metal-contaminated
soils by improving photosynthetic efficiency, soil properties, antioxidant activities, nutrient absorption, and
lowering the availability of heavy metals [135].

6 Biochar as a Microorganism Growth Stimulator of Soil
Changes to the physicochemical conditions of soil can have a beneficial or adverse effect on the

microbial population’s activity and structure through habitat modification. Soil microorganisms are directly
and primarily promoted to flourish by these alterations in soil characteristics. The content and concentration
of accessible nutrients in biochar are determined by the production parameters, including temperature and
retention period, as well as the feedstock. Raising the production temperature often results in higher biochar
pH, C:N, and C:O ratios, total surface area, while decreasing the concentrations of carbon and organic
substances dissolved [136]. By supplying labile C substrates for breakdown, biochar benefits microbial
populations. Enhancements to the properties of the soil, like a rise in pH, the availability of nutrients like, C,
N, magnesium (Mg), potassium (K), calcium (Ca), phosphorus (P), and, the soil’s water-retention capacity
may encourage soil microbiological growth [137].

Biochar provides excellent habitats for soil biota owing to its higher surface area and porosity. Hence,
biochar can control the quantity and functions of specific microorganisms that may benefit from the
physical characteristics of biochar. Another significant characteristic of biochar that affects soil microbial
development is surface area. Thus, higher surface area and porosity provide additional openings for microbial
colonization, based on the temperature during pyrolyzing and feedstock type. The specific surface area and
enhanced porosity of biochar are linked to a greater capability to hold water in a variety of soil types, giving
microorganisms better water retention actions and expansion [138].

The chemical properties of the soil, particularly pH, which is an important component affecting soil
microbial population and behavior, may be dramatically changed when an enough quantity of biochar is
incorporated into the soil. Adding biochar generated from maize straw reduced N leaching and raised the
soil’s electrical conductivity (EC); consequently, alterations were seen in the composition of the bacterial
community [139]. A silt loam soil’s total P, total N, and organic C levels were raised by applying 30 t ha−1 of
biochar composed of maize straw, increasing the soil’s nutrient availability [140]. Consequently, observations
revealed that the AMF/saprotrophic fungus ratio and relative abundances of AMF were greater than those
of the control [140]. N-cycling bacterial community structure and abundance in the soil are impacted by
soil type and biochar rates [141]. Some effects of applying biochar on the soil’s microbial community are
illustrated in Table 4.

Table 4: Microbial responses in the soil while applying different kinds of biochar

Feedstock of
biochar

Dose (%) Production
temperature

(○C)

Soil microbial
response(s)

Soil type Involved possible
mechanism(s)

References

Branches of
China fir

1 and 3% 550 Increased the
abundance of
Gram-positive
bacteria and

Actinomycetes.

Acidic red
loam soil

Total PLFA
concentration

substantially increased
in the 3% biochar
treatment, which

probably indicates the
adaptation of

microorganisms.

[137]

(Continued)
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Table 4 (continued)

Feedstock of
biochar

Dose (%) Production
temperature

(○C)

Soil microbial
response(s)

Soil type Involved possible
mechanism(s)

References

Biochar
fertilizer

20
kg/plant

In rhizosphere, the
population of

Mycobacterium,
Crossiella,

Geminibasidium, and
Fusarium were

significantly increased,
while Acidothermus,

Bryobacter,
Acidibacter,

Cladophialophora,
Mycena, and

Rickenella were
significantly decreased

by biochar soil.

Biochar greatly
influenced the
metabolomics

distribution and the
pH, organic matter,
alkali hydrolyzable
nitrogen, AP, AK,

exchangeable calcium,
and exchangeable

magnesium of
rhizosphere soils.

[142]

Compost 2% NA Several bands in the
DGGE profile showed
a significant rise in the

BC-modified
treatment.

A blend of
river sediment
and compost

Microorganisms may
more easily employ the
refractory materials in

the treated sample
because BC offers
better space and

excellent electronic
transmission.

[143]

Fruit tree
residues

0, 10, and
20 t/hm2

550 The dominant phyla
(Proteobacteria,

Cyanobacteria, and
Actinobacteria) were
abundant in biochar

treated soil.

Clay soil Biochar changed the
physicochemical
properties of soil

SMC, SP, AN, NN, AP,
AK, and OMC, which
fosters the microbial

community structure.

[144]

Maize straw 0, 0.7, 2.2,
3.7

400 The application of BC
affected AMF and the

AMF/saprotrophic
fungal ratio.

Silt loam The composition of
the soil

microbiological
community is
determined by

KMnO4-oxidizable C
(KMnO4–C) and soil

organic carbon.

[140]

Peanut shell 1%, 3% Biochar (1% and 3%)
increased

Gram-negative
bacteria and fungal

populations.

Silty loam soil Biochar amendment
increased glucosidase,

gluconidase, and
phosphomonoesterase

activity.

[145]

Rice straw and
corn straw

20 t/ha Increased soil bacteria
and fungi abundance

and altered
community structure.

Albic soil The impacts of biochar
on the soil bacteria

and fungi community
were indirectly driven
by alternation of soil

nutrient
characteristics.

[146]

(Continued)
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Table 4 (continued)

Feedstock of
biochar

Dose (%) Production
temperature

(○C)

Soil microbial
response(s)

Soil type Involved possible
mechanism(s)

References

Raw rice husk 2 500 According to 16S
rRNA sequencing

research, the
application of biochar
negatively impacted

the behaviour of
native microorganisms

and decreased the
quantity and diversity

of bacteria.

River
sediment

The addition of BC
alters the sediment’s

physicochemical
characteristics,

negatively impacting
the sediment

microorganisms.

[147]

Rice straw
(RS)

2%, 1.5% RS400(400○C),
RS700(700○C)

Higher abundance of
heterotrophic

especially
Proteobacteria and

Acidobacteria.

Sandy loam
soil

Decreased soil pH and
increased dissolved
organic carbon and

NH4
+-N

concentrations with
the RS amendment are
driving forces that lead

to an enhanced soil
microbial activity.

[148]

Rice straw and
canola stalk

RB350
(350○C) and

RB550
(550○C)

Increased the relative
abundances of

bacterial genera
Actinospica, Ellin6067,

Streptomyces and
Massilia, while
decreasing the
abundance of

Pseudomonas, and
Methylobacterium
and Nitrosospira.

Highly acidic
Ultisol

The addition of
biochar significantly

increased total
porosity, total pore
volume and average
pore diameter. The
pores in soils had

positive effects on the
microbial diversity

and abundance.

[149]

Rice straw
(RB), Pig

manure (PB),
Sludge (SB)

1% RB 450○C, SB
650○C, PB

450○C

PB and SB enhanced
beneficial bacterial

phylum
Actinobacteriota and
genus Nocardioides.

RB significantly
enhanced the

beneficial fungal genus
Chaetomium. Three of

them combinedly
reduced the

abundance of the
harmful fungal

phylum
Basidiomycota.

Significantly reduce
water loss, enhance

water retention,
increase the soil
nutrient content,

improve the pH value,
regulate microbial

communities, increase
beneficial

microorganisms, and
reduce harmful

microorganisms.

[150]

(Continued)
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Table 4 (continued)

Feedstock of
biochar

Dose (%) Production
temperature

(○C)

Soil microbial
response(s)

Soil type Involved possible
mechanism(s)

References

Sawdust 5.2 550 PLFA biomass
generally decreased

with increased redox
potential and vice

versa.

Sandy loam High adsorption
affinity of BC for DOC

and SOM results in
low accessible C

Reproduction of N
content in addressed

soils.
Elevated soil pH

greater accessible C
and OM content.

[151]

Wood biochar 2%, 4% 500 Biochar amendment
improved karst soil
nutrient conditions

and induced microbial
community structural

shifts.

Karst soil There was strong
relationship between

microbial community.

[152]

Wheat straw 13.5 t ha−1

year−1
350 Biochar reduced the

population of total
bacteria, fungi,

actinomycetes, and
gram-positive,
gram-negative

bacteria, and total
phospholipid fatty

acids.

Bulk density
(1.56 g cm−3)

The Changes in soil
organic matter and
fatty acid were the

main reasons to
influence the soil

bacterial composition
community. The

fungal community was
governed by MBC,

MBN, and LAP
activities.

[153]

Note: SMC = soil moisture content, SP = soil porosity, AN = ammonium nitrogen, NN = nitrate nitrogen, AP = available
phosphorus, AK = available potassium, OMC = organic matter content, PLFA = phospholipid fatty acids, MBC =
microbial biomass carbon, MBN = microbial biomass nitrogen, LAP = leucine aminopeptidase, AMF = Arbuscular
mycorrhizal fungi.

7 Impact of Biochar on the Structure and Activity of the Soil Microbial Community

7.1 Architecture of Soil Microbial Populations
The enhancement of both chemical and physical properties (density, macroaggregates strength, pH),

as well as the water-air soil regime, are mostly responsible for the beneficial effects of biochar that make it
suitable for use as an ameliorant in agricultural practices [125]. The rhizosphere’s microbial community as
well as the plant roots are both directly impacted by each of these effects [84,154].

Phospholipid-derived fatty acid (PLFA), was utilized to evaluate the communities of microbes in an
acid soil treated with biochar following 431 days of incubation. The outcomes demonstrated that the treated
soil’s PLFA levels were greater than those of the control soil [155]. Furthermore, the PLFA showed that
biochar Carbon, which is formed at 350○C rather than 700○C, was utilized as a substrate by gram-positive
bacteria. Therefore, the research concluded that the biochar’s pyrolyzed temperature has a major influence in
managing the composition of the soil microbial community, irrespective of the soil’s pH [155]. However, when
the utilization rate of maize biochar increased, there was a corresponding drop in the relative abundances of
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bacteria and fungus, as well as the PLFA levels [156]. Biochar’s alkalinity, which tends to lower soil microbial
community formulation and temporarily suppress activity, is a possible explanation for it.

DGGE (Denaturing Gradient Gel Electrophoresis), qPCR (quantitative Polymerase Chain Reaction)
assay, and clone library analysis were used in conjunction with the terminal restriction fragment length
polymorphism (T-RFLP) method to identify the 16S and 18S rRNA genes, which were then used to evaluate
the structure and abundance of the fungal and bacterial communities in paddy biochar treated soil [157].
The study’s findings demonstrated that while bacterial 16S rRNA gene copy counts increased, fungus 18S
rRNA gene copy counts decreased upon the addition of biochar. Applying biochar at greater rates (40 t ha−1)
reduced numerous bands associated with the Ascomycota and Glomeromycota, according to the fungal 18S
rRNA gene’s DGGE bands. Findings from the research show that although the fungi’s ability to metabolize
the very stable organic C in biochar is limited, the bacterial population’s variety may have increased due to the
improved soil pH and fertility [157]. PCR amplification, DNA extraction, and DNA sequencing of 16S rRNA
gene fragments were used to figure out alterations in the variety of bacteria and community composition in
biochar treated soil [139]. The findings of the investigation demonstrated that the variety of bacteria grew
along with the utilization rate of biochar. The aforementioned findings from numerous investigations have
shown that based on the soil conditions, type of biochar, and time, biochar could change the microbial
community’s composition to varying degrees.

7.2 Activities of Soil Enzymes
Soil enzymatic activity is directly affected by a range of biochar impacts on soil microbial population,

soil properties, and soil activity. One potential method to watch an enzyme-biochar interaction is to look for
the process by which the substrates or enzymes adhere to the biochar [158]. Additions of biochar can repair
degraded soil quality by enhancing the biological properties of the soil, like elevating activity of enzyme.
Due of its capacity for interacting with the roots of plants and stimulate particular microorganism groups,
the enzymatic activity of soil is indirectly impacted by biochar. It has been shown that soils treated with
different varieties of biochar and under varied soil conditions have higher dehydrogenase activity [159].
The biochar treatment of a fuvo-aquic soil boosted many extracellular enzymes’ activity linked to the
cycling of soil carbon and sulfur (S), like β-D-cellobiosidase, β-glucosidase, α-glucosidase, sulfatase, and β-
xylosidase [156]. Nevertheless, this effect appeared erratic and dependent on the pace at which biochar was
added. For instance, the enzyme activity in the soil increased when a minimal 0.5% of maize biochar was
applied. Still, it dropped as the biochar was added at concentrations higher than 1.0% [156]. It can be tough to
prove a clear causal relationship between soil enzyme activity and biochars because of the soil environment’s
various kinds of soil, soil enzyme types, and biochar types (Table 5).

Table 5: Enzyme activity in response to various types of biochar

Biochar’s types Soil type Decreased activity of
enzymes

Increased activity of
enzymes

References

Corn straw Acidic loess Phosphatase, sucrase
(high dosage)

Phosphatase, sucrase [160]

Eucalyptus
residue

Sugarcane
soil

Acid phosphatase (high
dosage)

Aryl sulfate esterase,
β-Glucosidase, Urease

(low dosage)

[98]

(Continued)
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Table 5 (continued)

Biochar’s types Soil type Decreased activity of
enzymes

Increased activity of
enzymes

References

Pine Fort Collins
loam

Glucosidase,
phosphatase

β1,4-N-
acetylglucosamine

glycosidase,
α-1,4-Glucosidase,

Hydrolase

[161]

Peanut shells,
Wooden shells,

Rice straw,
Corn straw

Laterite Sucrase, urease Urease, sucrase,
cellulase and protease

[162]

Palm shell Tropical
acidic soil

Lignin hydrolase (not
signifcantly afected)

Cellulase [163]

Parthenium
plants and

WeedsLantana

Contaminated
soils

NA Dehydrogenase,
β-glucosidase, Urease,

and alkaline
phosphatase

[164]

Rice straw Slurried soil Acid phosphatase, β-
NAcetylaminoglucosidase

NA [165]

Suaeda salsa
Phragmites

australis

Coastal
wetlands

NA catalase [166]

Sophora bark
Wutong
sawdust

Black loam
soil

Urease (wutong sawn
wood and locust bark)

Sucrase (wutong sawn
wood > Sophora bark)

[165]

Wheat stalk
Corn straw Rice

straw

Reclaimed
soil in

mining areas

Alkaline phosphatase,
β-N-acetylglucosamine

enzyme

β-1,4-Glucosidase [165]

7.3 Reaction of Soil Microbes in Polluted Soils
Biochar added to the soil can reduce the levels of various pollutants that are present. Biochar is widely

recognized for its capacity to immobilize pollutants, both inorganic and organic in soils through various
processes, comprising precipitation, absorption, co-precipitation, ion exchange, and complexation. In soils
polluted with heavy metals, the roles and composition of the microbial population of soil may be indirectly
impacted by biochar because the constitution of microbial community can be altered, and soil microbial
development can be inhibited or prevented by heavy metal toxicity [167].

Field research was conducted in contaminated soil to investigate the impact of biochar on soil microbial
activity and heavy metal availability using Cd, Pb, and Cu. Relative to the control, the quantity of soil
bacteria was grown 2.8 times by applying 3.0 t ha−1 of biochar produced from bagasse of sugarcane [168].
Microorganisms’ activity, population size, and variety are all impacted by heavy metals (Pb and Cd) in soil.
By adding biochar, pH of soil is changed and the bioavailability of heavy metals decreased. Compared to
the control, it led to a 39% and 930% rise in the populations of actinomycetes and fungi, respectively [169].
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The use of biochar improved the microbial composition of the soil and reduced metal toxicity, as seen by
a rising level of phospholipid derived fatty acid (PLFA) and decreased metal toxicity in the soil. Studies
on dehydrogenase activity and fatty acid methyl ester (FAME) showed that applying biochar made from
vegetable waste at 200○C enhanced the condition of heavy metal contained soils by boosting the soil
microbial population and related microbial functions [170].

In Cu-contaminated soil, biochar generated from chicken manure lowered Cu bioavailability and
boosted microbial activity because Cu is stored in metal-tolerant soil microbial structures [171]. Soil
contaminated with lead and arsenic in low-temperature biochar can elevate the variety of actinobacteria,
fungus, and both Gram-positive and Gram-negative bacteria [172]. Therefore, in polluted soils treated with
biochar, microbial activity is significantly impacted by biochar’s capacity to change the organic matter
concentration, pH, and accessible nutrients [173]. It is essential to determine how soil microorganisms in
polluted soils react to biochar amendments; this reaction is summarized in Table 6.

Table 6: Application of biochar and its effects on the structure and microbiological community of polluted soil

Soil type Biochar
feedstock

Dose
(%)

Production
temperature

(○C)

Soil microbial
response

Soil contaminant
(s)

Involved possible
mechanism (s)

References

Anthrosol Wheat straw 0.7–2.9 450 fungi population:
+370–930% Pb and Cd Reduced bioavailability of

HMs
[169]

Actinomycetes
population: +19–38%

Sandy loam Vegetable
waste pine

cone

0, 5 200 enhanced
biogeochemical

reactions and microbial
community richness

As and Pb HMs immobilized in
the soil

[174]

– Gliricidia
sepium wood

1-5 NA Elevated C content of
soil microbiomass

Heavy metal lowered the
bioavailable HM level.

Under HM stress,
plant

growth-promoting
microorganisms

boosted plant growth

[175]

– Poultry, cow,
and sheep
manures

5 450 In favor of lowering
Cr(VI) to Cr(III)

Heavy metal Cr(III) was the
replacement of

Cr(VI)

[101]

Sedimentary
alfsol

Chicken
manure

5–10 500 Elevated
dehydrogenase and
microbial activity

Cu Decreased the
bioavailability of Cu
and accelerated plant

growth

[171]

Sandy loam Sugarcane
bagasse 0.1–0.2 450 Fungal population:

−62% Cd, Cu, and Pb Diminished bioavailability
of HMs

[168]

Actinomycetes
population: +280%

– Gliricidia
sepium wood

1–5 900 elevated numbers of
bacteria and fungi

Cr Decreased Cr’s
phytotoxicity,
mobility, and

bioavailability in
tomato plants

[176]

– Date palm
waste

0.5–3 300 Soil organic carbon,
high concentrations of
soil microbial biomass
C, and soil respiration

Heavy metal HMs immobilised in
the soil

[177]

(Continued)
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Table 6 (continued)

Soil type Biochar
feedstock

Dose
(%)

Production
temperature

(○C)

Soil microbial
response

Soil contaminant
(s)

Involved possible
mechanism (s)

References

– Gliricidia
sepium wood

1–5 300 and 700 Co-inoculating Biochar
with fungi and soil

enzymatic activity was
increased overall by

bacteria

Serpentine soils Decreased toxicity of
heavy metal and
encouraged plant

development

[158]

Sandy loam Cocopeat,
palm kernel

shell, and
wood bark

0, 5 500 No appreciable change
in the microbial

community’s quantity
and activity

Heavy metal HMs immobilised in
the soil

[178]

8 Potential Damage to the Soil Ecosystem Due to Biochar Application
Biochar benefits soil ecosystems; however, it also poses risks associated with its use. Biochar is created

through the use of totally or partially anoxic biomass pyrolysis. The most common materials used to make
biochar are urban sludge, livestock manure, or crop straw. With the application of biochar, pollutants
contained in these materials can seep into the soil medium, thereby endangering the soil’s environment [179].

Furthermore, the proportion of heavy metals in the raw material determines the quantity of heavy
metals in biochar. It has been discovered that the temperature during pyrolysis affects the amounts of Cd, Zn,
and Pb in biochar [180]. Therefore, it is essential to determine the optimal temperature range for pyrolysis
before its application. Consequently, biochar’s volatile organic compounds can damage microorganisms
when applied to soil. When producing biochar, pyrolysis temperature may impact the presence of the
volatile organic component. Typically, the temperature range for pyrolysis is between 300○C to 600○C.
These molecules should volatilize as the temperature rises, and certain semi-volatilized organic compounds
may accumulate in the biochar [181]. Because the endogenous source of biochar contains volatile organic
compounds (VOCs) that hinder the growth of Bacillus mucilaginosus, this bacterium was found in lower
quantities in the soil after biochar was added [182].

The incomplete combustion of biomass produces a category of organic pollutants known as polycyclic
aromatic hydrocarbons (PAHs), which are poisonous and harmful. However, under the right pyrolysis
circumstances, the quantity of PAHs in the biochar formed would be reduced [183]. As biochar may absorb
PAHs, the impact of PAHs on soil microorganisms is often minimal. This is because the most quantity
of PAHs that might be present in the soil environment is significantly higher than the effective PAHs
concentration in biochar. This explains why soil microorganisms are not greatly harmed by endogenous
pollutants in biochar [184]. The pyrolysis of biochar produces additional contaminants, such as volatile
organic compounds and peroxide-amino hydrocarbons, as well as novel environmental persistent free radical
pollutants. Specific oxygen-containing radicals known as Environmentally Persistent Free Radicals (EPFRs)
are produced when biochar is pyrolyzed. These radicals include peroxy radicals, semi-quinone, alkoxy, and
hydroxyl, and they transfer electrons to the biochar’s transition metals, like Fe, Ni, and Cu. In systems
composed of organic matter and particulate matter, EPFRs maintain a more stable state, producing several
EPFRs [185]. Plant roots are harmed by EPFRs, which also induce oxidative stress in plants and prevent
seed germination. Furthermore, EPFRs trigger oxidative reactions that harm microbial populations and
create oxidative stress in soil microorganisms [185]. Soil microorganisms may be harmed by the EPFRs
found in biochar, causing changes in their population dynamics and activity levels. This could hinder plant
germination in its early stages [186]. A list of heavy metals, organic pollutants, and other harmful substances
with their hazardous effects, which may be present in biochar, are mentioned in Table 7.
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Table 7: The detrimental impacts of endogenous biochar pollutants on soil microbes

Hazardous effects Contaminants Examples Reference
Mutagenic effects on microbes,

microbial activity suppression, and
microbial community structure

modification

Organic
contaminants

Volatile organic
compounds, polycyclic
aromatic hydrocarbons

[187]

Modifies the bacterial populations’
diversity and abundance and
suppresses the action of some

enzymes

Other pollutants Perfluoro octane
sulphonate, perfluorinated

compound,
pentadecafluorooctanoic

acid

[188]

Decreases biomass, impedes
microbial growth, and modifies

microbial enzyme activity

Heavy metals Pb, Zn, Cd [185]

Generates oxidative stress, decreases
cellular enzyme function, and

modifies the structure of
microorganisms

Environmentally
persistent free

radicals (EPFRs)

Hydroxy, alkoxy [186]

9 Implication of This Study
The application of biochar in farming presents various advantages that strengthen plant resistance to

heat stress alongside supporting essential soil microorganisms. This research generates significant value for
sustainable agriculture, especially under dual conditions of climate change and soil degradation.

The physical together with chemical properties of biochar enable it to behave as a protective mechanism
that allows plants to withstand heat stress. The porous structure of biochar enhances oxygen circulation
while boosting the speed of water uptake, resulting in a powerful defense system against heat stress. Scientific
studies prove biochar increases soil moisture levels that enable plants to handle temperature variations [189].
Stomatal conductance and photosynthetic efficiency in plants improve during stressful conditions when
biochar supplements are used [190]. Additionally, biochar application leads to improved plant development
and stress tolerance, as it enhances the availability of water and nutrients for plants [191]. Furthermore, when
biochar integrates with soil, it generates dual effects on plant functioning that foster beneficial microbial
communities, thereby maintaining soil quality through nutrient processing. Biochar introduction has proven
effective in raising microbial diversity while boosting microbial activity, which strengthens both soil fertility
and structure [192].

Moreover, biochar enables beneficial microorganisms to flourish while assisting them in metabolically
active behavior that improves soil performance as a plant growing environment [193]. Biochar combined
with soil microbial communities can enhance plant growth nutrient supplies, especially nitrogen, through
this relationship [194]. Soil resilience against abiotic stresses such as heat and salinity receives added
strength through this collaborative effect on plant health [195]. Additionally, the implementation of biochar
delivers long-term benefits to soil quality, establishing it as a lasting and sustainable approach to enhancing
agricultural production. Biochar enhances soil structure by increasing cation exchange capacity and water
retention properties, thereby contributing to improved crop yields [196]. Agricultural development depends
heavily on these enhancements because climate change produces progressively severe and frequent weather
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events. Biochar implementation enhances soil health and plant resistance, offering agricultural operators a
compact method to reduce climate change effects [197].

10 Future Perspective and Conclusion
To improve the health of the soil, this review gives a general summary of how biochar contributes

to soil biological activity and reduces plant heat stress. In light of the increased interest in the benefits of
employing biochar as a nutrient and microbial carrier, as well as a C-based soil amendment, we suggest
conducting the following study to enhance biochar’s ability to support soil’s biological health and ecological
functions: Examine how biochar affects the development of durable microaggregates in different kinds of soil
to assess how important these microaggregates are for housing soil microbial development. Investigate how
biochar functions in various soil and environmental situations. Assess the real-world effects of biochar on
agricultural productivity and its potential future applications. Highlight its shortcomings and offer potential
solutions. Examine how carbon (C) and other nutrients are co-located in biochar produced using multiple
feedstock types and consider their importance in enhancing microbial functions and activity. Analyse the
presence and evolution of contaminants, including PTEs and PAHs, in biochar-derived sources using various
feedstock types. These pollutants may impact the soil’s biological health by preventing microbial development
and function. Determine the extent to which biochar has immobilized soil pollution to mitigate microbial
development and suppress activity.

Biochar soil amendment enhances water retention capacity, nutrient uptake efficiency, and cation
exchange capacity, all of which contribute to improved plant health and productivity. The mechanism
underlying the aforementioned potential is that it increases the quantity of organic matter and the root-zone
surface area while altering the composition of the microbial community. Biochar is essential for mitigating
heat stress and other climate change impacts because it reduces greenhouse gas emissions and promotes
methanogen activity, thereby enhancing carbon storage [198]. A thorough analysis of the requirements for
biochar should be conducted before application, as plant and soil reactions to biochar depend on its dosage,
application technique, context (crop, soil chemistry, environment), pyrolysis temperature, and feedstock. A
systematic study is necessary to determine how biochar interacts with various plant species and types of soil
in diverse environmental settings.
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