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ABSTRACT: Yellow rust (Puccinia striiformis f. sp. Tritici, YR) and fusarium head blight (Fusarium graminearum,
FHB) are the two main diseases affecting wheat in the main grain-producing areas of East China, which is common
for the two diseases to appear simultaneously in some main production areas. It is necessary to discriminate wheat YR
and FHB at the regional scale to accurately locate the disease in space, conduct detailed disease severity monitoring,
and scientific control. Four images on different dates were acquired from Sentinel-2, Landsat-8, and Gaofen-1 during
the critical period of winter wheat, and 22 remote sensing features that characterize the wheat growth status were then
calculated. Meanwhile, 6 meteorological parameters that reflect the wheat phenological information were also obtained
by combining the site meteorological data and spatial interpolation technology. Then, the principal components
(PCs) of comprehensive remote sensing and meteorological features were extracted with principal component analysis
(PCA). The PCs-based discrimination models were established to map YR and FHB damage using the random forest
(RF) and backpropagation neural network (BPNN). The models’ performance was verified based on the disease field
truth data (57 plots during the filling period) and 5-fold cross-validation. The results revealed that the PCs obtained
after PCA dimensionality reduction outperformed the initial features (IFs) from remote sensing and meteorology in
discriminating between the two diseases. Compared to the IFs, the average area under the curve for both micro-
average and macro-average ROC curves increased by 0.07 in the PCs-based RF models and increased by 0.16 and 0.13,
respectively, in the PCs-based BPNN models. Notably, the PCs-based BPNN discrimination model emerged as the most
effective, achieving an overall accuracy of 83.9%. Our proposed discrimination model for wheat YR and FHB, coupled
with multi-source remote sensing images and meteorological data, overcomes the limitations of a single-sensor and
single-phase remote sensing information in multiple stress discrimination in cloudy and rainy areas. It performs well
in revealing the damage spatial distribution of the two diseases at a regional scale, providing a basis for detailed disease
severity monitoring, and scientific prevention and control.

KEYWORDS: Winter wheat; yellow rust (YR); fusarium head blight (FHB); discrimination; remote sensing and
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1 Introduction
Wheat is considered to be one of the primary food crops in China, thus, ensuring wheat production

safety is of great significance to ensure national food security. Moreover, pests and diseases are crucial factors
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limiting the high yield and satisfactory quality of wheat [1]. Yellow rust (YR), caused by Puccinia striiformis
f. sp. tritici (Pst), is a destructive winter wheat disease. In recent years, its presence has declined as a result
of climate change, wheat planting replacement, and variety adjustment in China. It has been substantially
present only in individual years (such as 2017) [1,2]. Furthermore, Fusarium head blight (FHB) is another
major winter wheat disease, caused by Fusarium graminearum. Recently, its presence has demonstrated a
trend of westward movement and northward expansion, while the actual yield loss caused by FHB is the
largest among wheat diseases [1,3]. On the 15th of September 2020, the Chinese Ministry of Agriculture and
Rural Affairs listed YR and FHB wheat as “class-I crop diseases and pests” [4]. In the main wheat-producing
areas of East China, these two diseases often coincide, threatening food production and safety [5]. Effective
identification of wheat YR and FHB at a regional scale can accurately locate the diseases in space, provide a
basis for refined monitoring of their severity and scientific control, and help improve pesticide efficiency to
reduce pesticide costs and use.

In instances of large-scale crop pest and disease monitoring and discrimination, multispectral satellite
remote sensing imaging plays an important role [6]. In a specific disease scenario with expert prior
knowledge, the use of single-date imagery to extract remote sensing features that can effectively characterize
the host growth status after disease infection has been proven to be a reliable means of regional crop disease
monitoring [7,8]. However, for complex farmland scenes where multiple pests and diseases coexist, if we only
focus on one critical period, different stresses may cause similar symptoms in the host crop during the same
period, resulting in spectral response confusion that makes it difficult for the single-date images to play a
role. If the full growth period of the host crop was focused, it can be found that the infection, occurrence, and
spread of different diseases over time are often unique. Based on this, some scholars have successfully carried
out regional crop disease monitoring and multi-stress discrimination using multi-temporal imagery acquired
from the same satellite sensor [9,10]. Although these studies have demonstrated the potential of multi-source
and multi-temporal satellite images in regional crop multi-stress identification, certain application obstacles
remain in cloudy and rainy areas. For grain-producing regions such as East China and South China, cloudy
and rainy weather is frequent during the crop growing season [11], and it isn’t easy to obtain high-quality time
series images relying on single-source satellites. Therefore, it is important to couple multi-source satellites,
leveraging each satellite sensor’s advantages regarding their varying transit dates and transit cycles. This
can form time interleaving and complementarity to a certain extent to obtain high-quality multi-temporal
satellite images without cloud interference in rainy areas and provide data support for the construction of
regional crop disease discrimination models.

It is well known that in addition to the differences in the host growth status caused by disease infection,
meteorological conditions are also the key factors affecting the occurrence and development of diseases. For
instance, the temperature is the most important factor affecting the occurrence and prevalence of wheat YR,
while precipitation and relative humidity during the wheat flowering period are highly positively correlated
with the amount of FHB pathogen [12,13]. For instance, Ruan et al. found that the prediction accuracy of
the regional wheat YR prediction model, which integrates time-series remote sensing and meteorological
information, can reach 88.7%, representing a 17.6% improvement over the model based on a single-date
remote sensing feature [14]. Xiao et al. input remote sensing and meteorological information into the disease
epidemic dynamics model SERI and achieved a high-precision prediction of the progress of the wheat FHB
epidemic (with an R2 of 0.804) [15]. These studies revealed that coupling remote sensing with meteorological
information can effectively improve the performance of crop disease monitoring and reporting models.

In conclusion, coupling multi-source and multi-temporal remote sensing information with meteoro-
logical data may demonstrate an effective strategy for the crop’s various stress discrimination in cloudy and
rainy regions. The present article focuses on the feasibility evaluation of multi-source information concerning
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the discrimination of YR and FHB wheat on the regional level. The objectives are as follows: (1) determine
the principal components (PCs) for YR and FHB wheat discrimination using PCA method based on initial
features (IFs) calculated from multi-source satellite remote sensing imagery and meteorological data; (2)
evaluate the performance of coupled used of multi-source satellite remote sensing and meteorological data
in YR and FHB wheat discrimination; and lastly (3) map wheat damage at the regional level with regards to
the PC-based discrimination models.

2 Materials and Methods
The primary aim of this study is to explore the feasibility of multi-source satellite imagery for YR

and FHB wheat discrimination in clouded and rainy regions. Fig. 1 provides an overview of the main
methodological framework. Firstly, to resolve the issue of insufficient imagery by a single sensor due to the
weather in the study area, four images of different sensors with different dates were acquired. Furthermore,
three types of common remotely sensed features were extracted, including crop growth characteristics,
habitat parameters, and red-edge indices. Secondly, six meteorological parameters closely connected to
crop diseases were calculated and palatalized. To reduce the redundancy between these initial features
(IFs) and retain valid information, the principal components (PCs) were calculated concerning the IFs,
using the principal component analysis (PCA) method. In addition, the determined PCs were used in
the establishment of a discrimination model, through the commonly used random forest (RF) and back
propagation neural network (BPNN) methods. For both comparison and evaluation, the IFs were used as
well. Finally, the YR and FHB damages were mapped out by using the discrimination models.

Figure 1: Methodological framework of YR and FHB wheat discrimination model
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2.1 Study Site and Data Collection
The study site was located in Anhui Province (Fig. 2). The annual average temperature, precipitation, and

relative humidity in this area were 15○C, 1000 mm, and 77%, respectively. The presence of low temperatures
and high humidity in the wheat fields provides favorable conditions for the occurrence of both YR and FHB.
Therefore, wheat in this area is naturally infected with YR and FHB almost every year. During the period of
wheat growth, farmers carry out their routine field water and fertilizer management practices.

Figure 2: Geographical location of the study area, ground weather stations, spatial distribution of wheat areas and
sample points

The field investigation experiment on YR and FHB wheat was conducted in early May 2017 (the wheat
grain-filling stage). To match the spatial resolution of Sentinel-2 satellite imagery, the disease infection status
of the wheat canopy was surveyed at a 10-m × 10-m plot using a cater-cornered five-point survey. For
each plot, the disease type (healthy, YR- and FHB-infected), center longitude, and latitude were recorded.
Furthermore, on the plots where YR and FHB wheat occurred simultaneously, the more serious prevails
through a visual discrimination method. The disease information from 56 plots was collected, including 24
healthy plots, 18 YR-infected plots, and 14 FHB-infected plots.

On the one hand, similar spectral responses for the same period may be caused by different diseases. On
the other hand, the evolution of different diseases over time may vary, leading to confusion when using single-
time phase imagery to discriminate between different diseases. Thus, it is necessary to use multi-temporal
imagery for disease discrimination [13]. However, due to the frequency of clouded and rainy weather during
the wheat growth period in the study area, it was difficult to acquire multi-temporal high-quality imagery
under clear and cloudless weather. Furthermore, since different sensors have varying transit times and cycles,
the coupling of multi-source and multi-temporal satellite remote sensing image data can both compensate
for the lack of information provided by a single data source and aid in capturing the information of specific
disease development and change during different periods. Therefore, one Sentinel-2 image on 22 April 2017,
one Landsat-8 image on 23 April, and two GF-1 images on 30 April and 16 May were acquired for YR and
FHB wheat discrimination. Several preprocessing was first performed for the three types of imagery. These
preprocessing include: an atmospheric correction for Sentinel-2 imagery, a radiometric calibration and an
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atmospheric correction for Landsat-8 imagery, and a geometric correction, a radiometric calibration, and
an atmospheric correction for Gaofen-1 imagery. Afterward, the spatial resolutions of all four images were
resampled up to 10 m for subsequent analyses.

In addition to crop growth information and habitat conditions, weather conditions such as temperature
and precipitation are also closely correlated to crop disease occurrence and development. Thus, the daily
meteorological data (including daily average temperature, and daily precipitation) of nineteen weather
ground stations from March to April 2017 were used. An inverse distance weight (IDW) interpolation
method [14] was employed for spatial interpolation of daily meteorological data to obtain spatially continu-
ous meteorological data with a 10 m spatial resolution.

2.2 Features Extraction and Dimension Reduction for Disease Discrimination
Several remotely sensed features, such as the normalized difference vegetation index (NDVI), difference

vegetation index (DVI), simple ratio index (SR), and enhanced vegetation index (EVI), related to crop growth
conditions may be employed in wheat FHB monitoring. Furthermore, several red-edge features such as the
normalized red-edge indices, and red-edge disease stress index (REDSI) are closely related to YR wheat. In
addition, crop habitat and weather conditions are also closely related to disease progression. Thus, five indices
related to crop growth, four red-edge indices, three habitat parameters based on multi-source remotely
sensed features, and six meteorological indicators based on daily meteorological data were extracted and
calculated for discrimination of YR and FHB wheat. Finally, a total of 28 initial features (IFs) from the
different dates were extracted. Table 1 summarizes the definition, formula, and data source of each feature.

Table 1: Summary of the remotely sensed features used for identification of YR and FHB

Category Definition Formula or description Data source Reference

Crop growth
characteristics

Difference vegetation
index, DVI

RNIR − RR

Sentinel-2
image in 22

April, Gaofen-1
images in 30
April and 16

May

[16]

Enhanced vegetation
index, EVI

2.5 (RNIR − RR)/(RNIR
+ 6RR − 7.5RG)

[17]

Normalized difference
vegetation index, NDVI

(RNIR −RR)/(RNIR +

RR)
[18]

Simple ratio index, SR RNIR/RR [19]
Structural independent

pigment index, SIPI
(RNIR −RB)/(RNIR −RR) [20]

Red-edge
indices

Normalized red-edge 1
index, NREDI1

(RRe2 −RRe1)/(RRe2 +

RRe1)

Sentinel-2
image in 22

April

[21]

Normalized red-edge 2
index, NREDI2

(RRe3 −RRe1)/(RRe3 +

RRe1)
Normalized red-edge 3

index, NREDI3
(RRe3 −RRe2)/(RRe3 +

RRe2)
Red-edge disease stress

index, REDSI
((705 − 665) (RRe3 −

RR) − (783 − 665)
(RRe1−RR))/(2 RR)

[7]

(Continued)
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Table 1 (continued)

Category Definition Formula or description Data source Reference

Habitat
parameters

Greenness
Wetness

Tasseled cap
transformation

features Landsat-8
image on 23

April

[22]

Land surface
temperature, LST

Calculated by the
single channel method

based on the TIRS-1
band of Landsat-8

[23,24]

Meteorological
indicators

Total precipitation in
March, Ptot_Mar

Spatially interpolated by
inverse distance weight

(IDW) interpolation
method based on daily

meteorological data

Ground
weather station
data for March
and April 2017

Total precipitation in
April, Ptot_Apr

Average temperature in
March, Tavg_Mar

Average temperature in
April, Tavg_Apr

Effective accumulated
temperature in March,

EAT_Mar
Effective accumulated
temperature in April,

EAT_Apr

Note: Red band, green band, blue band, NIR band, red-edge 1 band, red-edge 2 band and red-edge 3 band are denoted
as RR, RG, RB, RNIR, RRe1, RRe1 and RRe1, respectively.

The possible redundancy between different IFs may negatively affect crop disease discrimination model-
ing. Therefore, feature dimension reduction is necessary before modeling wheat YR and FHB discrimination.
In the present article, as a commonly used dimension reduction tool, the principal component analysis (PCA)
algorithm was adopted for IF dimension reduction [25]. The main idea of PCA is to use linear transformation
to project the samples in the high-dimensional space to the low-dimensional one while retaining as much
of the original information as possible. Multiple feature indicators were simplified into a few comprehensive
indicators through PCA. The latter, retains as much information as possible from original indicators, while
the components obtained using PCA are independent. The main steps of IF dimension reduction using PCA
are as follows:
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i. Standardize IFs using the z-score normalization (ZSN) algorithm.
ii. Calculate the correlations between the IFs.
iii. Kaiser-Meyer-Olkin (KMO) measure and Bartlett’s test are adopted to validate the sample adequacy

of the principal component analysis (PCA) method dimensionality reduction for IFs. KMO retains values
from 0 to 1. The standard KMO metrics are as follows: unacceptable (0 to 0.5), inadequate (0.5 to 0.6),
mediocre (0.6 to 0.7), average (0.7 to 0.8), satisfactory (0.8 to 0.9), and excellent (0.9 to 1.0). Additionally, the
significant (p-value < 0.05) Bartlett’s test of sphericity should be suitable for PCA.

iv. After the IF dimension reduction, the principal components (PCs) for YR and FHB discrimination
are determined. The Kaiser criterion (eigenvalue λ greater than 1) is used for determining the valid
component number.

All PCA analyses in this study were implemented in IBM SPSS Statistics 22.0 software.

2.3 YR and FHB Discrimination Model Construction
Two commonly used classification methods, random forest (RF) and back propagation neural network

(BPNN), were employed to examine the performance of coupled multi-source information in discriminating
YR and FHB wheat.

RF is a powerful machine learning classifier, widely used in agriculture research concerning remote
sensing technology [26,27]. The RF method is a collection of untrimmed classification or regression trees
created using lead samples of training data and random feature selection in tree induction [28]. The
predictions of the RF method are made through aggregated (majority vote or average) prediction sets. Its
non-parametric nature, high classification accuracy, and variable importance determination are the primary
advantages of RF, while the classifier itself may be considered a black box classifier due to the unknown
classification rules [29]. It is reported that the tree number in the forest (ntree), the variable number randomly
selected to grow a tree (mtry), and the minimum terminal node number per tree (nodesize) are the three key
parameters of RF modeling [30,31]. In general, the code execution time increases linearly with the increase
of ntree. The default setting of 1 for nodesize is appropriate owing to the little effect of its change from 1 to 5.
The default setting of 1 for mtry is a common choice [32].

BPNN is a multi-layer mapping network, which minimizes reverse errors while transmitting infor-
mation forward [33]. The BPNN method can realize any complex nonlinear mapping function proved by
mathematical theory, and approximate any nonlinear function with satisfactory accuracy [34,35]. As a result
of a series of advantages including flexible nonlinear modeling ability, solid adaptability, strong learning
ability, and parallel computing ability [33], BPNN is commonly used for crop pest and disease monitoring
and classification [36,37]. In previous studies, the BPNN method has been used to discriminate between
powdery mildew and aphid of winter wheat. The results have demonstrated the feasibility of the BPNN
method in discriminating crop pests and diseases [10]. The three-layer BPNN with only one hidden layer
is optimal, while the number of hidden neurons recommended for use is 75% of the total number of input
neurons [38,39]. Furthermore, BPNN network training chooses the traingdx algorithm which with the
advantages of adjusting the learning rate and incidental momentum automatically, avoiding local minima,
and accelerating convergence speed greatly [40].

The IFs and determined PCs were respectively used as the input of RF and BPNN to construct disease
discrimination models. A total of four discrimination models (including the IFs-based RF model, PCs-
based RF model, IFs-based BPNN model, and PCs-based BPNN model) were constructed. First, k-fold
cross-validation [41] (in this study, k = 5) was used for training and validation of the models. For each
validation fold, its receiver operator characteristic (ROC) curve and area under the curve (AUC) were used to
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describe the generalization ability of each model. The modeling method with the optimal ROC and AUC was
then chosen for training the final discrimination model through all plot disease specimens. Four precision
evaluation parameters, specifically the overall accuracy (OA), user accuracy (UA), producer accuracy (PA),
and kappa coefficient were chosen to evaluate the effectiveness of the discrimination model. In which,
OA is the ratio of the sum of correctly classified samples of each category (that is, the sum of principal
diagonals) to the total number of samples, UA indicates the proportion of the discriminative model resulting
in pixels that correctly represent the ground truth, PA indicates the proportion of the ground truth being
correctly classified.

3 Results

3.1 Principal Components (PCs) for YR and FHB Wheat
Fig. 3 illustrates the correlations between different IFs. Many IFs exhibited clear information redun-

dancy. This result demonstrated that IF dimension reduction is necessary before constructing discrimination
models. Meanwhile, the results of the KMO measure (with a value of 0.720) and Bartlett’s test (p-value
< 0.001) in Table 2 illustrated that the PCA method is suitable for IF dimension reduction. Due to the
aforementioned, the PCA method was employed. Fig. 4 illustrates that four PCs were determined for YR
and FHB wheat discrimination under the Kaiser criterion and that 86.1% of the information for IFs could be
explained by the four PCs.

Figure 3: ∣R∣ among different IFs
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Table 2: Results of KMO metric and Bartlett’s test conducted on IFs

Kaiser-Meyer-Olkin measure of sampling adequacy 0.720

Bartlett’s test
Approximate chi-square 4581.957

df 378
Sig. 0.000

Note: Sig. means significant difference.

Figure 4: The eigenvalue and cumulative contribution rate of PCs

In addition to the aforementioned, the response differences of PCs to healthy, YR-, and FHB-infected
wheat are provided in Fig. 5, plotted using the PC means corresponding to the field truth samples of the
three disease categories. All four PCs display distinct responses across the three wheat infection states. Firstly,
for PC1, the difference between the YR-infected category and the other two categories was evident, but
almost no difference between the PC’s means of the healthy and FHB-infected categories. Similarly, for PC2,
the difference between the FHB-infected category and the other two categories was evident, but almost no
difference between the PC’s means of the healthy and YR-infected categories. Furthermore, for PC4, there
were clear differences among the three categories. Nevertheless, although there was a certain difference
between the healthy category and the two diseased categories for PC3, there was no difference between
the PC’s means corresponding to the two disease-infected categories, and the overall difference between
the three categories was not obvious. These results show that different PCs may reflect distinct aspects of the
initial remote sensing and meteorological features, and thus be sensitive to varied disease types. Therefore,
combining the four PCs to construct a disease discrimination model is necessary.
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Figure 5: Response of the selected PCs to YR and FHB

3.2 Evaluation of YR and FHB Wheat Discrimination Models
Discrimination models applying the RF and BPNN classifier to PCs were constructed to evaluate the

feasibility of discriminating YR and FHB wheat using multi-source data. For comparison, the IFs were also
used to build the discrimination models. Fig. 6 and Table 3 respectively show the ROC curves of the 5-fold
cross-validation of the four distinguishing models and the corresponding average AUC of each model. The
PC-based BPNN discrimination model is the most stable among the four models. The 5-fold cross-validation
of the PC-based BPNN model has the highest average AUC, and its AUCs based on micro-average and
macro-average ROCs reached 0.91 and 0.95, respectively. Moreover, the two PCs-based models outperformed
the two IFs-based models. Compared to the IFs-based RF model, the PCs-based RF model saw improvements
of 0.07 in its AUCs based on both micro-averaged and macro-averaged ROCs. Similarly, the PCs-based
BPNN model outperformed the BPNN model based on IFs, with enhancements of 0.16 and 0.13 in its AUCs
based on both micro-averaged and macro-averaged ROC, respectively.

Figure 6: (Continued)



Phyton-Int J Exp Bot. 2025;94(2) 431

Figure 6: Average ROC curves and their corresponding AUC of 5-fold cross-validation of (a) IFs-based RF, (b) PCs-
based RF, (c) IFs-based BPNN, and (d) PCs-based BPNN models

Table 3: The average AUC of micro-average and macro-average ROCs after the 5-fold cross-validation of the four
models

IFs-based RF PCs-based RF IFs-based BPNN PCs-based BPNN
The average AUC of

micro-average ROC after
the 5-fold

cross-validation

0.76 0.83 0.75 0.91

The average AUC of
macro-average ROC after

the 5-fold
cross-validation

0.78 0.85 0.82 0.95

Furthermore, the PCs-based BPNN model with the optimal AUC value, which was obtained from fold
1, was selected for disease differentiation, and its performance was further evaluated using four accuracy
evaluation indicators: OA, kappa coefficient, UA, and PA (Table 4). The result illustrated that the OA and
kappa coefficient of the model reached 83.9% and 0.756. The PAs of the YR- and FHB-infected classes reached
94.4% and 85.7%, respectively. All the above results indicate that the coupled use of multisource remote
sensing and meteorological data is promising for crop disease discrimination in clouded and rainy areas.
The PCs-based BPNN discrimination approach proposed in this article meets the developmental needs of
precision agriculture.
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Table 4: Validation of the best PCs-based BPNN discrimination model based on OA, Kappa coefficient, UA, and PA

Healthy YR-infected FHB-infected Sum UA/% OA/% Kappa coefficient
Healthy 18 1 0 19 94.7

83.9 0.756
YR-infected 6 17 2 25 68.0

FHB-infected 0 0 12 12 100.0
Sum 24 18 14 56
PA/% 75.0 94.4 85.7

3.3 Mapping of YR and FHB Damage
The best performing PCs-based BPNN discrimination model was used for mapping further YR and FHB

wheat damages. Fig. 7 illustrates the spatial distribution of wheat damage caused by YR and FHB. Firstly, it
may be noted that YR was widespread throughout the study area. In addition, the FHB occurred extensively
in the southern part of the study area and occurred sporadically in the northern part. The mapping result of
the entire study area was quantitatively counted to further compare the area proportion of the three disease
types in the whole study area based on the optimal discrimination model with the field truth data. The results
illustrated that in the mapping result based on the optimal discrimination model, healthy wheat accounted
for 47.4%, 4.5% higher than the field truth, YR-damaged wheat accounted for 27.9%, 4.2% lower than the
field truth, and the proportion of FHB-damaged wheat differed only 0.2% from the field truth.

Figure 7: Damage maps of YR and FHB wheat obtained using PCs-based BPNN discrimination models

4 Discussion

4.1 The Impact of IFs on Disease Characterization for the Four PCs
In this study, a dimensionality reduction technique, PCA, was utilized to compress the initial remote

sensing and meteorological features with high redundancy to improve the accuracy of disease discrimination
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modeling. 22 multi-temporal remote sensing features and 6 meteorological parameters were condensed into
4 PCs. However, the four PCs showed obvious differential responses to healthy, YR- and FHB-infected wheat
(Fig. 5).

To clarify the four PCs’ differential responses to the three disease categories, we further analyzed the
rotation components of each original feature in the four principal components. Fig. 8 shows the rotation
components of IF in each PC. Commonly, the absolute rotation factor loading of PCs higher than 0.6 was
considered to be high [42]. Therefore, after filtering through factor loading, the results indicated that PC1
mainly contained information on the IFs obtained using the Sentinel-2 image on 22 April and Greenness
calculated using the Landsat-8 image on 23 April (sensitive to YR wheat). Secondly, PC2 primarily held
the information on the six meteorological indicators (sensitive to FHB wheat). Thirdly, PC3 contained LST
information, calculated using the Landsat-8 image on 23 April, while the four IFs (EVI, NDVI, RVI, and
SIPI) were obtained by Gaofen-1 image on 30 April, SIPI was obtained using the Gaofen-1 image on 16 May
(sensitive to healthy wheat). Lastly, PC4 predominantly retained information from the four IFs (DVI, EVI,
NDVI, and RVI) obtained using the Gaofen-1 image on 16 May (both sensitive to YR and FHB wheat). These
results revealed that the four PCs represented the IFs of different periods, that is, PC1 was dominated by
remote sensing IFs in the early date, PC3 was dominated by IFs in the mid-term date, and PC4 was dominated
by IFs in the late date, while PC2 was dominated by meteorological IFs. Furthermore, the meteorological
parameters during the critical period of wheat growth can reflect the wheat phenology to a certain extent.

Figure 8: Rotated component of the IFs

In another study on remote sensing monitoring wheat YR, we summarized the annual infection cycle
of wheat YR in China [43]. That is, from late February to early-to-mid March each year, after winter wheat
turns green, the YR fungus begins to revive, entering the main epidemic period of wheat YR, then rapidly
spreads to the main wheat-producing areas in eastern China. Furthermore, Huang et al. found that from
early April to mid-May 2017, wheat YR in the Huang-Huai-Hai region entered a period of rapid expansion
and spread, with the diseased area and number of counties growing exponentially, and the diseased range
expanding day by day [44]. For wheat FHB, meteorological conditions during the heading and flowering
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period (mainly April in Anhui Province, China) affect its pathogen infection, and its symptoms and rapid
development are affected by meteorological conditions during the grain filling and milk maturity stage [13].
These existing reports indicate that wheat YR enters the peak period of significant symptom occurrence
earlier, the symptoms of FHB appear and spread rapidly, and the two diseases may thus both show obvious
symptoms in the field in the later stages.

Therefore, the above results may be the main reasons for the differential responses of the four PCs to
the three wheat health categories. Besides, our study also demonstrates the necessity of multi-temporal and
multi-source information coupling in crop multi-stress discrimination.

4.2 The Disease Discrimination Model Based on PCs and Its Performance
We explored the use of IFs and PCs in RF and BPNN algorithms to construct a YR and FHB discriminant

model. For the same algorithm, the discriminant models based on PCs outperformed IFs-based models,
demonstrating the effectiveness of PCA dimensionality reduction technology in improving model accuracy.
It’s worth noting that for the models based on IFs, compared to the BPNN model’s average AUC of 0.75
from the micro-averaged ROC, the RF model obtained a relatively higher average AUC of 0.76 (Table 3).
However, after using the principal component analysis (PCA) algorithm, the average AUC of the PCs-based
BPNN model significantly improved to 0.91, outperforming the PCs-based RF model’s average AUC of 0.83.
This may be because, on the one hand, RF has been shown to have more advantages than BPNN concerning
small samples, multiclass, and unbalanced data without pre-processing [45]. On the other hand, when the
PCs obtained after dimensionality reduction of IFs were taken as the input variable, the convergence rate of
weight parameters in the BPNN training process can be accelerated effectively [46,47].

Furthermore, we compared the spatial distribution mapping results of wheat YR and FHB damage in
the study area based on the optimal discriminant model (Fig. 8) with the existing reported results of the
two diseases in the study area to further evaluate the model performance. According to the report, in 2017,
affected by the extremely warm winter climate and rainy and suitable temperature conditions in the spring,
YR wheat was prevalent in Huang-Huai-Hai wheat growth areas in China [44]. Therefore, the YR spatial
distribution mapped by the present study’s discrimination models corresponds to real-life data. For wheat
FHB, official reports (Department of Agriculture and Rural Affairs of Anhui Province, http://nync.ah.gov.cn,
accessed on 01 December 2024) indicate that the actual area where wheat scab occurred in Anhui Province in
2017 was 380.3 thousand hectares, a decrease of 866.4 thousand hectares compared with 2016, and the overall
area was on the lighter side. Meanwhile, according to the official report of the Anhui Provincial Bureau of
Statistics (https://tjj.ah.gov.cn/, accessed on 01 December 2024), the winter wheat planting area in Anhui
Province in 2017 was 2391.99 thousand hectares. From this, we calculated that the area of wheat FHB in Anhui
Province in 2017 was only about 1.6%, much lower than our model and actual field survey results. Although
our study area is located in a high-risk region for wheat FHB in Anhui Province [48], combined with official
reports, we speculate based on this that our model overestimates wheat scab. Analyzing the possible reasons
for this result, we found that our survey data in the southern part of the study area only included samples
from plots where scab occurred, and the sample distribution was also relatively concentrated (Fig. 2). This
uneven distribution of modeling samples may have led to overfitting of the model, which in turn caused a
high incidence of scab in the southern part of the study area where only the scab survey plot was located.
In the future, the number of ground survey samples should be increased while ensuring the uniformity and
representativeness of sample distribution and combining crop growth conditions and sampling strategies
during critical growth periods to conduct ground surveys for pests and diseases may be a possible way.

http://nync.ah.gov.cn
https://tjj.ah.gov.cn/
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4.3 Future Work
In the present study, a YR and FHB wheat discrimination model for clouded and rainy weather

areas was proposed by coupling remote sensing and meteorological data. Furthermore, the BPNN method
was combined with the PCA algorithm to establish a YR and FHB discrimination model. The results
suggest that the coupled use of multi-source remote sensing and meteorological data may be beneficial in
discrimination between crop diseases in clouded and rainy weather areas. The use of the PCA algorithm to
reduce the dimensionality of IFs was shown to significantly improve the accuracy of disease discrimination.
Nevertheless, several issues remained unresolved and should be the subject of future studies.

This article focused on exploring the feasibility of combining multi-source remote sensing data with
meteorological data to identify crop diseases in rainy weather areas. The multi-source remote sensing data
includes three satellite sensor data, i.e., Sentinel-2, Landsat-8, and Gaofen-1. Different sensors have different
band settings. For intuitive display, we combined the band setting information of Landsat-8, Sentinel-2, and
Gaofen-1 satellite sensors to create Fig. 9. It can be seen that the wavelength ranges of the same band of the
three satellite sensors are different. This difference in band settings may cause different spectral responses of
the same target [49], which may hurt the universality of crop disease identification methods. Therefore, data
fusion processing or cross-calibration processing between images may be necessary when comprehensively
applying multi-source remote sensing images. However, this study was limited by the difference in transit
time of various sensors in the study area and was only a simple coupling application of image data from three
types of sensors. In the future, the impact of differences in sensor band settings on disease identification
should be further analyzed, and methods of fusion and application of multi-source data should be explored
to further improve the universality of crop disease discrimination models.

Figure 9: The wavelength range of different remote sensing satellite sensor image bands

Besides, the meteorological parameter indicators characterizing environmental conditions in this study
were obtained through spatial interpolation of station meteorological data. This method can reflect the
differences in environmental meteorological conditions in the study area to a certain extent. However, due
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to the influence of too sparse meteorological observation sites, planar data obtained by direct interpolation
cannot accurately represent the response relationship between spatially differentiated meteorological condi-
tions and the occurrence and development of pests and diseases under the influence of different underlying
surfaces. Some scholars have explored downscaling methods to obtain high spatial resolution and high-
quality spatially continuous meteorological data by combining rain gauge observations, satellite-derived
precipitation data, and geographical ancillary data [50], providing important method references for obtaining
more reliable input of crop disease discrimination models.

Furthermore, the occurrence characteristics of individual diseases differ. Under suitable conditions,
YR wheat occurs during any wheat growth period [51]. However, for FHB wheat is present only during the
rainy weather present for the wheat heading and flowering period [52]. In the future, in addition to wheat
growth conditions and habitat parameters, wheat growth period information should also be considered
for the discrimination of YR and FHB wheat. Meanwhile, in recent years, emerging artificial intelligence
technologies such as deep learning have become a new trend in the development of precision and smart
agriculture [53]. Some scholars have proposed an optimized three-dimensional convolutional network
that comprehensively considers the spectrum and space of satellite images and performs well in image
classification [54]. Therefore, popular artificial intelligence technologies should try to replace traditional data
mining algorithms in crop disease monitoring analysis in the future.

Finally, in actual farmland ecosystems, compared with our case scenario (YR and FHB coincide), there
are usually more complex scenarios with more coexistence of crop diseases, pests, and abiotic stresses,
which puts higher requirements on the stability and transferability of the discriminant model. Unfortunately,
although our study considered the simultaneous occurrence of wheat YR and FHB, we still incorporated
expert experience to a certain extent before conducting field truth surveying. Also, we did not fully consider
the differences in wheat varieties. So, the transferability of our discrimination model needs to be further
verified. Some reports show that remote sensing can be used for high-throughput phenotyping analysis
of genes in crop disease resistance breeding research, which provides new ideas for regional crop pest
and disease discrimination [55,56]. In the future, we should try to incorporate crop genotype/phenotype
information that can be represented by remote sensing into crop multi-stress discriminant analysis to
improve the reliability and universality of the discriminant model, enhancing agricultural informatization.

5 Conclusion
This study proposed a wheat disease discrimination model that couples multi-source remote sensing

and meteorological data to map the spatial distribution of wheat YR and FHB in cloudy and rainy areas.
This model completed the all-around representation of disease habitat impact information through the
complementation of multi-time and multi-source information and achieved discriminated monitoring of
wheat main diseases in cloudy and rainy areas. This model overcomes the limitations of a single satellite
sensor in obtaining high-quality time series data in cloudy and rainy areas. The experimental results confirm
the feasibility of this model in crop disease analysis in cloudy and rainy areas. In the future, we will focus
on combining multi-source remote sensing data fusion, meteorological data downscaling, spectral-spatial
attention three-dimensional networks in crop disease analysis to improve our crop disease analysis method,
thereby increasing the stability and versatility of the discrimination model in cloudy and rainy areas.
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