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ABSTRACT

Derris fordii and Derris elliptica belong to the Derris genus of the Fabaceae family, distinguished by their high
isoflavonoid content, particularly rotenoids, which hold significance in pharmaceuticals and agriculture. Rote-
none, as a prominent rotenoid, has a longstanding history of use in pesticides, veterinary applications, medicine,
and medical research. The accumulation of rotenoids within Derris plants adheres to species-specific and tissue-
specific patterns and is also influenced by environmental factors. Current research predominantly addresses
extraction techniques, pharmacological applications, and pesticide formulations, whereas investigations into
the biosynthesis pathway and regulatory mechanism of rotenoids remain relatively scarce. In this study, we
observed notable differences in rotenone content across the roots, stems, and leaves of D. fordii, as well as within
the roots of D. elliptica. Utilizing RNA sequencing (RNA-seq), we analyzed the transcriptomes and expression
profiles of unigenes from these four tissues, identifying a total of 121,576 unigenes. Differentially expressed genes
(DEGs) across four comparison groups demonstrated significant enrichment in the phenylpropanoid and flavo-
noid biosynthesis pathways. Key unigenes implicated in the rotenoid biosynthesis pathway were identified, with
PAL, C4H, CHS, CHI, IFS, and HI4OMT playing critical roles in D. fordii, while IFS and HI4OMT were deter-
mined to be essential for rotenoid biosynthesis in D. elliptica. These findings enhance our understanding of
the biosynthesis mechanism of rotenoids in Derris species. The unigenes identified in this study represent promis-
ing candidates for future investigations aimed at validating their roles in rotenoid biosynthesis.
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CHI Chalcone isomerase
IFS Isoflavone synthase
HI4OMT Isoflavone O-methyltransferase
I3’H Hydroxylase

1 Introduction

Species of Derris are acknowledged as traditional medicinal plants and are extensively used as natural
pesticides [1,2]. There are over 70 identified species within the Derris genus, including 25 species and two
varieties documented in China [3]. These plants are rich in isoflavonoids, particularly rotenoids, which find
applications in agriculture, aquaculture, veterinary medicine, and pharmaceuticals [4]. D. fordii exhibits
adaptability to diverse environmental conditions and is predominantly found in the south-central and
southeastern regions of China. Its root extracts comprise compounds like rotenone, 12α-hydroxy
rotenone, 6-methoxyflavone, and quercetin, exhibiting effectiveness against larvae of Aedes albopictus
and adults of Myzus persicae [5]. Historically, D. fordii has been employed for medicinal and agricultural
purposes in China [6]. Conversely, D. elliptica, native to India and the Malay Peninsula, was introduced
to China in the 1950s due to its high rotenone content and continues to be cultivated today [7]. Previous
studies on Derris have primarily concentrated on phylogenetic relationships [8,9], pharmacological
properties [10], and cultivation practices [11]. Research has confirmed that the accumulation of rotenoids
exhibits variability across different tissues [11], species [1], and environmental conditions [12]. However,
investigations into the biosynthesis and regulatory mechanisms of rotenoids are still nascent, requiring
further research and a concerted effort to enhance related studies.

Phenylpropanoid biosynthesis is one of the most extensively researched secondary metabolic pathways
in plants, yielding over 8000 metabolites essential for plant development and plant-environment interactions
[13]. Flavonoid and isoflavonoid biosynthesis are significant branches of this pathway. The biosynthesis of
rotenoids occurs in four stages: the chalcone phase, flavanone/isoflavone phase, hydroxylation/
methoxylation phase, and the final rotenoid phase [14]. Initially, phenylalanine is deaminated by
phenylalanine ammonia-lyase (PAL) to produce p-coumaric acid, which is subsequently catalyzed by
trans-cinnamate 4-monooxygenase (C4H) and 4-coumarate-CoA ligase (4CL) to form p-coumaroyl-CoA.
In the second stage, p-coumaroyl-CoA is processed by chalcone synthase (CHS) and chalcone isomerase
(CHI) to generate flavanones (such as liquiritigenin or naringenin) [15,16], which are further transformed
into isoflavones by the action of isoflavone synthase (IFS) and 2-hydroxydihydroisoflavone dehydratase
(HIDH) [17,18]. The third stage involves the conversion of isoflavones through the action of isoflavone
O-methyltransferase (HI4OMT) and isoflavone 3’-hydroxylase (I3’H) to produce calycosin [19,20],
followed by additional methoxylation and hydroxylation steps. Prenylation and cyclization processes
culminate in the synthesis of the final rotenoid [14,21]. Previous research suggested that the
dehydrogenation process in the conversion of rot-2’-enonic acid to rotenone was catalyzed by a
CYP450 enzyme [21], whereas deguelin cyclase, which catalyzes the conversion of rot-2’-enonic acid to
deguelin, is considered a dioxygenase [22,23]. Despite this understanding, there is still a lack of research
concentrating on the genes that encode the enzymes participating in the prenylation and cyclization
phases of the rotenoid biosynthesis pathway.

Despite the advancement of sequencing technology, which has enabled the sequencing of numerous
plant genomes, genomic and transcriptomic data remain scant for many plant groups. RNA-seq has
become a pivotal tool for analyzing differential gene expression and enhancing our understanding of
genomic function [24]. In species lacking complete genome sequences, de novo transcriptome analysis
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can provide comprehensive insights into fundamental biological, molecular, and cellular processes [25].
Significant discoveries regarding terpenoid biosynthesis in Chamaemelum nobile [26] and the
identification of candidate genes in shikonin biosynthesis pathways in Lithospermum officinale [27] have
been facilitated by de novo assembly and comparative transcriptome analysis, respectively.
Transcriptomic investigations provide crucial information on gene expression regulation and help in
identifying promising candidate genes involved in isoflavonoid biosynthesis [28]. Notable progress has
also been made in elucidating the rotenoid biosynthetic pathway in Mirabilis himalaica through
integrated transcriptomic and metabolomic, or transcriptomic and proteomic analyses [29,30].

Current research on the molecular biology of D. fordii and D. elliptica is rather limited, with the
available data mainly comprised of chloroplast sequences retrieved from the NCBI database. Although
isoflavonoids represent the primary bioactive compounds in Derris species, no specific isoflavonoid-
related genes within this genus have been identified yet. This study initially quantified the rotenone
content in the roots, stems, and leaves of D. fordii, as well as in the roots of D. elliptica. Subsequent
transcriptome sequencing and analysis of these four tissue types facilitated the identification of key genes
involved in the rotenoid biosynthesis pathway. The aim of this research was to elucidate a foundational
understanding of isoflavonoid biosynthetic pathways (specifically rotenoids) in plants and to offer a
genetic resource for the molecular breeding of Derris species.

2 Materials and Methods

2.1 Plant Materials
Lignified branches ofD. fordii andD. ellipticawere obtained from the experimental field of the Guangxi

Institute of Botany in Guilin, China, and sectioned into 15–20 cm segments. The branches were immersed in
a 300 mg/L ABT solution (China-ABT, Beijing, China) for 5 min prior to being diagonally planted in a sand
bed. Following the development of young leaves and roots, the plants were transferred to the field in April,
arranged in beds 100 cm wide (including furrows) with two rows per bed and a spacing of 40 cm × 50 cm. In
February of the subsequent year, samples of roots, stems, and leaves from D. fordii (Df_root, Df_stem,
Df_leaf) and roots from D. elliptica (De_root) were harvested for analysis using high-performance liquid
chromatography (HPLC), RNA sequencing, and quantitative real-time PCR (qRT-PCR).

2.2 Isoflavonoid Extraction and HPLC Determination
Each sample, consisting of nine plants, was dehydrated at 70°C for 10 h, then ground and sieved through

a 100-mesh filter. The extraction and measurement method of rotenone was derived from previous studies
[5,31] with slight modifications. A measured amount of the powder was placed in a conical flask, to
which 50 mL of methanol was added. The mixture was weighed, soaked overnight for 12 h, refluxed in a
water bath at 80°C for 1 h, cooled, and adjusted to its original weight with methanol. The solution was
then shaken and filtered through a 0.45 μm membrane. For quantitative analysis of rotenone, the Agilent
1200 HPLC system (Agilent Technologies, Santa Clara, CA, USA) was utilized. The column employed
was an Agilent HC-C18 (250 mm × 4.6 mm, 5 μm), with a flow rate of 1.0 mL min−1, column
temperature set at 30°C, and an injection volume of 10 μL. The mobile phase consisted of 0.1%
phosphate and acetonitrile (48:52, v/v). The rotenone content (% dry weight) was determined by
comparing the peak areas of the sample and the rotenone standard at 299 nm.

2.3 Library Construction and RNA Sequencing
Four groups (Df_root, Df_stem, Df_leaf, and De_root), each consisting of three replicate samples, were

collected, and total RNAwas extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Quality and
quantity assessments of the RNAwere performed with a NanoDrop2000 (Thermo Scientific, Waltham, MA,
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USA), while RNA integrity was verified using agarose gel electrophoresis and Agilent2100 Nano analysis.
After quality assessment, mRNAwas enriched using Oligo (dT) magnetic beads, and cDNA library synthesis
was conducted using the TruSeq RNA sample preparation kit (Illumina, San Diego, CA, USA). After
synthesizing the second strand of cDNA, it was purified using the QIAQuick PCR kit (QIAGEN, Hilden,
Germany). The cDNA was subsequently terminally repaired by adding base A and sequencing adapters,
followed by selection through agarose gel electrophoresis. The final fragments underwent PCR
amplification, and the twelve libraries were sequenced on a HiSeq 4000 sequencer (Illumina, San Diego,
CA, USA) at Majorbio company (Shanghai, China).

2.4 De novo Assembly, Expression Quantification, and DEGs Identification
Raw sequencing reads were trimmed and quality-checked using fastp [32] with default settings. Clean

data were then subjected to de novo assembly using Trinity [33] and were analyzed via the Majorbio Cloud
Platform [34]. Functional annotations were carried out by comparing homologous sequences against six
databases: NCBI_NR, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
Swiss-Prot, eggNOG, and Pfam. Transcript expression levels were calculated using the transcripts per
million reads (TPM) and fragments per kilobase million (FPKM) methods, with RSEM [35] employed
for gene abundance quantification. Differential expression analysis was performed using DESeq2 [36],
with genes demonstrating a log2FC ≥ 1 and adjusted p values < 0.05 being classified as DEGs.
Subsequently, functional enrichment analyses for KEGG [34] were conducted to identify which DEGs
were significantly enriched in specific metabolic pathways, applying an adjusted p value threshold of
<0.05 in relation to the entire transcriptome. Expression profiles of unigenes associated with the
biosynthesis of rotenoids were evaluated using TBtools software [37].

2.5 qRT-PCR Analysis
The DEGs were validated through qRT-PCR of nine candidate unigenes involved in the rotenoid

biosynthesis pathway. cDNA was synthesized from isolated RNA using a cDNA reverse transcription kit
(Takara, Otsu, Japan). Primers for the selected genes (Table S1) were designed using Primer3web [38].
SYBR qPCR Master Mix (Vazyme, Nanjing, China) was utilized for the qRT-PCR of the nine unigenes,
with actin serving as the housekeeping gene. The fold changes of these genes were calculated via the
2−ΔΔCT method [39]. Finally, the correlation between qRT-PCR relative expression and RNA Seq
(FPKM) data was assessed.

3 Results

3.1 Rotenone Content in D. fordii and D. elliptica
Root, stem, and leaf samples from D. fordii (Df_root, Df_stem, Df_leaf) and D. elliptica (De_root)

(Fig. 1a) were analyzed for rotenone concentration via HPLC. In D. fordii, the rotenone concentrations
were 0.17% in roots, 0.04% in stems, and 0.018% in leaves. In contrast, D. elliptica’s roots exhibited a
significantly higher rotenone content of 7.73% (Fig. 1b, Fig. S1). These findings indicate notable
variations in rotenone levels across different tissues in D. fordii and between the two species, suggesting
distinct isoflavonoid biosynthesis pathways in Derris plants.

3.2 De novo Assembly and Functional Classification of Unigenes
To establish a transcriptome database for D. fordii and D. elliptica, 12 cDNA libraries were sequenced,

yielding 78.20 G of clean data. Table 1 summarizes the sequencing quality, with effective data volumes
ranging from 6.10 to 6.88 G, Q30 values between 93.64% and 95.07%, and GC content from 42.87% to
44.10%. The clean data were assembled using Trinity, resulting in 121,576 unigenes, with an average
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length of 834 bp and an N50 length of 1533 bp. BUSCO analysis indicated 64.1% completeness in the
assembly unigenes (Table 2). The expression levels of the identified unigenes are detailed in Table S2.

Upon excluding non-expressed genes, a total of 120,475 expressed unigenes were contrasted against six
databases for annotation, attaining mappings of 38.40%, 17.25%, 36.75%, 44.42%, 27.92%, 25.64%, and
45.25% to the GO, KEGG, eggNOG, NR, Swiss-Prot, and Pfam database. This process resulted in
54,509 annotated unigenes (Table S3). The species distribution in the NR database revealed the highest
similarity to Abrus precatorius (14,976 unigenes; 27.87%), followed by Spatholobus suberectus
(6590 unigenes; 12.27%) and Cajanus cajan (5978 unigenes; 11.13%) (Fig. S2). GO and KEGG
classifications were performed on the unigenes (Fig. S3), with 46,258 unigenes categorized into
functional groups: “molecular function,” “cellular component,” and “biological process.” The
predominant GO terms included “binding,” “catalytic activity,” “cellular process,” and “metabolic
process”. KEGG pathway analysis categorized 20,778 unigenes into 132 pathways, with 491 unigenes
linked to the other secondary metabolism and 279 unigenes associated with phenylpropanoid biosynthesis
(Table S4).

Figure 1: Phenotypes (a) and rotenone concentrations across the four tissue types (b). Asterisks (*** and
****) denote statistically significant differences, as determined by ANOVA followed by Tukey’s test
(p < 0.05)

Table 1: Reads statistics of different transcriptome samples

Sample Clean reads Clean bases Q20 (%) Q30 (%) GC (%)

De_root01 43587092 6434912572 98.42 94.97 43.57

De_root02 44963990 6511947667 98.48 95.07 43.36

De_root03 44909586 6549009257 98.47 95.06 43.42

Df_leaf01 45271874 6653238047 98.3 94.64 43.43
(Continued)
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3.3 Differential Expression Analysis of Unigenes across Tissues of D. fordii and Roots of D. elliptica
Principal Component Analysis (PCA) has revealed that the first two principal components accounted for

68.43% of the variation, indicating high consistency among intra-group samples (Fig. 2a). Venn analysis has
identified 956, 8169 and 9375 specifically expressed genes in the roots, stems, and leaves of D. fordii,
respectively. In comparison, the roots of D. elliptica exhibited the highest number of specifically
expressed genes, totaling 31,286 (Fig. 2b). DEGs were identified using specific screening criteria:
6180 were upregulated and 4682 downregulated in the Df_leaf vs. Df_stem comparison (Fig. 2c);
6329 upregulated and 6469 downregulated in Df_leaf vs. Df_root (Fig. 2d); 1946 upregulated and
3083 downregulated in Df_stem vs. Df_root (Fig. 2e); and the comparison of Df_root vs. De_root
revealed the most DEGs, with 19,730 upregulated and 11,904 downregulated (Fig. 2f). These findings
underscore significant functional differences among roots, stems and leaves in D. fordii, as well as
notable functional variability in roots between D. fordii and D. elliptica.

Table 2: Sequence statistics of unigenes and transcripts

Type Unigene Transcript

Total number 121,576 230,989

Total base 101464948 243523483

Largest length (bp) 17,077 17,077

Smallest length (bp) 201 201

Average length (bp) 834.58 1054.26

N50 length (bp) 1533 1862

E90N50 length (bp) 2971 2482

Fragment mapped percent (%) 60.102 77.396

GC percent (%) 37.62 38.29

TransRate score 0.23483 0.32136

BUSCO score C:64.1%[S:61.3%; D:2.8%] C:86.7%[S:42.1%; D:44.6%]

Table 1 (continued)

Sample Clean reads Clean bases Q20 (%) Q30 (%) GC (%)

Df_leaf02 44359040 6519583861 98.44 94.98 43.29

Df_leaf03 41313250 6103329690 97.98 93.64 42.87

Df_root01 41610270 6110129113 98.16 94.5 43.77

Df_root02 47119946 6887690457 98.17 94.51 44.06

Df_root03 42418698 6211835900 97.98 94.09 44.10

Df_stem01 44272826 6540315747 98.32 94.74 43.32

Df_stem02 46862068 6885598115 98.3 94.7 43.61

Df_stem03 46206326 6792286244 98.28 94.72 43.76
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Figure 2: Analysis of transcriptome data and differential gene expression. (a) PCA analysis of
12 samples based on the complete set of unigenes. (b) Venn diagram of unigenes in four tissue types.
(c) Volcano plots depicting up-regulated and down-regulated DEGs for Df_leaf vs. Df_stem comparison.
(d) Volcano plots depicting up-regulated and down-regulated DEGs for Df_leaf vs. Df_root comparison.
(e) Volcano plots depicting up-regulated and down-regulated DEGs for Df_stem vs. Df_root comparison.
(f) Volcano plots depicting up-regulated and down-regulated DEGs for Df_root vs. De_root comparison.
The former group acted as the control in all four comparisons
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KEGG pathway analysis may further elucidate the biological functions associated with the DEGs. In the
Df_leaf vs. Df_stem comparison, the significant DEGs were concentrated in phenylpropanoid biosynthesis
(ko00940), photosynthesis (ko00195), and flavonoid biosynthesis (ko00941) (Fig. 3a and Table S5). The
Df_leaf vs. Df_root comparison showed enrichment in photosynthesis (ko00195), phenylpropanoid
biosynthesis (ko00940), photosynthesis-antenna proteins (ko00196), starch and sucrose metabolism
(ko00500), zeatin biosynthesis (ko00908), and flavonoid biosynthesis (ko00941) (Fig. 3b and Table S5).
The Df_stem vs. Df_root comparison also highlighted pathways relevant to photosynthesis (ko00195),
phenylpropanoid biosynthesis (ko00940), photosynthesis-antenna proteins (ko00196), and flavonoid
biosynthesis (ko00941) (Fig. 3c and Table S5). In the Df_root vs. De_root comparison, key pathways
included phenylpropanoid biosynthesis (ko00940), flavonoid biosynthesis (ko00941) and purine
metabolism (ko00230) (Fig. 3d and Table S5). Notably, DEGs linked to phenylpropanoid and flavonoid
biosynthesis were significantly enriched across all four comparisons (Fig. S4a). These findings underscore
the prominence of the phenylpropanoid metabolism as a prominent secondary metabolic pathway in D.
fordii and D. elliptica.

Figure 3: KEGG pathway enrichment analysis of DEGs. (a) KEGG enrichment analysis of DEGs in the
Df_leaf vs. Df_stem group; (b) KEGG enrichment analysis of DEGs in the Df_leaf vs. Df_root group; (c)
KEGG enrichment analysis of DEGs in the Df_stem vs. Df_root group; (d) KEGG enrichment analysis of
DEGs in the Df_root vs. De_root group
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3.4 Identification of Unigenes Potentially Involved in Rotenoid Biosynthesis
Respectively, a total of 279, 70, and 42 unigenes were annotated as participating in phenylpropanoid

(ko00940), flavonoid (ko00941), and isoflavonoid biosynthesis (ko00943) pathways (Table S6),
respectively. Amongst these, 38 unigenes encoding key enzymes were identified, including PAL
(5 unigenes), C4H (3 unigenes), 4CL (8 unigenes), CHS (5 unigenes), CHI (3 unigenes), IFS
(4 unigenes), HIDH (2 unigenes), HI4OMT (6 unigenes), and I3’H (2 unigenes) (Table S7). A heatmap
was constructed to illustrate the expression patterns of unigenes related to the rotenoid biosynthesis
pathway (Fig. 4). In D. fordii, most unigenes encoding PAL, C4H, CHS, CHI, IFS, and HI4OMT
exhibited elevated expression levels in roots, while more unigenes encoding 4CL were highly expressed
in leaves relative to roots and stems. On the contrary, in D. elliptica, unigenes for C4H, CHS, and CHI
were expressed at lower levels compared to roots of D. fordii, whereas IFS and HI4OMT demonstrated
higher expression in the roots of D. elliptica. These results indicate that the unigenes encoding key
enzymes involved in rotenoid biosynthesis may vary between the two species.

In this study, we also identified a total of 4 unigenes encoding prenyltransferase, 199 unigenes encoding
CYP450 enzymes, and 94 unigenes for dioxygenases (Table S8). These genes potentially serve as candidates
for the late stages of the rotenoid biosynthetic pathway.

3.5 Verification of Transcriptome Data
To validate the reliability of transcriptome sequencing results, nine DEGs were selected for quantitative

reverse transcription PCR (qRT-PCR) verification (Table S1). The DEGs selected included those related to
isoflavonoid biosynthesis: PAL, C4H, 4CL, CHS, CHI, IFS, HIDH, HI4OMT, and I3’H. The expression
trends of the nine DEGs demonstrated general consistency between qRT-PCR and RNA-seq findings,
thereby confirming the reliability of the transcriptomic data, as presented in Fig. 5.

Figure 4: Expression profiles of DEGs associated with the rotenoid biosynthesis pathway. The heatmap
value represents the expression levels as log2(FPKM+1)

Phyton, 2025, vol.94, no.1 131



4 Discussion

Rotenoids represent a significant subclass of isoflavonoids, with a wide variety being isolated from
Derris species. Among these, rotenone is recognized as a key bioactive compound initially extracted from
D. elliptica, and represents the most prevalent rotenoid in the roots of this species [14]. Our research
quantified rotenone levels across three tissues of D. fordii, demonstrating that the root tissue harbored
significantly higher concentrations than the stems or leaves (Fig. 1b). Previously, we observe similar
accumulation patterns of rotenone were observed in the roots, stems, and leaves of D. elliptica and Derris
montana [11]. The disparity in distribution observed could be relate to the differential expression of key
enzymes involved in rotenoid accumulation, which are predominantly expressed in the roots, while other

Figure 5: Quantitative real-time PCR (qRT-PCR) analysis for the validation of expression levels of nine
genes involved in the rotenoid biosynthesis pathway
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tissues show minimal or absent expression. Analysis of root tissues revealed that rotenone accumulation in
D. elliptica was over 45-fold higher than in D. fordii (Fig. 1b). This discovery suggests substantial
differences in the genes encoding vital enzymes and regulatory elements associated with the rotenoid
biosynthesis pathway exist between the two species.

Transcriptome sequencing is a valuable tool for elucidating the key mechanisms underlying growth and
development, particularly in plant species with limited genomic data [40]. This method has been employed to
identify novel genes involved in secondary metabolism pathways and to explore the molecular mechanisms
governing isoflavonoid biosynthesis [41,42]. To date, no published transcriptomic data are available for
Derris species. In this study, we performed transcriptome analyses on the root, stem, and leaf tissues of
D. fordii, and found that the enrichment pathways of DEGs varied across tissues, reflecting their distinct
biological functions. In terms of energy metabolism, pathways related to photosynthesis, photosynthesis-
antenna proteins, carbon fixation in photosynthetic organisms, and nitrogen metabolism were observed to
have a higher number of down-regulated genes in the roots and stems when compared to the leaves
(Fig. S4b), emphasizing the role of leaves in meeting the energy requirements for the growth and
development of D. fordii; conversely, a larger number of up-regulated genes in the phenylpropanoid and
flavonoid biosynthesis pathways were observed in the roots and stems than in the leaves (Fig. S4b),
which suggests a higher accumulation of phenylpropanoid metabolites in the roots and stems tissues.
Notably, a higher number of genes related to phenylpropanoid and flavonoid biosynthesis were up-
regulated in the roots of D. fordii as compared with those of D. elliptica, underscoring the significant
differences in phenylpropanoid metabolism between the two species.

Although isoflavonoids act as the primary bioactive compounds in D. fordii and D. elliptica, the
relationship between the expression of structural genes involved in isoflavonoid biosynthesis and their
accumulation patterns remains largely unclear. Previous studies have demonstrated that the expression
patterns of the CHS and CHI genes correspond with rotenoid accumulation across various tissues in
M. himalaica [29]. Additionally, overexpression of CHS and CHI genes has been shown to enhance
rotenoid levels in transgenic hairy roots [43]. Our transcriptomic analysis has identified 38 putative
structural unigenes linked to the rotenoid biosynthesis pathway (Fig. 4). Consistent with the HPLC
results, which indicated the highest rotenone concentrations in the roots of D. fordii compared to its stems
and leaves, we observed increased expression of unigenes encoding PAL, C4H, CHS, CHI, IFS, and
HI4OMT in the roots relative to other tissues (Figs. 1, 4, and 5). Notably, all CHI-encoded genes were
highly expressed in the roots, followed by the stems, with the lowest expression in the leaves, reflecting a
strong positive correlation with rotenone content across these tissues. These findings suggest that the
upregulation of these genes might promote rotenoid accumulation in D. fordii, with CHI genes playing a
particularly significant role.

Studies have shown that the content of intermediates is lower during the chalcone and flavonoid/
isoflavone phases; however, notable intermediates, such as 7,2’-dihydroxy-4’,5’-dimethoxyisoflavone in
the hydroxylation/methoxylation phase and (±)-9-demethylmunduserone in the rotenoid phase, have been
found to be abundant in the roots of D. elliptica [14]. This finding suggests that the accumulation of
rotenoids in the roots of D. elliptica is primarily governed by the expression of enzyme-coding genes
active in the latter stages of the rotenoid biosynthesis pathway. In our comparison of Df_root vs. De_root,
unigenes for C4H, CHS, and CHI were expressed at lower levels, whereas more unigenes for IFS and
HI4OMT showed higher expression in D. elliptica. The low expression levels of unigenes for C4H, CHS,
and CHI correlate with the lower intermediate contents during the chalcone and flavonoid/isoflavone
phases. Furthermore, the elevated expression of unigenes for IFS and HI4OMT correlates positively with
heightened rotenone levels observed in the roots of D. elliptica, indicating that IFS and HI4OMT play
critical roles in the rotenoid biosynthesis pathway of this species.

Phyton, 2025, vol.94, no.1 133



5 Conclusion

This study provides insight into the transcriptomic landscape of D. fordii (root, leaf, stem) and
D. elliptica (root), facilitating the identification of candidate genes involved in rotenoid biosynthesis. The
findings from this RNA-seq analysis will advance our understanding of the molecular mechanisms
underlying isoflavonoid biosynthesis in Derris plants, with the identified unigenes serving as valuable
candidates for further investigation into rotenoid biosynthesis. Moreover, the transcriptomic data will
enable exploration of additional, less understood metabolic pathways within this genus.
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