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ABSTRACT

In recent years, the world has faced rising global temperatures, accumulative pollution, and energy crises, stimu-
lating scientists worldwide to strive for eco-friendly and cost-effective solutions. Biochar has materialized as a
favorable tool for environmental remediation, indicating efficacy as an efficient sorbent substance for both
inorganic and organic pollutants in environmental field. These unique properties exclude improved surface
functionality, porous morphology, large specific surface area (SSA), cation exchange capacity (CEC), robust
adsorption capabilities, environmental stability, and embedded micronutrients. Biochar exhibited potential
characteristics for environmental oversight, greenhouse gas (GHG) emission reduction, and soil fertility improve-
ment. This review explores the impact of fundamental factors such as retention time, pyrolysis temperature, gas
flow rate, and reactor design on biochar yield and properties. Collected data revealed the various applications of
biochar, ranging from waste management and construction materials to the adsorptive removal of hydrocarbon
lubricants from aqueous media, contaminant immobilization, and carbon sequestration. It has played mostly a
significant share in climate change mitigation and an important role in soil amendments. Biochar improves soil
improvement by increasing water retention (10%–30%), carbon sequestration, soil surface functionality, and
providing high surface area with chemical stability. The assessment also reports the prospects and contests
associated with biochar application uses in various agriculture cropping ecosystems. Inclusive, this review
highlights the multifaceted characteristics of biochar as an adjustable on top of a sustainable solution addressing
greenhouse gas emission, carbon sequestration, and environmental stresses. However, further research is needed
to understand its long-term impacts and optimal applications fully.
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1 Introduction

Accelerating ecological pollution, energy predicaments, unfettered advanced proceedings, and climate
change triggered by global warming have been the furthest unrelenting global challenges [1]. Amplified
greenhouse gas (GHG) emissions subsequently human actions have consequences in an all-embracing
intensification in worldwide temperatures gradually day by day, [2] mostly raised under the umbrella of
global warming [3]. This distinctiveness has stimulated a series of unswerving activities, such as climate
change, exposure to drought events or water stress, plant diseases, and biodiversity loss [4]. In addressing
these challenges, learning about innovative applications and adaptive strategies, laterally with resourceful
solutions, is essential to mitigate existing and projected climate change influences [5]. At the same time,
efficiently utilizing and managing the substantial outputs and raw materials produced from agricultural
activities also practices leftovers, which is a paramount concern [1,6].

Prevailing agricultural waste management techniques, including composting, crop residue, and burning,
raise various environmental concerns [7]. These methods contribute to the primary emission of GHGs, such
as nitrous oxide, carbon dioxide, and methane [8]. Among these, carbon dioxide is the primary GHG legally
responsible for driving climate change [9]. In contrast, the agricultural segments are responsible for
approximately 13.5% of total anthropogenic greenhouse gas emissions [10]. There is increasing
awareness of utilizing organic waste and agricultural inputs from urban and rural areas as a renewable
and sustainable resource for agriculture production [11]. Biochar is a reservoir of electron acceptors and
donors with a pH buffering range and Cation Exchange Capacity [12]. These qualities elevate biochar
reactivity, influenced mainly by source ingredients and manufacturing procedures. Biochar is a well-
known carbonaceous substance, commonly synthesized in an oxygen-restricted condition through
thermos-chemical processes like gasification [13], slow or fast pyrolysis [14], hydrothermal carbonization
(HTC) [15], torrefaction [16] as well as the regulation of the pyrolysis assay and its consequential
modification [17], etc. Biochar investigation has taken considerable time recently, and significant
beneficial progress has been reported. Biochar has quite a lot of inimitable characteristics together with an
improved permeable porous nature, the existence of oxygen-holding outward efficient functional groups,
fabulous CEC [18], growth and increased surface area, strong adsorption capabilities, structural stability,
upgrading with essential minerals and approximately trace metals [19].

As a result of its physical and chemical potentials, biochar adaptability extends several applications,
including soil upgrading, contaminant restriction, carbon storage, and decreasing greenhouse gas
emissions [20]. It also helps as an improver trendy an-aerobic assimilation, composting, and
microbiological fuel cells [21]. Dai et al. defined biochar as a sustainable adsorbent for removing various
pollutants, including organic contaminants such as insect repellents, dyes, antibiotics, and heavy metals
like lead, arsenic, and mercury [22]. Li et al. proved that biochar also effectively removes inorganic
contaminants, such as orthophosphate and nitrate, from water sources [23].

Ma et al. highlighted that recent studies and assessments suggest biochar has potential applications in
energy and environmental division, with multifaceted benefits that still require further investigation in
ongoing research [24]. Much research has emphasized the outcome of biochar as a soil amendment
proceeding GHG emissions and restraining the practice of contaminated elements intended for soil [25].
Das et al. have provided visualizations of the proficiency of biochar alteration on soil systems and
physicochemical and biological properties [26]. Moreover, Ralebitso-Senior et al. observed that the
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accumulation of biochar stimulated microbial activity, contributing to the enhancement of soil quality and
overall soil health [27].

The general management of biochar as both a catalyst and catalyst support in organic pollutant
degradation via (AOPs) advanced oxidation processes and utilization in bio-refineries has been
comprehensively discovered in research [28,29]. Ambika et al. conducted a comprehensive review on the
use of biochars for Cr (VI) elimination from various sources and the underlying mechanisms in soil [30].
Despite these innovations, an inclusive synthesis of biochar and methods, ecological implications, and
benefits has not been scientifically accumulated in the existing literature. Therefore, this review objective
is to fill this gap by providing an in-depth scientific outline of these characteristics. It covered biochar’s
production and the influence of thermos-chemical parameters on its properties. It systematically
deliberates conservation management strategies like GHG mitigation in soil, alterations in properties of
soil, soil-microbe interactions, heavy metals (HMs) activities in soil, and bio-availability interactions with
biochar, as well as its economic prospects and future research directions. These are three questions that
aim to comprehensively address the objectives and extensive consequences of this review study:

1. How does the application of biochar contribute to the reduction of greenhouse gas emissions in
sustainable farming practices?

2. What are the most critical opportunities and challenges of using biochar in sustainable farming?

3. What prospects and research directions are suggested for improving the role of biochar in climate-
smart agriculture?

2 Climate Change Mitigation

During the 21st COP21 (United Nations Framework Convention on Climate Change) in Paris, socio-
environmental challenges stemming from anticipated global warming impacts, such as heightened risks of
flooding and droughts, were acknowledged. Deliberations are also engrossed in natural-based
determinations to address these challenges, but in reality, the changing climate poses an imperative risk to
soil fertility and plant environments [31]. Changes in climate patterns upset the convenience of essential
nutrients in the soil, which are situated in declining soil fertility [32]. This decline in soil fertility has
general consequences, affecting plant growth and inclusive ecosystem stability [33]. Furthermore,
exciting meteorological conditions irregularity like drought and flood, impaired through climate change,
increased soil degradation, and interrupt optimum plant growth [34]. In light of these complications, it is
imperious for mutual investigators and agriculturalists to monitor soil environments attentively and
change to suggested farming practices [35]. By smearing sustainable soil managing approaches and
assuming climate-resilient agricultural stratagems, for instance, crop diversification and water
management, subsequently alleviates the opposing outcome of global climate change on soil fertility and
encourages longstanding farming sustainability [36].

Climate change mitigation comprises various actions projected to decrease/prevent the gas GHG
emissions caused by human activities, consequently struggling with global warming [37]. The decrease in
GHG emissions is overcome through sustainable ecosystem management, which is considered a decisive
factor in the approaches expected to complete this objective. These efforts stand conclusive for mitigating
the antagonistic effects of climate change. Several techniques are approved, including falling
requirements on fossil fuels, which are noteworthy shares of GHG emissions [38]. This includes
converting to harmless and more sustainable vigour sources such as astrophysical, wind, and hydro-
electric [38]. The elevation of public policies and incentives that endorse implementing clean energy
skills played a fundamental role in this conversion [39]. Presently, wetlands, cultivated land, and
woodlands are essential as land-use types are accomplished to further appropriate carbon in soil biomass.
These observations significantly impact plummeting atmospheric CO2 levels and climate change
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mitigation [40]. Masson-Delmotte et al. emphasized that these ecosystems are crucial for achieving net-zero
greenhouse gas emissions by 2050 and preventing global temperatures from rising above 2°C [41].

Biochar Characterization and Production

Plant-derived biomass primarily comprises plant fibres composed predominantly of carbohydrates [31].
Lignocellulosic biomass mainly consists of the biopolymer’s hemicellulose, cellulose, and lignin,
collectively comprising approximately 85% to 90% of its total mass, with the remaining portion
composed of various extracts and minerals [42,43]. Yogalakshmi et al. provided a comprehensive review,
highlighting that lignocellulosic biomass typically contains relative proportions of approximately 40%–

60% carbon, 20%–40% hydrogen, and 10%–24% oxygen [44]. Lignocellulosic resources are viewed as a
promising feedstock for biochar production because of their renewability, abundance, and less expensive
nature [45]. Applying lignocellulosic waste to generate substances and biochar suggested dual benefits: it
reduces residual biomass burning and repurposes waste biomass into valuable bio-oil and biochar
products [46]. An estimated 500 million tons of agricultural residues are generated annually [47].

Consequently, waste lignocellulosic biomass was a primary source for producing biochar [48]. The
elemental composition and the proportions of cellulose, hemicellulose, and lignin vary among different
types of lignocellulosic biomass [49]. As a result, biochar made from other feedstocks showed various
properties [45,50]. Biochar is produced from solid waste like agricultural biomass and sewage waste from
treatment facilities [51]. Numerous materials have been used as biochar production feedstock, including
tires, plastic waste, food crops, paper scraps, intrusive plant biomass, algae, diatoms, and municipal
sludge [52]. Pyrolysis is a thermochemical process that includes degrading organic molecules without
sufficient oxygen and producing pyrolytic oil, pyrolytic gas, and solid residue [53]. It is a widely adopted
technology for producing biochar, involving three key processes: chemical transformation, heat transfer,
and mass transfer. The physicochemical characteristics of the resulting biochar are influenced by both the
feedstock type and the specific pyrolysis conditions [54]. There are eight main methods of pyrolysis used
to produce biochar: fast, slow, co-, microwave, flash, vacuum, hydrothermal, and intermediate pyrolysis.
Fig. 1 depicts the pyrolysis process of biomass into refined biochar, followed by various modification
techniques. It also illustrated the complex interactions between biochar, compost, and soil properties,
emphasizing key mechanisms such as enhanced nutrient adsorption, phosphorus desorption from clay
surfaces, and the gradual nitrogen mineralization, which collectively contribute to sustained nutrient
availability.

The properties of biochar (biological, chemical, and physical) are subjective to the original biomass’s
composition, structure, and internal bonding [57]. Researchers have concentrated on altering biochar
properties during pyrolysis by employing various techniques. Factors such as pH, activation temperature,
activating agents, and their concentrations play a crucial role in influencing the modification of biochar
properties [58]. Lignocellulosic biomass, composed of lignin (16%–45%), hemicellulose (20%–40%), and
cellulose (13%–50%), undergoes decomposition during pyrolysis, leading to the formation of aromatic
compounds, including biochar [59]. According to Yogalakshmi et al., the optimal temperature range for
maximum biomass decomposition is 200°C–400°C. Hemicellulose primarily breaks down between 200°C–
280°C, cellulose degrades between 250°C–400°C, and lignin degradation occurs at higher temperatures,
typically between 300°C–550°C [44]. Fig. 2 shows that biochar on soil hydrological properties.

Biochar is a carbon-rich substance commonly produced through the pyrolysis process, which involves
the thermal decomposition of biomass at temperatures typically below 700°C [60]. This technique with crop
residue deposit is recognized as biochar, characterized by highly carbon-contented and fine-grained texture
[61]. Biochar production, derived from organic materials or agricultural by-products, is considered a carbon-
negative process, effectively reducing atmospheric CO2 levels [62].
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Figure 1: (1) Biomass undergoes pyrolysis through various methods to get purified biochar, which can be
modified through physical, chemical, or advanced engineering techniques [55]. (2) Illustration of compost-
amended soil showing humic acid’s role in nutrient incorporation. (3a) Effective adsorption of plant nutrients
at specific sorption sites, enhancing plant uptake through proton release. (3b) Mechanism of compost aiding
in P molecule liberation from clay sorption sites. (3c) Gradual N mineralization in compost providing
sustained nutrient availability. (4) Unique interactions between biochar, soil properties, and compost
processes [56]
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Biochar is a carbon sink, appropriating carbon, water preservation, and nutrient-holding capacity in the
soil [63]. Various methods produce biochar, including gasifiers, kilns, and other thermal decomposition
techniques [64]. The resulting product is a cost-effective, highly aromatic solid rich in carbon, suitable for
various applications [62]. Biochar has proven effective as a soil amendment, compost fertilizer, and
energy source, particularly in agro-industrial sectors. Its production contributes to carbon mitigation,
enhances soil quality, and promotes sustainable agricultural practices [65]. Fig. 3 illustrates the
importance of biochar on different physicochemical and biological characteristics.

3 Biochar Role in Greenhouse Gas Reduction

Biochar is engaged in recreation, reducing greenhouse gas emissions, and has a predominantly role in
nitrous oxide and carbon dioxide [66]. The foremost procedure by which biochar decreases GHG emissions
is to improve soil nitrogen cycling and minimize nitrogen (N) fertilizer losses [67]. Ahmad et al. revealed that
biochar adsorbs and retains various nitrogen compounds, reducing nitrogen leaching and volatilization and
preventing the conversion of nitrogen into potent greenhouse gases like N2O [68]. Furthermore, Duan et al.
and Sapkota et al. further emphasized that biochar directly contributes to mitigating soil greenhouse gas
(GHG) emissions [69,70]. Recent research has revealed that the assimilation of biochar soils decreased
GHG emissions limited with the outcome size variable based on biochar application rates [71]. The
carbon-sequestering properties assets of biochar also contributed to climatic change and mitigation
potential [62]. Cowie et al. explained that incorporating biochar produced from plant-based biomass into
soils removes atmospheric carbon dioxide stored in the soil, compensating for fossil fuel emissions [72].
The judicious use of biochar reduces GHG emissions and climate change combating strategy. Table 1
provides an overview of biochar’s long-term impact on mitigating GHG emissions in soil. Biochar is a
natural resource that can significantly reduce greenhouse gas emissions, particularly in the form of nitrous
oxide and carbon dioxide. It improves soil nitrogen cycling, minimizes nitrogen fertilizer losses, and
reduces nitrogen leaching and volatilization. Biochar’s carbon-sequestering properties contribute to

Figure 2: The influence of biochar on soil hydrological properties: (a) schematic; (b) direct effect; and (c)
indirect effect [58]
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climate change mitigation potential. Incorporating plant-based biomass into the soil removes or eliminates
atmospheric carbon dioxide, compensating for fossil fuel emissions. The judicious use of biochar is
successful in reducing GHG emissions.

3.1 Carbon Dioxide
Carbon sequestration and mitigation are crucial in addressing climate change [81]. According to [82],

Carbon sequestration is described as increasing the carbon content in a carbon reservoir excluding the
atmosphere. Moreover, carbon sequestration in soil is defined by [83] as the “process of transferring CO2

from the atmosphere into the soil of a land unit through plants, plant residues and other organic solids,
which are stored or retained in the unit as part of the soil organic matter (OM)” biochar can sequester
carbon [84]. The interaction between soil particles and organic carbon leads to minimal CO2 emissions
from the soil, lowering greenhouse gas emissions and mitigating climate variation [75,85]. When added
to soil, biochar acts as a carbon sink, making it a carbon-negative amendment [62]. CO2 reduction by
biochar involves capturing carbon and storing it in the soil, which can potentially mitigate 10% of
anthropogenic carbon emissions with just a 1% increase in net annual carbon sequestration by plants [86].
By 2030, it is estimated that biochar could sequester nearly 1 billion tons of carbon annually [87]. Puga
et al. showed that adding biochar, such as rice husk biochar, to specific soils in maize plantations
effectively reduces CO2 emissions [88].

Similarly, corn stover and rice husk biochar have been shown to reduce soil CO2 emissions over time,
with 1 ton of biochar capable of sequestering 2.0 to 2.6 tons of CO2 from the environment [89]. Carbon
sequestration and mitigation are crucial in addressing climate change. Carbon sequestration in soil
involves transferring CO2 from the atmosphere into soil through plants and organic solids. When added
to soil, biochar acts as a carbon sink, reducing CO2 emissions and mitigating climate variation. By 2030,
biochar could sequester nearly 1 billion tons of carbon annually. Adding biochar to maize plantations
reduces CO2 flux and decreases soil emissions over time. Applying 1 ton of biochar could sequester
2.0 to 2.6 tons of CO2 from the environment [75,85].

Figure 3: Effect of biochar on different physical, chemical, and biological properties
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3.2 Methane
Methane (CH4) emissions from crops justify almost all overall CH4 emissions and anthropogenic global

warming 3%–15% and 8%–16%, respectively [90]. Soil microbes are essential in CH4 emissions via
methanogenesis under anaerobic conditions [91]. Methane has a higher approximately (20 times greater)
global warming potential than CO2 [92]. Research has reported that incorporating biochar as a soil
amendment significantly decreases CH4 emissions [77]. For example, zero CH4 emissions were observed
when biochar was applied to soil at a rate of 2% [93]. Accumulating rice straw biochar [73] and bamboo
chip biochar [94] in the paddy soil also decreased CH4 releases. Moreover, biochar-amended as a soil-
based proved to reduce CH4 emissions [95] and improve water-holding-capacity (WHC) compared to
unprocessed soil [96]. Opposing findings that demonstrated a decline in methane emissions, Reference
[95] studied the effect of biochar application on GHG fluxes in Mediterranean wheat cropping and found
no outstanding alterations in methane changes among the different biochar treatments applied compared
to without biochar application. The quantity of CH4 released depends on several factors, such as (a) soil
type and condition [97], (b) microbial activity [98], (c) Water and fertilizer practices [99], and (d)
physicochemical properties of biochar [66].

Biochar-amended based soil performed as a source-sink used for atmospheric CH4 [100], influenced via soil
moisture [101], daytime root respiration affected [102], and further microbial activities in Soil [103] that affect
soil oxygen levels. Administrating rice husk biochar in paddy fields lessens methane emissions by 80%
compared to untreated soil [104]. Adding biochar improves compost structure by reducing anaerobic spots
[105]. Garg et al. noted that biochar enhances soil permeability [106], while Sriphirom et al. highlighted its
impact on the oxidation-reduction potential due to biochar electron-accepting capacities (EAC), which
decreases methanogenic activity and increases methanotrophic activity, ultimately reducing CH4 emissions [107].

Wu et al. described biochar surfaces as rich in oxygen-based functional groups, including carbonyl,
carboxyl, phenolic, quinone, and hydroxyl groups [108]. Kamal et al. emphasized that oxygen-containing
functional groups, particularly quinone and carbonyl, are crucial for biochar’s redox properties, as they
accept electrons, influencing its EAC [109]. Similarly, Zhang et al. found that biochar facilitates
anaerobic CH4 oxidation through its quinone structure (C=O) [110], while Nan et al. suggested that
biochar may mitigate CH4 emissions by enhancing anaerobic CH4 uptake via its EAC in the soil [111].
Additionally, biochar, with an aromatic structure characterized via coupled π-electron-systems, facilitated
CH4 ingesting in soil accomplished acting electron acceptor. Furthermore, biochar adsorbed NH4

+,
reducing the nitrogen (N) accessible to methanogens and deterring their activity, which sinks CH4

emissions [105]. This adsorption minimized the inexpensive hang-up of methane-monooxygenase by
NH4

+−N, enhancing the methanotrophs oxidation and plummeting CH4 emissions [112]. Biochar-
amended soil also improved water-holding capacity compared to unprocessed soil. Several factors,
including soil type and condition, microbial activity, water and fertilizer management, and the
physicochemical properties of biochar, influence CH4 emissions [97]. Overall, biochar-amended soils can
act as a source-sink for atmospheric CH4, with performance impacted by soil moisture, daytime root
respiration, and microbial processes within the soil. It also improves compost structure, increases soil
permeability, and affects oxidation-reduction potential.

3.3 Nitrous Oxides
Cultivated soil is a primary source of N2O emissions, accounting for 67% of total anthropogenic

emissions [113]. Research has revealed that approximately 10%–23% of N2O emissions occurred in high
moisture (80%) levels compared to low moisture (40%) levels in soil [114]. The usage of biochar to
reduce N2O emissions from farming soil has been expansively investigated [115]. For instance, it was
observed that adding 10% biochar to soil reduced N2O emissions by 89% compared to untreated soil
[116]. Applying straw-resulting biochar with highly carbon-to-nitrogen (C:N) ratios immobilized nitrogen
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fertilizers, decreasing nitrogen accessibility and reducing N2O emissions from the soil [73]. Nitrogen (N)
fertilizer is a prime and common source of N2O emissions from farming soil. Research has shown that
biochar Soil amendments have reduced these emissions [72]. In Colombia and North America,
greenhouse and field research observed an 80% reduction in N2O emissions when biochar treatments
were applied to the soil [117]. Similarly, results were obtained with a 77%–82% decrease in N2O
emissions in pot experiments reported for vegetable production, higher nitrogen (N) fertilizer rates were
applied with biochar, and higher moisture content was observed [118].

Biochar improved the activity of N2O reductase, an enzyme that reduces N2O emissions by altering
nitrate to N2, mainly as soil pH increased [119]. Furthermore, biochar performed as an “electron shuttle”
expediting electron transfer over denitrifying microbes activities, which reduced nitrous oxide towards
nitrogen [120]. However, biochar application management to Calci-sol soils caused elevation in N2O
emissions (54%) reported by [25]. Overall, biochar application at lower rates (2%–10%) effectively
reduces N2O emissions, and higher application rates with reductions were observed at 63% and 74%,
respectively [121]. Cultivated soil is a significant source of N2O emissions, accounting for 67% of total
anthropogenic emissions. Biochar has been investigated as a potential solution to reduce N2O emissions
from farming soil. Studies show that adding 10% biochar to soil reduces N2O emissions by 89%
compared to untreated soil. Applying straw-resulting biochar with high carbon-to-nitrogen ratios
immobilizes nitrogen fertilizers, decreasing nitrogen accessibility and reducing N2O emissions [117]
Biochar also improves the activity of N2O reductase, reducing N2O emissions by altering nitrate to N2

.

However, biochar application to Calcisol soils can increase N2O emissions [72].

4 Soil Fertility Enhancement through Biochar

Biochar is frequently employed in soil amendment because of its distinctive physico-chemical
characteristics [122]. Amending soil with biochar significantly impacts its physico-chemical [123] and
biological (microbial) properties [43]. Fig. 4 shows the interlinkage between biochar and soil health
system. Biochar is a fertilizer that improves soil fertility and reduces pollution [124]. The primary assays
influencing the soils physico-chemical and biological environment are critical properties of biochar, such
as chemical composition, pH, porosity, electrical conductivity, Soil surface area, available nutrient
content, and nutrient exchange value [43]. Biochar is a popular soil amendment due to its unique
physico-chemical characteristics [123]. It significantly impacts soil fertility and reduces pollution [125].
Critical properties of biochar include chemical composition, pH, porosity, electrical conductivity, SSA,
nutrient content, and nutrient exchange value, influencing the soils physico-chemical and biological
environment [126].

5 Modifications in Soil Physical Attributes Induced by Biochar Inclusion

Positive qualities of biochar administration on soil physical morphologies have been reviewed. For
instance, adding biochar to soil significantly impacts porosity and bulk density [127] and improves the
surface area and soil aeration [128]. Additionally, biochar utilization directly modifies the soil and water
by elevating soil aggregation, stability, workability, and water infiltration and increases WHC [126].
Biochar influences the physico-chemical properties of contaminated soil, with effects depending on the
soil type [123], feedstock [129], application rate [125], and the ageing of biochar [130]. For example,
adding 4% biochar to soil can minimize soil bulk hardness by up to 35% [131]. In experimenting with
Alfisol and Andisol soils having (silt-loam) texture, the application of biochar at a rate of 7.18 t C ha−1

decreased the bulk density of Alfisol soil by 7% used for biochar produced at 350°C and through 11%
for biochar produced at 550°C. Nevertheless, no decline in bulk density remained for Andosol soil [132].
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Luo et al. reported no changes in soil density following adding biochar [133]. However, Murtaza et al.
noted that changes in bulk density can result from factors such as the porosity of the biochar [134]. Similarly,
Ferraro et al. highlighted that variations in biochar structure and pyrolysis conditions also influence bulk
density [135,136]. Biochar has the potential to increase soil porosity by reducing bulk density [134],
endorsing soil precipitation [137], inter-relating with soil minerals [134], and alleviating soil compaction
[138]. Reduction in bulk density and elevation of soil porosity facilitates enhanced heat, water, and gas
movement in soils, ultimately improving soil quality [139]. Table 2 shows an overview of the
modifications in soil physicochemical qualities resulting from biochar amendment. Biochar administration
has positively affected soil physical morphologies, such as porosity, bulk density, surface area, and soil
aeration. It also directly modifies soil and water by elevating soil aggregation, stability, workability, and
infiltration and increasing water-holding capacity. However, no changes in density were observed after
biochar incorporation. Biochar can also increase soil porosity by reducing bulk density, endorsing soil
precipitation, inter-relating with soil minerals, and alleviating soil compaction.

Figure 4: Inter-linkage between biochar application and soil health system
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Table 2: Summary of studies on biochar impact on crop yield and soil properties

Crops Soil type Experiment
type

Biochar type Positive consequences Location Reference

Maize Sandy
loam

Pot Cow manure The soil’s water-holding capacity
was increased by 1.5% by mass
for each 1% biochar added. High
germination % in pots having 1%
of biochar.

Pakistan [140]

Cotton Saline-
alkali

Pot Rice straw Enhanced soil physio-chemical
properties (e.g., available
potassium, SOM, and
exchangeable potassium).
Promoted plant development and
remarkably increased its
biomass.

China [125]

Wheat
and
maize

Silt loam Field Straw-
derived
biochar

Significant increase in SOC, total
nitrogen, microbial biomass
carbon, and nitrogen in the soil
surface layer.
Significant increase in plant
height and aboveground
biomass.

China [141]

Tobacco Silty
loam

Field Straw Soil pH, SOC, available
nutrients, soil urease, invertase,
and acid phosphatase activities
increased. The agronomic traits
of tobacco were improved by
biochar treatment.

China [142]

Wheat Red soil
(Ultisols)

Pot Wood Efficiently alters soil pH and EC
and reduces the bioavailability of
toxic metals (Zn, Pb, Cd & Cu)
in soil. It improved wheat dry
biomasses production.

China [143]

Corn Oxisol Field Sewage
sludge

Promoted a residual effect on the
supply of soil nutrients.
Available P content remained
above the minimum level
required by the corn crop.

Brazil [144]

Wheat Sandy
loam

Pot Sewage
sludge

Significant increase in soil P
availability and soil pH.

Denmark [145]

Okra Alluvial Field Rice Husk
Biochar
(RHB),
Bamboo
Biochar

Physical properties of soil (e.g.,
bulk density, soil porosity,
particle density) and fruit size &
yield of okra were remarkably
improved. ALB significantly

Nepal [146]

(Continued)

76 Phyton, 2025, vol.94, no.1



6 Modifications in Soil Chemical Attributes Induced by Biochar

Adding biochar to soil has the moral potency to modify pH levels. Minor pH in the soil leads to toxicity,
primarily due to the augmented availability of heavy metals [145]. Some biochar is characteristically alkaline
(pH > 7) when applied to soil raised soil pH [149]. Biochar pH influences the feedstock and ranges from
acidic to alkaline in nature [150]. In acidic soils, biochar alkaline properties significantly mitigated soil
acidity, thus enhancing soil properties and conditions [139,151]. For example, biochar synthesized from
several farming wastes has been visualized to improve soil pH [152]. The addition of corn stover-based
biochar with rice husk at a rate of 3% was observed to raise the soil pH significantly [89] in acidic soils
based on Alfisol, management of plant-green-waste biochar with poultry litter at rates of 10 to 100 t ha−1

improved soil pH [132]. Studies have proven a two-fold improvement in soil pH in various acidic soil
types compared to the actual pH through biochar application [153].

The CEC of biochar indicated that several cations adsorbed on its surface [154]. Some factors, such as
pyrolysis conditions, soil temperature, feedstock material [135,155], and efficient functional groups [156],
determine the CEC of biochar. For instance, straw-derived biochar prepared at 450°C exhibited a CEC of
26.36 cmol kg−1, which decreased to 10.28 cmol kg−1 at 700°C [25]. Studies have demonstrated that
CEC remains low until temperatures exceed 420°C due to changes in the feedstock’s nutrients [154].

Table 2 (continued)

Crops Soil type Experiment
type

Biochar type Positive consequences Location Reference

(BB),
Ashoka Leaf
Biochar
(ALB),
Coconut
Husk
Biochar
(CHB),
Sawdust
Biochar
(SB)

reduced bulk density (10.9%),
increased soil porosity (10.6%),
and gave the highest fruit yield
(8.16 t ha−1). SB showed the
highest reduction in soil particle
density (4.4%), and BB gave the
most prominent fruit size
(15.7 cm) among all the
treatments.

Brassica
rapa

Sandy
loam

Pot Rice husk Increased soil pH, organic
carbon content, and water
holding capacity and reduced
bioavailability of trace elements.
Increased germination of
Brassica rapa.

Spain [147]

Tomato Sandy
loam

Pot Rice husk An appreciable increase in soil
physicochemical properties (pH,
Ca, H+, Na, S, P, C, B, Zn &
CEC). Significant increase in
tomato agronomic traits (height,
weight, leaf area, stem girth,
flowers, fruit & yield).

Nigeria [148]
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High CEC facilitates the withdrawal of heavy metals from contaminated soil [141]. Soil pH elevation after
biochar addition has been observed to enhance soil CEC [157]. However, adding biochar to soils with high
OM content may not increase CEC significantly since OM already contributes to a greater CEC [158].
Additionally, enough Organic Carbon Functional Groups (OCFGs) on the biochar surface contribute to
surface charge, enhancing soils CEC following biochar administration [159]. Fig. 5 shows that the
biochar improved the soil’s properties.

The stability and quantity of biochar applied in soil amendment are essential in increasing soil OM
[125]. Biochar, rich in minerals like N, K, P, Ca, S, and Mg, can enrich soil nutrient levels and enhance
productivity [161]. It improves soil cation levels (K, Cu, Mg, Mn, Ca, Zn) and is vital for plant
development [162]. Studies revealed that biochar catalyzes surface reactions, aiding in polymerization for
organic molecule formation and creating macropores for minor organic molecule adsorption in soil [163].
The increase in soil OM content impacts crop yield positively due to enhanced soil porosity [146],
improved nutrient activity [142], and reduced soil bulk density [134].

Nitrogen availability is crucial for plant growth but is susceptible to significant volatilization,
denitrification, and leaching [67]. Biochar enriches soil nitrogen retention through OCFGs such as
aliphatic ether, aromatic ring carbonyl, and hydroxyl [164]. Maize biochar addition accelerates soil
nitrogen content by promoting net N mineralization, enhancing nitrification, and reducing NH3

volatilization [165]. Nelissen et al. compared different types of biochar synthesized at various
temperatures, and it was found that lower-temperature biochar (350°C) increased gross mineralization and
labile nitrogen fraction compared to high-temperature biochar at 550°C [166]. Additionally, biochar
supplementation accelerates the nitrogen cycle, increasing gross mineralization, nitrification, and NH4

+

consumption rates. This is attributed to enhanced soil porosity/aeration and biochar stimulation of the
heterotrophic or aerobic microbial community [165].

Biochar application influences plants’ soil phosphorus (P) availability through factors like charge
exchange capacity that bind P [144]. Phosphate composites form in the soil at varying pH levels, with
biochar preventing phosphate precipitation and enhancing P availability to plants [167]. Field studies on
maize demonstrated that biochar incorporation improved available P, increasing maize yields [168].
Furthermore, biochar application has been explored to enhance P availability for plants, even in soils with
low P availability. Fig. 6 illustrates various adsorptive capacities of N and P ingredients by biochar.
Biochar enriches soil nitrogen retention through OCFGs, such as aliphatic ether, aromatic ring carbonyl,

Figure 5: Features of biochar influencing the soil properties [160]
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and hydroxyl. Maize biochar addition accelerates soil nitrogen content by promoting net N mineralization,
enhancing nitrification, and reducing NH3 volatilization. Biochar application also influences plant soil P
availability through factors like charge exchange capacity. Field studies on maize have shown that
biochar incorporation improves available P, increasing maize yields.

7 Modifications in Soil Microbial Community Attributed to Biochar Integration

Biochar integration into soil significantly modifies microbial communities, which is crucial for
enhancing soil health and promoting sustainable agro-ecological practices [170]. Microbial communities
are highly responsive to environmental changes, making the impact of biochar addition on species
reactions a subject of extensive study in various environments [171]. Biochar administration to soil can
directly or indirectly impact microbe’s community composition and function by providing them habitat,
nutrients, and large surface areas [172]. Additionally, biochar can alter soil pH, often making it more
alkaline, which influences the composition of microbial communities by favouring specific taxa like
Nitrosomonas and Nitrobacter [173], which are essential for nitrification processes [174]. Microbes can
attach to biochar micropores through electrostatic forces, precipitate formation, or hydrophobic attraction,
becoming less prone to leaching and rising prevalence [175]. However, some investigations suggested
that certain biochar micropores may be too small to support microbial colonization [176].

Nevertheless, these micropores can still adsorb organic materials, nitrate, and NH4
+, fostering microbial

growth and development [169]. Biochar porosity promotes soil aeration and water retention [177], which is
crucial for the endurance of numerous microbial species [172] involving rhizospheric bacteria and other
edaphic organisms [42,43]. Biochar demonstrates a range of effects, both positive and negative. It can
potentially have toxic properties on soil bacteria and provide significant benefits such as augmenting
attractions with plant roots, helping biological mature processes, supporting the degradation of pollutants,
and stabilizing carbon complete micro aggregation [178]. Furthermore, biochar’s ability to improve soil
porosity and aeration produces a more favorable environment for microbial growth, particularly in arid
regions [179]. Some studies also suggest that biochar suppresses soil-borne pathogens, such as Fusarium
and Rhizoctonia, through enhanced microbial competition or the production of antimicrobial compounds
[180]. Hence, the integration of biochar not only modifies soil microbial dynamics but improves their
effectiveness in promoting soil health and fertility, underscoring its potential in sustainable agricultural
systems [181].

Figure 6: Various adsorptive capacities of N and P ingredients by biochar and data adopted from [169]
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Recent research indicates that biochar improves soil structure, water retention, and nutrient availability
[182], increasing microbial diversity and activity—beneficial microorganisms such as Bacillus [42]. Biochar
application often promotes Pseudomonas and Arbuscular Mycorrhizal Fungi (AMF), which are vital in
nutrient cycling and soil fertility [183].

Moreover, biochar application has shown that assistance for biological nitrogen fixation in leguminous
crops is influenced by mechanisms such as N immobilization and nodulation [184], increasing P source, and
pH modification [185]. Fig. 7 depicts the effect of biochar on soil organic matter decomposition and nutrient
absorption.

Kamal et al. observed that the use of biochar, either alone or in combination with phosphorus (P), led to
an increase in microbial populations, as well as the biomass of carbon (C), nitrogen (N), and phosphorus (P),
while also enhancing enzymatic activities [109]. Alterations in the availability of resources, water content,
and physio-chemical factors lead to alterations in microbial-based community structure and composition
[184]. Diverse issues have been elevated regarding the potential deleterious influences of biochar to go to
extreme usages, such as delaying microbial-based growth by interesting toxins like pesticides and heavy
metals [186]. Moreover, many nutrient conversions are caused by soil microbial populations, affecting
crop development [187]. Depending on soil conditions and the specific properties of biochar used, it
negatively affects soil microbial populations and diversity. This is attributed to polyphenols and phenolic
substances in biochar, which are by-products of organic pyrolysis and toxic to soil microbes. Some

Figure 7: Effect of biochar on soil organic matter decomposition and nutrient absorption
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studies have observed reduced mycorrhizal and total microbial biomass following biochar application
precisely. Combining peanut shell biochar significantly reduced arbuscular mycorrhizal fungi root
colonization and length of mycelial spore by 74% and 95%, respectively [188].

Similarly, in maize field research, biochar applications harm soil microbial activity and community
structure and function in alkaline soil [189]. These results contradicted. However, fresh biochar has
decreased the mobility and availability of organic pollutants [186]. Moreover, research by [190],
suggested that alterations in soil structure and texture resulting from biochar application affected
microbial function and community structure in various ways.

Further research is required to evaluate the specific impacts of biochar on different soil and biochar
types. Fig. 8 illustrates the effect of biochar application on improving beneficial microbes in
agroecosystems, which impact plant growth and vitality. Biochar addition to soil can impact microbial
communities by providing a conducive habitat, nutrients, and large surface areas that support microbial
activities. For instance, soil pH, moisture level, and temperature can influence microbial diversity,
population, and activity.

Figure 8: Effect of biochar application to improve functional microbes and agro-ecosystems
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Moreover, soil microbial populations cause nutrient decomposition, which affects crop growth and
development. Polyphenols and phenolic substances in biochar can adversely affect soil microbial
populations due to their toxicity. Further research is needed to evaluate the specific impacts of biochar on
different soil and biochar types.

8 Biochar for Plant Growth and Crop Yield

The agricultural field significantly contributes to atmospheric GHG emissions [191]. Biochar in soil can
indirectly increase nutrient use efficiency (NUE) and water retention, leading to energy saving, reduced
irrigation frequency, and decreased fertilizer use. This indirectly contributed to lowering GHG emissions
[192]. Biochar utilization as a soil amendment has been displayed in various studies that have improved
soil properties and increased crop yield [193]. Biochar is a nutrient reservoir, minimizing leaching and
enhancing plant nutrient availability. Additionally, it positively influences soil microbial communities by
promoting the growth of beneficial bacteria that aid in nutrient digestion, ultimately contributing to
improved plant health [194,195]. Furthermore, biochar promotes symbiotic connections with mycorrhizal
fungi, which boost the absorption of nutrients by plant roots, thus improving the overall biodiversity of
soil [153]. In less fertile soils, biochar application led to a significant boost in crop productivity [196].
For instance, the maize yield maximum in Kenyan soil doubled after applying eucalyptus biochar [197].
Similarly, cow manure-derived biochar increased maize production by approximately 150% in sandy soil
conditions [198]. Other studies demonstrated notable increases in wheat grain yield and peanut
production after biochar application [194,195].

Hongjun et al. observed through pot experiments with sorghum grown in sandy desert soil that adding
biochar significantly increased dry weight [199]. Figueredo et al. conducted field experiments with maize and
common beans using biochar derived from eucalyptus charcoal, which confirmed notable yield increases
[200]. These findings underscore the biochar capability as a soil enhancer for improving agricultural
productivity. In numerous scientific studies, biochar has been shown to enhance crop yield by
approximately 20% when applied at rates exceeding 10 tons per hectare [201]. Even at lower application
rates, such as 5 tons per hectare, biochar can improve crop yields by up to 50% in specific soil types
[202]. This improvement in crop yield is attributed to the positive changes in soil’s physical, chemical,
and biological properties resulting from biochar application [134]. The efficiency of biochar in boosting
plant productivity varies depending on factors like climate [203], soil type, crop species, and
experimental conditions [204]. Generally, biochar tends to be more effective in pot experiments compared
to field trials [205], in acidic soils compared to neutral ones [206], and in sandy soils than loam and silt
soils [207].

9 Contaminant Immobilization by Biochar: Applications and Factors Influencing Efficiency

Biochar, derived from organic matter via pyrolysis, holds promise for immobilizing and remediating
various contaminants, such as heavy metals [208] and organic compounds [209]. Its surface area and
porous structure enable effective adsorption and binding of pollutants, reducing their bioavailability and
mobility [210]. The latest studies highlight the efficacy of base-treated biochar, especially from broiler
litter, in immobilizing heavy metals due to modified surface properties [211]. Moreover, biochar-based
materials can simultaneously immobilize multiple contaminants, making them suitable for remediating
complex, multi-metal contamination [212]. Beyond heavy metals, biochar can potentially eliminate
organic pollutants like pesticides through adsorption and microbial-based processes [213]. The
effectiveness of biochar for contaminant immobilization is highly dependence on production conditions
[214], contaminant types [215], and soil/water characteristics [216]. Biochar presents a promising
approach for remediating contaminated assays such as soil and water environments, offering a versatile
solution for addressing diverse pollutants [217]. Biochar exhibited, in effect, contaminant immobilization
over several mechanisms. Because of its higher surface area besides its porous structure, it supports
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physical adsorption by binding contaminants resembling heavy metals via processes such as hydrogen
bonding and electrostatic interactions [218].

By increasing soil pH levels and giving sites for precipitation reactions, biochar promotes the chemical
precipitation of heavy metal contaminants [219]. The different functional groups on the biochar surface
easily facilitate cation exchange, supporting the immobilization of cationic heavy metals [210].
Furthermore, biochar organic combinations of compound arrangements establish complexes by
contaminants, which causes increasing immobility and bioavailability [220]. Moreover, biochar facilitates
reducing pollutants and converting them into less toxic and mobile forms in a particular situation. These
mechanisms’ steps communally highlighted biochar efficiency in soil and remediation in water [221].
Biochar, derived from organic matter through pyrolysis, is promising for immobilizing and remediating
contaminants like heavy metals and organic compounds [208,222]. Its surface area and porous structure
enable effective adsorption and binding, reducing bioavailability and mobility [223]. Biochar-based
materials can also immobilize multiple contaminants, making them suitable for complex, multi-metal
contamination [224]. It also has the potential to eliminate organic contaminants like pesticides through
adsorption and microbial-based processes [213]. Biochar’s effectiveness depends on production
conditions, contaminant types, and soil/water characteristics. Fig. 9 shows schematic representation of the
nature of organic pollutants and their degradation using nZVI/BC-AOPs [225].

Figure 9: Schematic representation of the nature of organic pollutants and their degradation using nZVI/BC-
AOPs [225]
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Biochar offers a promising solution for immobilizing contaminants in polluted soil and water, including
HMs and organic pollutants. The process involves multiple mechanisms: It has a vast surface area of abundant
functional groups, and biochar effectively adsorbs and binds heavy metal ions and organic contaminants
[218]. Due to the nature of organic acids and other biochar surface functional groups achieved unchanging
composites with metal ions and decreased their bioavailability [220]. Biochar application elevates soil pH,
reducing the solubility and mobility of certain heavy metals [219]. Microorganisms are immobilized on
biochar surfaces, assisting in transforming and degrading organic contaminants [42,43].

Furthermore, Some studies have shown that biochar is effective in immobilizing a wide-ranging
spectrum of contaminants, encompassing heavy metals like (Pb, Cd, and Cu) alongside organic pollutants
such as aromatic hydrocarbons and pesticides [213,218]. Biochar is a promising solution for
immobilizing contaminants in polluted soil and water due to its large surface area and abundant
functional groups [175]. It adsorbs and binds heavy metal ions and organic pollutants, reducing their
bioavailability [226,227]. Biochar also elevates soil pH, decreasing heavy metal solubility and mobility
[228]. It helps immobilize microorganisms, transforming and degrading organic contaminants. Overall,
biochar presents a sustainable and cost-effective approach for remediating contaminated environments [229].

Biochar application efficacy in immobilizing soil contaminants, like heavy metals, is subjected to
various factors; properties of biochar, such as its source, types, surface area, pore structure, and also
chemical composition, affected by the ability to adsorption of contaminants [230]. Some soil properties,
including pH, organic matter content, redox potential, and microbial activity, were essential in
determining contaminants, bioavailability, and the interaction between biochar and contaminants [231].
Some climatic conditions, such as moisture levels, temperature variations, and other substances in the
soil, impact the stability and proficiency of biochar-contaminant interactions [232]. The application rate
and method, including the quantity of biochar application rate and how it is incorporated into the soil,
also impact the extent of contaminant immobilization achieved [42,43]. Furthermore, the presence and
activity of soil microorganisms have impacted contaminant bioavailability and the efficiency of biochar-
based remediation efforts [233]. Considering the intricate interplay of these factors underscores the
importance of site-specific conditions and biochar characteristics when implementing biochar-based
remediation strategies [234].

10 Biochar Application Techniques and Considerations

Biochar, an encouraging soil amendment, has several benefits when applied correctly. The first step is
biochar characterization and selection, where biochar is selected based on soil and crop requirements,
considering factors like stability and surface area, but due to its higher surface area and porosity
contributes to improved soil properties [235]. Application methods are also involved in integrating
biochar application into the soil using tillage implements for mixing, moistening the biochar before the
application, and minimizing dust with mixing [236]. For perennial crops, surface application followed by
incorporations is mainly preferred to avoid root damage, and appropriate application rates typically range
from 5 to 50 tons per hectare [237]. Timing and their placements are also important; biochar application
should be amended in the soil before planting crops and at the start of the cultivation season to permit
incorporation and placing of biochar near the plant roots to take full advantage of yield production [162].
In general, selecting good quality biochar, standard application methods, and application timing are
essential agronomic techniques for the most favorable soil and crop improvement [56,124]. Following
these considerations are to make certain successful biochar amendments and take full advantage.

11 Challenges and Limitations

Biochar promises a soil amendment in agriculture, posing property benefits like soil remediation and
upgraded crop growth by elevating soil properties like pH and water retention. However, its value varies
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depending on factors like manufacturing methods and soil type, with studies showing negative impacts on
crop growth and greenhouse gas emissions. Challenges include predictability in high quality, costs, and
monitoring uncertainties adoption. Successful incorporation and farming practices depend on agronomic
and economic benefits viability. Further research and development are essential to address these issues
and get the best out of biochar potential in the cultivated field.

Moreover, the long-term effects of biochar on soil health and crop productivity require thorough
investigation. Field trials across diverse agricultural settings are necessary to understand its interaction
with various crops and soil types. Farmers may also face barriers to adoption, such as the initial
investment costs and the need for education on proper application techniques. Collaborative efforts
between researchers, agricultural extension services, and farmers are essential to develop guidelines that
maximize biochar’s benefits while minimizing potential drawbacks. By addressing these challenges, we
can unlock the full potential of biochar as a sustainable agricultural practice, ultimately leading to
enhanced food security and environmental resilience.

12 Future Directions and Opportunities

Biochar has the potential as a soil amendment progressively more acknowledged by excluding GHG
decline, heavy metal restriction, and improvement of soil fertility status. However, its prevalence and
adoption require further research. Critical areas for future research included understanding biochar
interaction with soil constituents and microbiomes. In particular, the effects on microbial and enzyme
activity with biochar application should be checked. Field studies in natural environments are primarily
helpful in fully comprehending biochar behavior and efficiency in soil remediation. Moreover, research
should aim to produce suitable biochar types, preparation methods, timing, application rates, and
reclamation processes for detailed contaminants. Inclusive environmental risk assessments and
innovations in less-cost production methods are essential to promote biochar application through
numerous ecological perspectives. Recent research has been subjected to various techniques to address
the current issues of emerging contaminants in soil. Despite their efficiency, these methods come with
several challenges. These consist of biochar’s structural and physical appearance and the complexity of
an amendment process associated with higher levels of pollutants.

Current methods for remediating ECs in soil face challenges, such as biochar structural limitations,
complex modification techniques, and handling high pollutant concentrations. To overcome these
challenges with potential strategies for improving biochar-mediated remediation and soil improvement.
Biochar’s ability to remediate emerging contaminants and refine production methods and properties is
essential. Some factors, such as feedstock, activation methods, and pyrolysis temperature, play decisive
roles in determining biochar value. Improving characteristics like porosity, surface area, and surface
functional groups significantly increased its adsorption capacity. Increasing biochar properties and
producing techniques by studying factors like pyrolysis temperature and feedstock type. Improving
attributes such as surface functional groups and porosity boosted adsorption capacity and remediation.
Biochar-based nanomaterials particularly have outstanding potential for removing contaminants.

Furthermore, innovative strategies are required to tackle high pollutant concentrations. Assimilating
biochar with advanced oxidation processes. Electrochemical technologies improved pollutant degradation,
converted persistent contaminants, and transferred electrons. However, these methods are not usually
acknowledged in soil applications. This method offered promising solutions and innovative possibilities
for improving the efficiency of biochar. To overcome the constraints of biochar-based remediation and
ongoing research development are essential. This involved refining biochar properties, developing in
effect on modification techniques and confronting issues linked to higher-concentration pollutants. These
efforts improved the efficiency of biochar-based remediation approaches, adopting sustainable solutions
used for contaminated soil remediation.
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13 Conclusion

Biochar application and environmental management have prompted extensive research into farming
production and socio-economic implications. Some factors influencing biochar properties, such as
feedstock composition and pyrolysis conditions, are explored alongside their ability to improve soil
characteristics, such as porosity and nutrient availability. Biochar can mitigate GHG emissions and
immobilize heavy metals in the soil through various processes such as complex formation and ion
exchange. Biochar’s role in boosting agricultural farming and productivity by providing essential
nutrients is notable. Regulatory standards set by our organizations, like the International Biochar
Initiative, reflect the growing recognition of biochar potential. Moving forward, research efforts should
focus on optimizing biochar modification for improvement of contaminant interaction and soil property
improvement post-application.

The prospects of biochar in environmental management and agricultural production are promising, with
a focus on optimizing biochar properties through research on feedstock composition and pyrolysis
conditions. Efforts will concentrate on modifying biochar to improve contaminant interaction and soil
property enhancement, such as nutrient availability and porosity, which are crucial for boosting
agricultural productivity. Biochar’s role in mitigating greenhouse gas emissions and immobilizing heavy
metals will continue to be a significant area of study. Regulatory standards set by organizations like the
International Biochar Initiative will ensure safe and effective use. At the same time, socio-economic
implications, including cost-benefit analyses and farmer acceptance, will be explored to scale up biochar
adoption. Integration with climate-smart agricultural practices and advancements in production
technologies will further enhance biochar’s benefits, making it a vital tool for sustainable agriculture and
environmental remediation.
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