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ABSTRACT

DNA methylation is an important epigenetic regulatory mechanism, it regulates gene expression by recruiting
proteins involved in gene repression or by inhibiting the binding of transcription factor(s) to DNA. In this study,
a novel methyltransferase 2a gene (Zmet2a) was cloned in maize and identified by polymerase chain reaction-base
(PCR-base) using a bioinformatics strategy. The Zmet2a cDNA sequence is 2739 bp long and translates to
912 amino acid peptides. The Zmet2a protein revealed that it contains BAH and CHROMO structural domains,
is a non-transmembrane protein that is hydrophilically unstable, and has no signal peptide structure. Meanwhile,
we verified the biological roles of Zmet2a using transgenic Arabidopsis overexpressing Zmet2a and Zmet2a-
knockout maize. Transgenic Zmet2a Arabidopsis thaliana showed highly significant advancement in flowering
time, and Zmet2a-knockout maize showed advancement in flowering time, with significant changes in several
traits. Altogether, these report the role of Zmet2a in the regulation of flowering time, which will lay a foundation
for revealing the biological function and epigenetic regulation mechanism of Zmet2a in the growth, development
and flowering of maize.
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1 Introduction

Epigenetics refers to a molecular modification of DNA that does not depend on the DNA sequence and
remains stable during mitosis [1]. All cell in the same organism contains the same genetic information, but
not every cell expresses genes at the same time. So, in multicellular organisms, there are different patterns of
gene expression in various cells and tissues [2–4]. One major epigenetic mechanism, DNA methylation,
involves direct DNA chemical modification. DNA methylation is mediated by DNA methyltransferases
(DNMTs), where a methyl group of S-Adenosine methionine (SAM) binds to the fifth carbon of a
cytosine residue to form 5mC [5,6].

Many studies have demonstrated that DNAmethylation regulates gene expression through DNA-protein
interactions that alter the chromatin structure [7]. Moreover, DNAmethylation regulates various biochemical
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processes during the plant life cycle through intercellular interactions. Thus, DNA methylation is important
for regulating plant growth and gene expression. An imbalanced gene methylation pattern affects the
expression of flowering morphology, resulting in abnormal growth and development [8]. Plant species
have different levels of DNA methylation; for example, tobacco has 28% more DNA methylation than
Arabidopsis [9,10]. Plant DNA methylation levels vary significantly between developmental cycles and
tissues. For example, mature leaves of maize have higher DNA methylation levels than endosperm
development [11]. 5-azaC, a DNA methylation inhibitor, reduced the methylation levels in plants [12].
5-azaC also reduced the DNA methylation levels in Chrysanthemum stem tips, inhibiting the germination
of Chrysanthemum bush buds and resulting in improper root system development [13]. Therefore, DNA
methylation strictly regulates plant growth and development and is crucial in epistatic traits.

Since the 1980s, several researchers have demonstrated that DNA methylation is involved in gene
expression and differentiation [14,15]. Furthermore, DNA methylation plays a critical role in the
regulation of gene activity. In plants, cytosine methylation involves three main enzymes, including
methyltransferase 1 (MET1), chromomethylase 3 (CMT3), and domains rearranged methylase (DRM).
MET1 methylates CG sequences and a homolog of the mammalian DNMT1 [16]. CMT3 methylates
CNG and a small amount of CNN sequences. However, CMT3 may rely on direct binding to
H3K9me2 to target chromatin and methylation. In addition, DRM, a domain rearrangement methylase
homologous to DNMT3 in plants, maintains asymmetric methylation of siRNA and plays an auxiliary
role in the methylation process of CNG [6,17]. The three of them (MET1, CMT3, and DRM2) are the
major DNA methylation enzymes in plants. For instance, MET1-dependent CG methylation has been
implicated in plant regeneration [18]. In Arabidopsis thaliana, MET1 is the homolog of mammalian
DNMT1 [16]. Besides, met1 is the only known major CG methylase null mutant that can be found in the
whole genome scale of higher eukaryotes [19]. Previous studies have identified two closely related
putative MET1 genes in rice, OsMET1-1 and OsMET1-2 [20]. Hu et al. also screened a null mutant of
the OsMet1-2 gene, which showed severe plant dysplasia and rapid necrosis and death of all germinated
seedlings. Besides, Cao et al. identified maize (Zmet3) and Arabidopsis (DRM) genes encoding proteins
closely related to DNMT3 methyltransferases but containing a novel arrangement of the eight diagnostic
methyltransferase amino acid motifs.

Photoperiodic reactions exist widely in plants and are important for their survival. Photoperiodic plants
regulate nutrition and reproduction through diurnal changes [21]. The timing of flowering greatly affects crop
yield, thus many crop domestication and improvement systems have involved variations in photoperiod
response extensively [22]. Moreover, the vegetative growth regulation, floral development, and fruiting of
the plant are strongly influenced by the fluctuation of day length [23]. Maize is a critical food, feed,
industrial raw material and energy crop in the global world today, which plays a huge role in ensuring
world food security, economic development and alleviating energy crisis. Moreover, maize is a short-day
C4 crop that is sensitive to low-temperature stress [24]. In maize, the regulation of DNA methylation in
photoperiod-induced flowering is unknown, yet this approach can provide genetic resources for
improving flowering-based DNA-methylation mechanisms. This study revealed the preliminary function
of Zmet2a in regulating gene expression in Arabidopsis and maize and the interactions between DNA
methylation enzymes and gene expression. Intended to reveal the role of the Zmet2a gene in regulating
photoperiod and crop phenotype and characterize the Met2a gene in maize plants. Altogether, this paper
provides a theoretical basis for revealing the function of the Zmet2a gene and its important role in maize
growth and development.

2 Materials and Methods

2.1 Plant Materials and Gene Isolation
Maize Seeds were collected from B73 inbred lines, and cultivated in an artificial climate box at

25°C~18°C for 16/8 h (day/night) condition (Light intensity 12000 LUX, 60% relative humidity). Leaves
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were collected at 3 leaves (about 30 days after seeding) to extract RNA. Maize, RNA was extracted using
TRIZOL RNA extraction reagent following the manufacturer’s procedure, and reverse transcribed into
cDNA. The cDNA was used as a template to amplify the CDS sequence. Specific primers (Table S1)
were designed from the Zmet2a sequence (Gene ID: Zm00001d026291), and RNA templates were
amplified using standard PCR conditions, and the PCR program involved denaturation at 95°C (5 min),
35 cycles of 95°C (30 s), 50°C (30 s), and 72°C (90 s), and a final extension at 72°C (30 s), The PCR
products were then sequenced accordingly.

The PCR products of Zmet2a gene and its promoter were respectively linked with pMDTM18-T vector
by TA ligase to construct cloning plasmids. After screening, the positive clones were sent to Shanghai
Sangong Biological Co., Ltd. (Shanghai, China) for sequencing. The reverse transcription kit and cloning
related reagents were purchased from Taraka Reagent Company (Dalian, China).

2.2 Bioinformatics Analysis of the Zmet2a Gene
We used the following websites to make bioinformatics predictions for the Zmet2a gene:

(1) Physico-chemical analysis: https://web.expasy.org/protparam/ (accessed on 9 May 2022); (2) Protein
hydrophobicity analysis: https://web.expasy.org/protscale/ (accessed on 13 May 2022); (3) Protein conserved
functional domain prediction: https://smart.embl.de (accessed on 22 May 2022); (4) Protein secondary
structure: https://npsa-prabi.ibcp.fr/cgi-bin/ (accessed on 22 May 2022); (5) Protein tertiary structure:
https://swissmodel.expasy.org/ (accessed on 9 June 2022); (6) Transmembrane structure prediction: http://
www.cbs.dtu.dk/services/TMHMM/ (accessed on 9 July 2022); (7) Signal peptide prediction: http://www.
cbs.dtu.dk/services/SignalP/ (accessed on 16 July 2022).

2.3 Vector Construction and Arabidopsis Genetic Transformation
Transgenic Arabidopsis plants that overexpress Zmet2a gene were selected as representative of the study

on the function of Zmet2a in plants. Amplification of Zmet2a gene was performed with PCR primers carrying
specific restriction enzyme sites to construct the plasmid. The amplified Zmet2a cDNA was cloned into a
pCamiba3301 vector driven by a 35S promoter. The primers with enzyme sites are provided in Table S1.
Agrobacterium strain was transformed into Arabidopsis thaliana by floral dip method to obtain positive
plants. Next, seeds of the T0 and T3 generations were selected on 1/2 MS plates supplemented with
hygromycin (30 μg/mL) and confirmed by PCR with the T-F (upstream primer): CGGGGGACTCTT
GACCATGGTAATGGCGCCGAGCTCC CCGTC and T-R (downstream primer):
AGAAATTTACCCTCAGATCTA TTACTGCTCAACTACCTCCCCTG primers. The presence of Zmet2a
was verified by qRT-PCR with at least 3 biological replicates per sample to ensure the reliability of the
qRT-PCR analysis results. After several generations of culture and screening, the T3 generation
homozygous lines were finally obtained for the subsequent phenotypic and physiological and biochemical
indicators testing.

2.4 Flowering Time Assessment of Transgenic Arabidopsis
40 plants were randomly selected from each line, and wild type (WT) and transgenic Arabidopsis

seedlings were grown in incubators at 22°C (16 h light, 8 h darkness) and 60% relative humidity. At least
three plants were counted per line. Here, we observed that Arabidopsis showed different degrees of
differences before and after flowering, which confirmed the regulatory role of Zmet2a gene on time of
Arabidopsis flowering time.

2.5 RNA Extraction and Quantitative Real-Time PCR Analysis
We conducted qRT-PCR experiments to verify the expression profile of related genes, verifying the

biological function of Zmet2a. Total RNA was isolated from three distinct biological leaf samples using
the Trizol RNA isolation (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s
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instructions. The first-strand cDNA was reverse transcribed from 1 µg of the total RNA using the
PrimeScriptTM RT reagent Kit (TaKaRa, RR047A, supplied by TAKARA in Japan). Next, cDNA was
synthesized and used for quantitative real-time PCR analysis. The qRT-PCR program involved pre-
denaturation for 15 min at 95°C, 40 cycles at 95°C for 10 s, 55°C for 30 s and 72°C for 30 s. The gene
expression levels were calculated using the 2−ΔΔCt method [25]. Each experiment had at least three
technical and biological replicates. The primers used in this study are listed in Table S2.

2.6 Vector Construction and Maize Genetic Transformation
The transgenic maize plant with the CRISPR/Cas9 Zmet2a gene was constructed as a typical

representative. Two sgRNA sequences in Zmet2a gene were used to produce the sgRNA-Cas9 binary
expression vector (http://crispr.hzau.edu.cn/CRISPR2/, accessed on 9 May 2022 (Table S1)). The
secondary structure analysis of the sgRNA sequences was performed using the RNA Folding program
(http://unafold.rna.albany.edu/?q=mfold/RNA-Folding-Form2.3, accessed on 9 May 2022). Subsequently,
the two sgRNAs were cloned into pBUE411 of the CRISPR/Cas9 system and directly transformed
B73 through pollen-mediated transformation [26].

Through herbicide screening and bar gene test strips identification, the knocked out of Zmet2a gene
transgenic plants. By directly taking plant materials and using TransDirect Plant Tissue PCR Kit kit
(TransGen), and using Zmet2a gene expression primers, PCR amplification of plant tissues is carried out
to achieve the purpose of PCR identification of transgenic plants. After several generations of culture and
screening, the T1 generation homozygous lines were finally obtained for the subsequent phenotypic and
physiological and biochemical indicators testing.

2.7 Physiological Parameter Determination of Transgenic Maize
Plant height, ear position, and stem thickness were measured during the lactation stage at T2. The

number of leaves on the main stalk was recorded after the staminode stage. The number of days between
seedling emergence and pollen dispersal was also recorded. After threshing and fully dehydrating the
maize, the ear length and thickness were measured, and the number of rows, the number of grains in the
rows, and the average 100-grain weight of the two surveys were recorded. The control group was maize
selfed line B73, and measurements were recorded along with the transgenic maize plants.

2.8 Statistical Analysis
SPSS 20.0 software (SPSS Inc., Chicago, IL, USA) was used for one-way ANOVA and statistical

analysis. All experiments were conducted in three experimental replicates, compared on mean values
using the LSD test at the probability level of 5%.

3 Results

3.1 Cloning, Identification of Zmet2a Gene in Maize

3.1.1 The RNA Extracted from Maize Leaves was Reverse
Transcribed to obtain cDNA, which was used as a template for PCR amplification with cloning primers

(Table S1), and finally a 2739 bp band was obtained (Fig. 1a). After sequencing, its sequence was completely
consistent with the with the Zm00001d026291 sequence of maize in NCBI (accessed on 27 December 2022).

The Zmet2a gene was analyzed using the ExPASy-Protparam online tool, gene rating 912 amino acids of
101045.99 Da (molecular weight) with a theoretical isoelectric point of 5.31. The combined instability
coefficient was 44.87, assuming that the Zmet2a protein is unstable. Furthermore, the amino acid
hydrophilicity results showed that most of the amino acid numbers on the horizontal axis of the Zmet2a
are negative, and the minimum absolute value of the vertical axis is significantly greater than the
maximum value on the vertical axis, combined with the GRAVY value of −0.532 (Fig. 1b), Therefore, we
hypothesized that the Zmet2a protein is hydrophilic.
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Figure 1: Zmet2a cloning and bioinformatic prediction. (a) PCR identifies. (b) Zmet2a hydrophobicity.
(c) The conserved domain of Zmet2a. (d) The secondary structure of Zmet2a. (e) The tertiary structure
prediction of Zmet2a. (f) Prediction across the membrane region. (g) Signal peptide prediction
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The conserved functional domains of the Zmet2a protein have a conserved BAH and a CHROMO
domain (Fig. 1c). BAH domains are extensively involved in chromatin biological functions, including
protein interactions, methylation recognition, and nucleosome binding [27]. Moreover, CHROMO
structural domain proteins are also extensively involved in the regulation of the chromatin structure,
mainly through the recognition of methylated lysine sites to regulate gene transcription [28]. Therefore,
we speculate that Zmet2a regulates the chromatin structure and biological functions and is crucial in
methylation, which contributes to the subsequent studies of the Zmet2a gene.

The secondary structure of the Zmet2a protein was 48.3% random coiled, 34.98% α-helix and 16.72%
extended strand (Fig. 1d). Protein hydrophobicity facilitates α-helix formation, and since the secondary
structure of Zmet2a has a relatively small alpha-helix percentage, the previous speculation on the
hydrophobicity of the Zmet2a protein is tentatively verified. Furthermore, the tertiary structure of Zmet2a
is 83.00% similar to DNA (cytosine-5)-methyltransferase 1(DNMT1) (Fig. 1e). The structure of the
amino acid transmembrane region encoded by Zmet2a indicated that the Zmet2a protein is a non-
transmembrane protein (Fig. 1f). Moreover, the amino acid signal peptide encoded by Zmet2a suggests
that the Zmet2a protein has no signal peptide structure (Fig. 1g).

3.2 Phenotypic Analysis of Zmet2a Gene after Genetic Transformation into A. thaliana
The phenotypes of transgenic and WT A. thaliana lines showed significant differences in the leaf

phenotypes, mainly the plant size (Fig. 2). Transgenic Arabidopsis had significantly higher lengths and
widths of leaves and petioles than the WT. However, the number of leaves and primary branches were
not significantly different (Table 1). Transgenic Arabidopsis flowered approximately 7 d earlier than the
WT, a significant change (Table 1).

Figure 2: Blade size comparison between transgenic and wild-type (WT) Arabidopsis. The ruler is 1 cm

Table 1: Character comparison between transgenic and WT Arabidopsis

Name Leaf
length/cm

Leaf width/
cm

Petiole
length/cm

Number of
leaves

Number of primary
branches

Flowering
period/d

Zmet2a 1.52 ±
0.23**

0.93 ±
0.13**

2.47 ± 0.35** 12.9 ± 1.14 6.23 ± 0.30 33.24 ± 2.04**

WT 1.14 ± 0.18 0.85 ± 0.15 1.56 ± 0.16 13.4 ± 1.11 6.26 ± 0.29 40.56 ± 2.72
Note: WT: wild-type Arabidopsis (**p < 0.01).
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Quantitative analysis of flowering-related genes in two Arabidopsis species showed that SOC1 gene
expression significantly promotes flowering, evident by the higher flowering transgenic than WT
Arabidopsis. However, the expression of the FLC gene, which inhibits flowering, was significantly lower
in the transgenic than the WT Arabidopsis. The expression of MF, MAF1, MAF2, MAF3, MAF4, and
MAF5 genes, which regulate the flowering pathway, did not change significantly in transgenic and WT
Arabidopsis (Fig. 3). Therefore, overexpressing Zmet2a regulates flowering through the flowering
pathway, promoting earlier flowering in Arabidopsis.

3.3 Identification of Zmet2a Gene Editing Mutants
The four T2 generation positive plants T2-1-1, T2-1-2, T2-2-1, T2-2-2 were identified. 30 samples of

each T2-1 and T2-2 were selected for PCR. The cloning and sequencing results obtain three different
mutation types, with a variable number of base deletions accounting for most of the mutations, very few
single base insertion edits, and only one single base deletion and insertion at different loci (Fig. 4). After
sequencing and analyzing the blast, the deletion occurred in exon of the gene. The number of edited
plants in samples T2-1-1 and T2-1-2 were 18 and 9, with an editing efficiency of 60% and 30%,
respectively. However, T2-2-1 and T2-2-2 had 13 and 19 edited plants, with an editing efficiency of
approximately 45% and 65%, respectively. The occurrence of mutations in the plants indicates that the
CRISPR/Cas9 system successfully edited the genes.

3.4 Analysis of Agronomic Traits in Transgenic Maize
Plant height comparisons between the four mutant plants and the self-cross line control (B73) at the

lactation stage revealed that T2-1-1 and T2-2-2 were significantly shorter than the B73 (Fig. 5a). The
spike height trend was similar to that of plant height (Fig. 5b). However, stem thickness and the number
of leaves after the drawing stage were inversely correlated (Fig. 5c,d). The number of days from seedling
emergence to pollen dispersal was significantly shorter between T2-1-1 and T2-2-2 than the B73 (Fig. 5e).

3.5 Differences in Yield Components of Maize
Transgenic maize had significantly smaller ear lengths, ear thicknesses, and 100-grain weights compared

to the WT (Fig. 6a–c). The number of rows of ears and the number of grains per row were not significantly
different from the control (Fig. 6d,e).

Figure 3: Expression of flowering genes between transgenic and WT Arabidopsis **p < 0.01
Note: WT: wild-type Arabidopsis.
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Figure 4: Target mutation results of CRISPR/Cas9-mediated mutations on the Zmet2a target site in
transgenic plants. *: “−”: Base deletion, “+”: Base insertion, “−1/1”: Both base deletion and base
insertion, *: Sample quantity

Figure 5: Agronomic trait performance of transgenic maize. (a) Plant-height comparison between
transgenic and WT maize. (b) Ear heights of transgenic and WT maize. (c) Stem diameters of transgenic
and WT maize. (d) Number of blades between transgenic and WT maize. (e) Loose powder timing
between transgenic and WT maize. WT: Maize self-cross line control (B73)
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4 Discussion

Day length (photoperiod) is an important avenue for plants to perceive environmental cues and is
essential for regulating plant development and flowering time [29]. DNA methylation reportedly regulates
photoperiodic flowering [30] and is significant in the domestication of important agricultural traits and
adaptation of worldwide cultivated crops. Thus, this study reports a novel maize methyltransferase 2a
gene (Zmet2a) obtained through a combination of bioinformatics and PCR-based gene mining strategies.
The results are the first report on the role of the Zmet2a in regulating flowering time in plants. The results
will also provide an important theoretical basis to further unravel the functional and epigenetic regulation
mechanism of Zmet2a in growth and flowering time control in maize.

Qian et al.’s study identified and investigated the structure and expression of eight MET genes that
encode a MET family protein in maize [31]. Zmet2a is a member of the DNA methyltransferase family
maintained in maize. Therefore, we performed a detailed bioinformatics analysis of Zmet2a and
hypothesized that the Zmet2a protein, mainly found in the nucleus, is a hydrophilic, unstable, non-
transmembrane protein with a non-signaling peptide structure. Furthermore, the Zmet2a protein contained
BAH and CHROMO domains, consistent with the Qian et al.’s study. Both BAH and CHROMO
domains influence gene response and regulation, but the BAH module is also critical for linking DNA
methylation, replication, and transcriptional regulation. Additionally, the CHROMO domain is also
widely involved in chromatin structure regulation, mainly through the recognition of methylated lysine
sites for gene transcription [32]. In contrast, different MET genes identified in Arabidopsis, rice,

Figure 6: Yield component comparisons between transgenic and WT maize. (a) Ear length. (b) Ear
thickness. (c) 100-grain weight. (d) Number of rows per ear. (e) Row number. WT: Maize self-cross line
control (B73)
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Ganoderma, and blueberry contain BAH structural domains in their protein structures and play different roles
in different plants. For instance, MET1 decreased in Arabidopsis during leaf senescence and declined
significantly before the leaves were senesced [33]. Salt and osmotic stresses down-regulate MET1-2, a
gene expressed in all rice tissues [34]. The VcMET1 and VcCMT3 proteins of blueberry contain BAH,
DcM, and the BAH, DcM, and CHROMO structural domains, respectively. However, the expression of
these two genes in fruit development is inconsistent, with VcMET1 being up-regulated ward and then
down-regulated in fruit development, while VcCMT3 was up-regulated, then down-regulated, and later
up-regulated [35]. Thus, we hypothesized that Zmet2a, which contains BAH and CHROMO structural
domains, can be expressed and play a regulatory role in maize development.

Plant-specific CMT3 maintains CHG methylation [36], and the BAH structural domain of
CMT3 regulates plant growth and development by participating in methylation at the
H3K9me2 methylation site [37,38]. Moreover, CMT3 and DRM2 redundantly control CHG methylation
at specific sites [39]. We hypothesized that Zmet2a, a homolog of CMT3, also possesses the BAH
domain and regulates plant growth and development through methylation at specific loci. The present
experiment, the difference in traits between transgenic Arabidopsis plants and wild-type Arabidopsis
plants under the same culture conditions initially verified the effect of Zmet2a on Arabidopsis. Transgenic
Arabidopsis leaves had significantly higher leaf length and width, petiole length, and leaf size than the
WT. We, therefore, hypothesize that the Zmet2a gene is involved in the regulation of leaf traits in
Arabidopsis.

Previous experiments showed that the Zmet2a homolog, CMT3, promotes earlier flowering in rice
regardless of the critical day length of light [40–42]. In this experiment, Zmet2a transgenic Arabidopsis
flowered earlier than wild-type Arabidopsis. Multiple pathways control flowering in Arabidopsis, and the
key flowering gene, FLC, regulates flowering by combining FT and SOC1 [43–46]. Thus, overexpressing
the Zmet2a gene reduced the endogenous flowering gene, FLC, via fluorescence quantitative PCR
analysis. The upstream gene, FLC, regulates the downstream gene, SOC1, and decreasing FLC increases
SOC1 expression [47]. However, whether overexpressing Zmet2a acts directly on FLC or on both to
regulate flowering time remains unknown.

In this study, the Zmet2a gene was knocked out of maize using the CRISPR/Cas9 system, and then the
constructed knockout vector pBUE411 was transferred into a self-incompatible maize line, B73, by the
ultrasound-mediated method. The Zmet2a gene function was preliminarily verified by identifying the trait
differences between the four transgenic positive plants with obvious nested peaks and the maize self-
incompatible line B73. PCR fragment cloning and sequencing identified three different mutations with a
variable number of base deletions (accounting for the majority), a few single base insertions (the
minority), and one single base deletion and insertion at different loci. Several factors, including PAM
sequence position, Cas protein, and gene specificity of the target site, governed the editing efficiency.
Thus, we speculate that the higher the editing efficiency, the more pronounced the phenotype. The less
efficient mutant plants, T2-1-2 and T2-2-1, were not significantly different from the control maize, B73.
Therefore, low editing efficiency is partly responsible for this editing inefficiency, while the small trait
differences may be related to complete editing did not occur.

Arabidopsis transfected with the Zmet2a-overexpression vector had a significantly earlier flowering
period than the wild-type Arabidopsis. The early flowering phenotype produced by transgenic
Arabidopsis is a result of Zmet2a overexpression, which reduced FLC expression through the endogenous
flowering regulatory pathway in Arabidopsis. The result is an increased expression of the flowering-
promoting gene SOC1 and, consequently, an early flowering phenotype. Maize transduced with the
Zmet2a knockout vector also flowered earlier than the untransformed maize (WT). Therefore, the early
flowering behavior of transgenic maize against Zmet2a knockout vectors may be due to the deletion of
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the DNA methylation enzyme, Zmet2a, which reduced the DNA methylation levels of the flowering
repression-associated genes in maize. The reduction increased the expression of flowering promotion-
associated genes in maize, ultimately causing the early flowering phenotype. The effect of flowering on
agronomic traits in higher plants is a key point. Zmet2a resulted in the early flowering behavior in
transgenic maize. Moreover, transgenic maize had a slightly lower 100-grain weight, which did not
achieve the expected yield increase and has implications for future genetic engineering of crop variety
traits to achieve high yield and quality.
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