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ABSTRACT

Understanding how summer warming influences the parent and daughter shoot production in a perennial clonal
grass is vital for comprehending the response of grassland productivity to global warming. Here, we conducted a
simulated experiment using potted Leymus chinensis, to study the relationship between the photosynthetic activ-
ity of parent shoots and the production of daughter shoots under a whole (90 days) summer warming scenario
(+3°C). The results showed that the biomass of parents and buds decreased by 25.52% and 33.45%, respectively,
under warming conditions. The reduction in parent shoot biomass due to warming directly resulted from
decreased leaf area (18.03%), chlorophyll a (18.27%), chlorophyll b (29.21%) content, as well as a reduction in
net photosynthetic rate (7.32%) and the maximum quantum efficiency of photosystem II (PSII) photochemistry
(4.29%). The decline in daughter shoot biomass was linked to a decrease in daughter shoot number (33.33%) by
warming. However, the number of belowground buds increased by 46.43%. The results indicated that long-term
summer warming reduces biomass accumulation in parent shoot by increasing both limitation of stoma and non-
stoma. Consequently, the parent shoot allocates relatively more biomass to the belowground organs to maintain
the survival and growth of buds. Overall, buds, as a potential aboveground population, could remedy for the cur-
rent loss of parent shoot density by increasing the number of future daughter shoots if summer warming subsides.
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1 Introduction

Clonal reproduction via belowground “bud bank” is the main reproductive mode of perennial grasses in
natural grassland ecosystems [1–3]. Within a clonal plant, parent and daughter shoots can share energy
through physical connections such as stolons, or rhizomes [4,5]. The resources supplied by the parent
shoot directly impact the growth and quantity of the daughter shoots [6]. Photosynthesis, which is
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directly linked to plant growth and reproduction, and characteristics such as leaf area, leaf gas exchange,
and chlorophyll fluorescence, are strongly influenced by environmental fluctuations [7–9]. Undoubtedly,
these detectable changes in the parent shoots significantly affect the growth and development of the
offspring.

Recently, the rise in greenhouse gases in the atmosphere has led to the expected increase in global mean
temperature of 1.0°C~3.7°C [9]. Detecting and quantifying the answer of plant physiological and ecological
processes to global warming is an important research goal in the field [10]. Research indicates that plant
exposure to elevated temperature or brief extreme temperature events can negatively influence plant
growth and reproduction [11,12]. It is now apparent that CO2 uptake and photosynthetic yield decline
considerably or even cease in arid and semi-arid regions under warming [9,13–15]. Those changes are
closely linked with physiological changes in photosynthesis like gas exchange and chlorophyll
fluorescence. Previous studies have shown that climate warming can result in declines in leaf area for
some species [16] and meanwhile increases in chlorophyll concentration [17,18], thereby light
interception, resource allocation, and water uptake strategy [19]. Furthermore, previous research has
shown that the maximum quantum efficiency of PSII photochemistry (Fv/Fm) and the base fluorescence
(F0) are closely correlated with heat tolerance in plants [20]. Irreversible inhibition of PSII will result in a
decline in maximum quantum yield if the capability of the PSII reaction center to repair damages is
exceeded [21,22]. In perennial grass species, some species like Bromus inermis and Pascopyrum smithii
show reduced bud development at 24°C compared with 18°C due to suppressed tiller recruitment at
higher temperatures, while other species experience a significant increase in belowground bud number
[23,24]. However, limited research has focused on explaining the underlying reasons for how changes
in photosynthetic physiology drive the growth of belowground buds and daughter shoots. In the
context of global change, examining the effects of warming on the growth of parent shoot, daughter
shoot, and bud, and further exploring the underlying mechanism, could not only identify changes in the
parent shoot population but also provide a better understanding of plant population renewal and
succession strategies.

Leymus chinensis (Trin.) Tzvel is a rhizomatous, perennial grass widely distributed at the Russian
Baikal, the northern and eastern regions of Mongolia, and the northern and northeast plains of China
[25,26]. It exhibits high tolerance to low soil fertility, high pH, and drought conditions, often forming a
mono-dominant population in the northeast plain of China. This species serves as an ideal object for
exploring how biomass production in clonal perennial grass responds to global warming. In this study,
we selected Leymus chinensis as the experimental material to examine the effects of prolonged (whole)
summer warming on the parent shoot growth, daughter shoot and buds development in relation to parent
photosynthetic physiology. We hypothesized that summer warming would result in: (i) a reduction in leaf
area, chlorophyll content, and photosynthetic ability of parent shoots, leading to a reduction in
aboveground biomass; (ii) a reduction in belowground biomass thus reducing the number of belowground
buds and the production of daughter shoots.

2 Materials and Methods

2.1 Experimental Material
The seeds used in the experiment were harvested from the Grassland Ecosystem Field Station of the

Northeast Normal University (123°44′E, 44°40′N, 167 m asl). Under the natural condition, Leymus
chinensis regrows beginning in early-mid April each year. Heading and flowering occur from mid May to
late June, with seed maturation taking place in late July [27]. Parent shoots and daughter shoot leaves die
when frost (usually late September or early October) arrives, but the belowground part continues to grow
in the following season.
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2.2 The Experimental Site, Design, and Treatments
The experimental design aligned to the previous experiment by Wang et al. [23] and was conduced in a

large phytotron (LT/ACR-2002 Phytotron System, E-Sheng Tech., Beijing, China). To simulate field
temperature variations, temperature settings for the control and warming phytotrons are detailed in
Table 1. The temperature setting for warming phytotron during each period was 3°C ± 0.5°C higher than
that of control phytotron. The photosynthetically active radiation (PAR) of plant canopy was maintained
at 720 μmol−2 s−1 in both control and warming treatments. The relative humidity was maintained between
40%~60% during the experiment.

Seeds (15 grains per pot) were sown into pots (inside diameter 19 cm, capacity 8 L), filled with soil
obtained from the natural Leymus chinensis grassland at the surfact of 0~25 cm. The soil pH is 8.63,
conductivity is 794.3 ds m−1, total nitrogen (N) is 0.12%, and available nitrogen (N) is 91.42 mg kg−1.
Kjeldahl method and alkaline hydrolysis diffusion method were used to measure total nitrogen and
available nitrogen in the soil, respectively. After germination, 7 health plants of similar size were retained
in each pot for the experiment. Each treatment was replicated 10 times (pots), totaling 20 pots. Thrity
days after transplanting the seedling into pots, they began the warming treatment (last for 90 days) when
the seedling looks a similar maturity as matue Leymus chinensis individuals. During this period, to avoid
accelerated soil evaporation, pots wer watered at 5:00 p.m. daily to maintain a standard weight (50%
~55% of field capacity) in both control and warming treatments. To ensure uniform lighting for each
plant, the position of the each pot was tookturned every 2 days.

2.3 Leaf Area and Chlorophyll a, b Content
We used AM-350 leaf area meter (ADC BioScientific Ltd., Hoddesdon, UK) to measure leaf area. The

criteria for leaf selection are as follows: 4 pots were randomly selected in each treatment, and 2 to 3 plants
were randomly selected in each pot. Subsequently, the youngest and fully expanded leaf weighing 0.05 g
from the parent shoot were extracted 48 h using a 10 ml 80% acetone solution in the dark condition.
Chlorophyll a and b were measured at 663 and 646 nm, respectively, using a UV-5500 ultraviolet-visible
spectrophotometer (Shanghai Meta-Analysis Instrument Co., Ltd., Shanghai, China).

2.4 Gas Exchange and Chlorophyll Fluorescence
In both the warming and control treatments, 20 parent shoot leaves from 4 pots were randomly selected

to determine gas exchange parameters. Net photosynthetic rate (A), stomatal conductance (Gs), intercellular
CO2 concentration (Ci), transpiration rate (E), etc., were measured using a LI-6400XT portable
photosynthesis system equipped with a Li-Cor red/blue LED light source (LI-6400XT, Li-Cor, Inc.,
Lincoln, NE, USA). The photosynthetically active radiation (PAR) was set at 1000 μmol−2 s−1 and the
reference CO2 concentration was maintained at 380 μmol mol−1 using CO2 injector. Water use efficiency
(WUE) is calculated by A/E.

Chlorophyll fluorescence parameters were determined using a LI-6400XT portable photosynthesis
system, paired with a LI-6400-40 Leaf Chamber Fluorometer (LI-6400XT, Li-Cor, Inc., Lincoln, NE,

Table 1: The temperature of the control and warming phytotrons

Treatment 5:30~
6:30

6:30~
9:30

9:30~
11:30

11:30~
14:30

14:30~
16:30

16:30~
18:30

18:30~
19:30

19:3~
5:30

Control (°C) 16 19 23 26 23 20 18 15

Warming (°C) 19 22 26 29 26 23 21 18
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USA). Initially, the labeled parent shoot was placed in darkness for 12 h, and then measured the base
fluorescence (F0), maximal fluorescence (Fm) and variable fluorescence (F) under darkness.
Subsequently, all samples were placed in light conditions for 2 h, and measured the basic fluorescence
(F0′), maximum fluorescence (Fm′) and steady-state fluorescence (Fs). During those measurements, CO2

concentration was maintained at 380 μmol mol−1 using the injection system. The maximum quantum
efficiency of PSII photochemistry (Fv/Fm),: the actual quantum yield (Φp), the photochemical quenching
coefficient (qP), and the non-photochemical quenching coefficient (qN) was calulated by: Fv/Fm = (Fm -
F0)/Fm, Φp = (Fm′ - Fs)/Fm′, qP = (Fm′ - F)/(Fm′ - F0′), qN =1 - (Fm′ - F0′)/(Fm - F0), respectively [28].

2.5 Biomass, Bud Bank and Daughter Shoot Number
After finished all determines in gas exchange and chlorophyll fluorescence parameter, move each plant

together with root out of the soil to determine the biomass and the bud bank. We counted the number of bud
(with a length > 2 mm, exhibiting either white color or a brown growing point), the number of daughter
shoots (emerging above the soil surface with green growing point) per parent shoot. Finally, the parent
shoots, daughter shoots, roots were separated to determine dry biomass after oven-dried at 65°C for 48 h.

2.6 Data Analysis
SPSS 22.0 was used for statistical analysis (SPSS for Windows, Chicago, IL, USA). Tested for normality

was performed with the method of the Shapiro-Wilk statistic. For the data satisfied the assumption of
normality, an independent sample t-test was employed to test the significances between two treatments.
For variables of A, Gs, Ci, WUE, E, which did not meet the assumption and normality, significance
testing was conducted using Wilcoxon-Mann-Whitney U method.

3 Results

3.1 Biomass Production and Bud and Daughter Shoot Number
In contrast to the control, warming significantly reduced the parent shoot and daughter shoot biomass per

plant by 25.52% (p < 0.05) and 33.45% (p < 0.05), respectively (Fig. 1). There was no significant impact of
warming on root biomass (Fig. 1). Consistent with the change trend in biomass, warming also significantly
reduced the number of daughter shoot per plant by 33.33% (p < 0.05) (Fig. 2). Conversely, there was a
substantial increase of 46.43% in the buds number per plant (p < 0.05) (Fig. 2).

Figure 1: Dry matter mass (including mother shoot biomass, daughter shoot biomass and root biomass)
of warming and without warming (Control) in Leymus chinensis. Data are presented as mean ± SE
(n = 4). *p < 0.05
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3.2 Leaf Area, Chlorophyll Content, and Gas-Exchange Parameters
Summer warming significantly decreased the leaf area per plant by 18.03% (p < 0.05) (Fig. 3). In

contrast to the control, chlorophyll a and b content was significantly decreased by 18.27% (p < 0.05) and
by 29.21% (p < 0.05), respectively (Fig. 3).

In contrast to control, warming separately, significantly reduced the net photosynthetic rate, transpiration
rate and stomatal conductance by 7.32% (p < 0.05), 26.55% (p < 0.05) and 29.84% (p < 0.05). However,
warming significantly increased intercellular carbon dioxide concentration by 3.51% (p < 0.05), increased
water use efficiency by 28.34% (p < 0.05) (Table 2).

3.3 Chlorophyll Fluorescence Parameters
Compared to the control, summer warming resulted in a significant reductions in the maximum quantum

efficiency of PSII photochemistry, the actual quantum yield, and photochemical quenching coefficient by
4.29% (p < 0.05), 23.84% (p < 0.05) and 9.63% (p < 0.05), respectively (Table 3). Additionally, warming
significantly increased the non-photochemical quenching coefficient by 4.38% (p < 0.05), while only
marginal increased the base fluorescence by 5.43% (p > 0.05) (Table 3).

Figure 2: Bud number and daughter shoot number of warming and without warming (Control) in Leymus
chinensis. Data are presented as mean ± SE (n = 12). *p < 0.05

Figure 3: Chlorophyll a and b content, leaf area of warming and without warming in Leymus chinensis
(Control). Data are presented as mean ± SE. The sample size of the chlorophyll and the leaf area is 4 and
12, respectively. *p < 0.05
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4 Discussion

In arid and semi-arid regions, climate changes exert a significant influence on plant carbon uptake and
biomass production [7–9]. Our experimental results show that summer warming significantly decreased the
leaf area, chlorophyll a and b content, net photosynthetic rate of parent shoot, and biomass production in
Leymus chinensis. This aligns with the results of Leonsanchez et al. [29], who found that the net
photosynthetic rate, leaf area and biomass production of Helianthemum squamatum shrubs were
significantly reduced in the semi-arid Mediterranean ecosystem under warming (+2°C). Besides gas
exchanges, summer warming also led to significant reductions in the maximum quantum efficiency of
PSII photochemistry (Fv/Fm), the actual quantum yield (Φp) and photochemical quenching coefficient
(qP). That is, leaf photosynthetic capability decreased in a summer warming environment. The reduction
in Fv/Fm observed in our study was attributted to an increase in F0, indicating that whole summer
warming stressed growth and damaged optical system, resulting irreversible declined of maximum
quantum yield [30]. The degree of non-radiative energy dissipation in PSII is reflected by the non-
photochemical quenching (qN) reaction, with an increase of it illustrated that the ability of light
protection and non-radiative losses enhanced [9,31]. Previous study in Stylosanthes capitata Vogel, an
important leguminous forage in tropical and subtropical regions, showed that warming (+2°C) significant
increases in leaf area index and biomass, while there were no significant differences in the Fv/Fm and the
qN. However, elevated temperature enhance the Vcmax and Jmax, thereby resulting in an increase in the
maximum photosynthetic rate [21] In fact, high temperatures can alter the activities of various enzymes
involved in wheat photosynthesis, resulting in a decrease in photosynthesis rate, accompanied by
abnormal respiration, stomatal closure, and decreased leaf water use efficiency [32]. It is inconsistent with
our research may be due to different plant functional types (PFTs), geographical locations, or the
synergistic effects of atmospheric carbon dioxide concentration [33–35]. This study shows that 3°C
summer warming did reduce the net photosynthetic rate and biomass accumulation through the stoma and
non-stoma limitation.

In the study, prolonged summer warming obviouly increased the number of belowground bud, whereas
reduced the number of daughter shoot (no death of daughter shoot were found) and total aboveground
biomass. These results indicated that warming limits the conversion of belowground buds into daughter
shoots when the carbon assimilaration of the parent shoot is constrained by warming. This finding
contradicts our initial predictions (ii), and suggests that warming leads a relatively higher allocation of

Table 2: Gas-exchange parameters of control and warming in Leymus chinensis

Treatment A E Gs Ci WUE

Control 7.37 ± 0.09* 2.79 ± 0.03* 0.26 ± 0.00* 321.36 ± 3.12 2.65 ± 0.32

Warming 6.83 ± 0.18 2.05 ± 0.07 0.18 ± 0.01 332.64 ± 0.64* 3.40 ± 0.94*
Note: A: photosynthetic rate (μmol m−2 S−1); E: transpiration rate (mmol m−2 s −1); Gs: stomatal conductance (mol m−2 S−1); Ci: intercellular CO2
concentration (μmol mol−1); WUE: water use efficiency (μmol mol−1). Data are presented as mean ± SE (n = 11). *p < 0.05.

Table 3: Chlorophyll fluorescence parameters of control and warming in Leymus chinensis

Treatment F0 Fv/Fm Φp qP qN

Control 39.29 ± 0.99 0.78 ± 0.00* 0.29 ± 0.01* 0.62 ± 0.02* 0.78 ± 0.01

Warming 41.42 ± 1.83 0.74 ± 0.01 0.22 ± 0.01 0.56 ± 0.02 0.82 ± 0.01*
Note: F0: the base fluorescence; Fv/Fm: maximum quantum efficiency of PSII photochemistry; Φp: the actual quantum yield; qP: photochemical
quenching coefficient; qN: non-photochemical quenching coefficient. Data are presented as mean ± SE (n = 9). *p < 0.05.
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biomass to belowground structures to support the survival and growth of the buds. This result differs from the
previous studies on nocturnal warming, which shows warming during growing season significantly increased
leaf respiration rates at night, thereby promoting carbohydrate accumulation during the daytime [36],
resulting in increased biomass production of the parent shoot. For perennial clonal plants, there exists a
clear physiological integration behavior where the translocation of limiting resources can affect the
growth of both the parent and daughter shoots. According to the physiological integration model, the
translocation of essential nutrients such as carbohydrates from the parent shoot can improve the growth of
daughter shoots under adverse environmental conditions. However, our strictly controlled temperature
experiment yielded different results, as it demonstrated an increase in the bud bank size but not in
daughter shoots. In summary, Leymuc chinensis, a typical perennial grass, experienced reduced
productivity in both the current parent shoot and daughter shoots under prolonged summer warming
conditon. However, the increased allocation of biomass to belowground organs, such as buds, can
enhance the number of future tillers and help maintain population density. It is worth noting that despite
the summer warming experiment start from seedlings, which have a similar appearance to the matue
Leymus chinensis. Whereas, given that this species is long-lived, the responses to warming may vary with
age. Therefore, further research should compare the detailed differences among different ages to better
understand population dynamics under ongoing global warming.

5 Conclusions

We show here that the extension of warming time in summer significantly reduced the biomass of both
parent and daughter shoots in Leymus chinensis. The decrease in parent shoot biomass can be attributed to a
decrease in the photosynthetic yield, while the decrease in daughter biomass is linked to a decrease in the
density of daughter shoot. Conversely, summer warming induces a notable augment in the density of
belowground buds. It implied that despite the whole summer warming decreasing both current tillers
density and productivity, the rise in the number of belowground buds may compensate for this loss in
density and productivity in the future. This study not only provides references for a better understanding
of how the current productivity responds to summer warming but also offers a cue to predict population
development trends of Leymus chinensis and other rhizomatous perennial grasses under future global
warming.
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