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ABSTRACT

Rice diseases can adversely affect both the yield and quality of rice crops, leading to the increased use of pesticides
and environmental pollution. Accurate detection of rice diseases in natural environments is crucial for both
operational efficiency and quality assurance. Deep learning-based disease identification technologies have shown
promise in automatically discerning disease types. However, effectively extracting early disease features in natural
environments remains a challenging problem. To address this issue, this study proposes the YOLO-CRD method.
This research selected images of common rice diseases, primarily bakanae disease, bacterial brown spot, leaf rice
fever, and dry tip nematode disease, from Tianjin Xiaozhan. The proposed YOLO-CRD model enhanced the
YOLOV5s network architecture with a Convolutional Channel Attention Module, Spatial Pyramid Pooling
Cross-Stage Partial Channel module, and Ghost module. The former module improves attention across image
channels and spatial dimensions, the middle module enhances model generalization, and the latter module
reduces model size. To validate the feasibility and robustness of this method, the detection model achieved the
following metrics on the test set: mean average precision of 90.2%, accuracy of 90.4%, F1-score of 88.0, and
GFLOPS of 18.4. for the specific diseases, the mean average precision scores were 85.8% for bakanae disease,
93.5% for bacterial brown spot, 94% for leaf rice fever, and 87.4% for dry tip nematode disease. Case studies
and comparative analyses verified the effectiveness and superiority of the proposed method. These research find-
ings can be applied to rice disease detection, laying the groundwork for the development of automated rice disease
detection equipment.
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1 Introduction

Rice is a primary staple food and a universally beloved crop globally [1]. As per the Food and
Agriculture Organization, an estimated 222 million individuals across the planet will experience severe
food insecurity by the conclusion of 2022, and approximately one out of every five will face challenges
in obtaining an adequate food supply for their sustenance [2]. Rice production must increase by more
than 40% by 2030 to meet the world’s growing demand for food [3]. However, crop production has many
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challenges, such as natural disasters, water shortages, and diseases [4]. Escalating global trade and changing
climate conditions have made plant pests and diseases a more substantial menace to food security than ever
before, contributing to the loss of 20% to 40% of the world’s total food production [5]. In tropical Asia, the
yield loss caused by rice pests is 25%—43% [6]. The leading solution for plant diseases is the application of
pesticides [6]. Nearly 4 million tons of pesticides are used every year, with 90% being taken up in the
surrounding environment through sprays, roll-offs, and rain, resulting in only a tiny amount of pesticides
reaching the target organisms [7]. Off-target losses lead to environmental pollution of mainly water and
land [8]. The presence of these pollutants in the ecosystem endangers the survival of other organisms [9].
Therefore, reducing the use of pesticides in agriculture is essential for sustainable global development.
Rice is an essential food crop, and the identification of early diseases of rice leaves can reduce the use of
harmful pesticides.

At present, bakanae disease, bacterial brownspot, leaf rice fever, and dry tip nematode disease are the
more common rice diseases. They occur throughout the rice reproductive period and have significant
impacts on the yield and quality of rice. In severe cases, they lead to significant reductions in rice yield,
which have enormous impacts on growers. Early identification of rice diseases in the field is a critical
step in managing the detection and spread of rice diseases [10]. Early pest identification currently relies
mainly on human observations of disease symptoms, and essential disease treatments are based on
climate characteristics and a priori knowledge. In contrast, the diagnosis and treatment of low-frequency
pest diseases rely on expert knowledge and literature reviews. The above methods require experience and
education to make judgments. The accuracy of identification relies mainly on the experience of plant
pathologists or farmers. However, during the rice reproductive period, the same disease may manifest
different disease symptoms, making its identification challenging, and there are also different diseases that
share characteristic and symptoms [11]. Additionally, the large rice cultivation area, an expert workforce
shortage [12], farmers lacking experience, and other human factors add to the difficulty in preventing and
controlling rice pests and diseases. Rice pests and diseases have complex and variable symptoms, and the
lack of farm managers treatment plans and preventive measures for new symptomatic diseases are also
factors that negatively impact rice disease prevention and control [13].

Advancements in science and technology have prompted researchers to employ deep-learning
techniques in the identification of rice diseases. Zhou et al. [14] proposed a residual distillation
transformer architecture, achieving an F1-score of 0.89 and an accuracy rate of 92%. Sudhesh et al. [15]
introduced a dynamic pattern decomposition technique that relied on attention-driven preprocessing. They
investigated four rice diseases, achieving an impressive classification accuracy of 94.33%. Kumar et al.
[16] examined the RDTNet module designed for the extraction of distinct characteristics related to rice
diseases. RDTNet is composed of two core modules: the initial module focuses on capturing features at
three different scales from local binary mode, grayscale, and directional gradient histogram images.
Stephen et al. [17] improved the feature selection process by using self-attention mechanisms in
ResNet18 and ResNet34 architectures, resulting in a better accuracy for the model compared to
ResNet50. While this algorithm can be applied to identify diseases in other crops, models trained on
laboratory environmental data struggle to perform well in practical applications. Tepdang et al. [18]
proposed a method for classifying and estimating the severity of diseases on rice leaf images. The method
first identifies candidate boundaries of rice leaves and then recognizes rice diseases based on features
such as color, shape, and area ratio. Lu et al. [19] proposed an ACNN-TL model based on a
convolutional neural network (CNN) structure combined with Atrous convolution and transfer learning.
Compared with standard convolution, Atrous convolution increases the receptive field size in feature
extraction, enriching the extracted feature details. Abasi et al. [20] specifically designed a CNN model for
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rice images that has the advantages of low loss and minimal overfitting compared with other models. Yuan
et al. [21] proposed a rice disease phenotype identification framework utilizing transfer learning on a cloud
platform and SENet with an attention mechanism. Bijoy et al. [22] proposed a lightweight deep CNN
architecture and an enhanced dataset. Based on this network, a comprehensive crop health monitoring
system, including a user-friendly website and an Android application, has been developed.

Target detection technology can identify multiple diseases at the same time. There are two main types of
network models in target detection: one-stage and two-stage. The most representative two-stage detector, is
the faster R-CNN. Wang et al. [23] used two-stage segmentation to study the extent of cucumber disease.
First the DeepLabV3+ network was used to segment the background of the images and then U-Net was
used to segment the leaves to obtain the disease spots. Li et al. [24] used Faster-RCNN to detect rice
diseases with 87.2% accuracy. Eguskiza Garcia et al. [25] used the Siamese network to identify
17 diseases in 5 crops. The one-stage detectors include You Only Look Once (YOLO) and SSD. YOLO,
functioning as a one-stage model, streamlines the network architecture and reduces computational
expenses by unifying the tasks of detection, classification, and localization into a single regression
problem. YOLO applications in agriculture are being studied. Nan et al. [26] proposed a YOLOv3-based
dragon fruit detection model for complex environments. Zheng et al. [27] proposed a YOLOv4-based
tomato detection model. Deng et al. [28] proposed a YOLOWeeds model to detect multiple weeds in
cotton production. Zhao et al. [29] proposed a YOLO-GP model to detect grape bunches and their
picking points. Kiratiratanapruk et al. [30] used YOLOvV3 to identify six rice diseases and obtained a
mean average precision (mAP) of 79.19%. Tian et al. [31] performed apple anthracnose data
enhancement and then optimized the YOLOv3 model using a densely connected neural network. Cui
et al. [32] developed a rice disease image classification network utilizing the Rice Leaf Plaque net as the
underlying network and integrating the YOLOv3 object detection network model. They optimized the
feature extraction process, providing a new approach for rice disease identification and lesion detection.
Jia et al. [33] proposed a rice disease and pest recognition model based on the improved
YOLOV7 algorithm. Experimental results demonstrated an accuracy of 92.3% and a mAP of 93.7%.
Thus, using YOLO in agriculture is feasible. However, some studies were conducted using publicly
available datasets, such as Plant Village, Al Challenger 2018, LifeCLEF, and Malayakew. Mohanty et al.
[34] trained a model using a publicly available dataset collected under laboratory conditions and found
that the model did not work well in a real-world environment. Data collected under natural conditions
provide more features than open datasets, and most models cannot extract useful features from the
complex background [35]. In addition, rice, as a grass-like plant, presents highly detailed images, and the
difference between foreground and background is relatively small [10], which makes recognition more
difficult. Additionally, among rice diseases, there is limited research on bakanae. In the context of rice
cultivation, timely disease detection minimizes the adverse effects on rice yield and quality, as well as
reducing the necessity for pesticide use.

To address the issues of most studies using open data and there being limited studies on bakanae disease,
a rice disease detection model was proposed to improve the accuracy of rice disease detection and provide
technical support for disease detection. Here are the main contributions of YOLO-CRD:

1. C3 Convolutional Channel Attention Module (CBAM) design as the backbone improved the
model’s ability to extract texture and color from images, resulting in the model obtaining better
features.

2. The Spatial Pyramid Pooling Cross-Stage Partial Channel (SPPCSPC) module enhanced the model’s
receptive field and feature expression capability by employing multi-scale spatial pyramid pooling
and convolution operations.

3. A dataset analysis revealed that using use GhostNet reduced the model’s size.
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2 Materials and methods

2.1 Introduction to the Xiaozhan Rice

Xiaozhan was the main variety studied. Tianjin Xiaozhan rice is a famous high-quality rice in China,
which is produced in Xiaozhan Town, Jinnan District, Tianjin. Xiaozhan rice has several subtypes,
including Jingyuan 89 and Jingyuan U99. The experimental data was collected from small-station rice
Jingyuan 89 and Jingyuan U99. The primary studies included bakanae, bacterial brown spot, leaf rice
fever, and dry tip nematode disease. The main target is the nodulation and gestation stages of small-
station rice.

2.2 Data Acquisition

2.2.1 Image Acquisition

The experiment was conducted at the Tianjin Quality Agricultural Products Development Demonstration
Center from July to August 2022. The center is located at 119.47°E longitude and 31.89°N latitude, and it
experiences a continental monsoon climate with an average annual temperature of 11.2°C. The image
acquisition area is shown in Figs. 1 and 2. The image acquisition period was from July 15 to August 15,
2022, and the primary data collected were rice plucking and gestation diseases. The device used for image
acquisition was a smartphone. The resolution of the captured images was 3024 x 4032 pixels. Images
were labeled in accordance with the guidance of authoritative experts. In total, 3357 valid data were
collated, including 408 for bakanae disease, 1075 for leaf rice fever, 856 for dry tip nematode, and
1018 for the bacterial brownspot. The leaves of disease-infected plants had darkened and yellowed leaf
colors and curled and folded leaves compared with healthy leaves; These differences formed the bases for
distinguishing between diseased and healthy. Most of the diseased leaf images collected showed early
disease symptoms, because the early signs were more apparent. The complicated background made
identification difficult. The main images of the collected data are shown in Fig. 3.

Tianjin Provinces Map
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Figure 1: Experimental area diagram
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(a) (b)

Figure 2: The image acquisition area, (a) real view of rice field, (b) on-site collection

(d)

Figure 3: Some of the collected datasets, (a) bakanae disease, (b) bacterial brownspot, (c) leaf rice fever, (d)
dry tip nematode disease

2.2.2 Image Reprocessing

Owing to time, equipment, and locational limitations, the acquired rice disease dataset was small. Hence,
it was imperative to enlarge the dataset to enhance the variety of training samples, mitigate model overfitting,
and enhance the model’s generalization capacity. The data were expanded by adjusting the images, including
zooming in and out, flipping horizontally and vertically, adjusting brightness, panning, adding noise, and
rotating, as shown in Fig. 4. The noise increase mimicked lower-resolution camera images, but no other
modifications were made to the images. The dataset was divided into a training set (train), a validation set
(val), and a test set (test), where (train + val): test = 8.5:1.5 and train:val = 8.5:1.5. The dataset sizes for
training, validation, and testing were 3143, 554, and 652, respectively, as shown in Table 1.

2.3 Improved YOLOv5 Model

The structure of the YOLO algorithm consists of four parts: input, backbone, neck, and prediction. Each
part is integrated into the YOLO network to predict each bounding box’s features of the target region in the
image. Here YOLO divided the inputted rice disease image into N x N grids. If the center of the rice disease
fell within a grid, then grid was responsible for detecting the rice disease image. Each grid unit predicted
bounding boxes and their confidence scores. If no disease appeared in the grid, then the confidence score
should be 0. Each restricted grid contained five predictions: X, y, w, h, and confidence level. The (x, y)
coordinates represented the center of the grid’s boundaries. Width (w) and height (h) represented the
predicted overall width and height of the rice disease image, respectively. Each grid could also predict the
likelihood of classification, which depended on the grid unit containing the target. Regardless of the grid
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size, a set of category probabilities was based on predictions made for each grid [36]. When the grid unit
contained part of the true data box, then the value of Pr (object) was 1; otherwise, it was 0. The structure
of YOLOVS is shown in Fig. 5.

Figure 4: Data enhancement section demo, (a) Original image, (b) Darken, (c) Flip horizontally, (d) Move,
(e) Flip 90 degrees, (f) Flip 180 degrees, (g) Flip 270 degrees, (h) Enlarge, (i) Flip vertically

Table 1: Data set division table

Class Training set Validation set Test set Sum
Bakanae disease 1004 177 219 1400
Dry tip nematode disease 610 112 134 856

Leaf rice fever 778 134 163 1075
Bacterial brownspot 751 131 136 1018
Sum 3143 554 652 4349

First, as shown in Table 2, it was inferred that YOLOVS and Faster-RCNN have lower accuracy levels in
rice disease recognition compared with YOLOVS5. Therefore, YOLOVS and Faster-RCNN were not chosen
for this study. Second, Table 2 contains the comparison results among the four standard YOLOvVS models
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using this dataset. The primary aims of this research were to achieve efficient and rapid identification of rice
diseases and pests. As shown in Table 2, YOLOvS5 exhibited the highest efficiency and negligible model
weight, making it suitable for embedded devices. Thus, YOLOvSs was selected as the base model for this
study.
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Figure 5: Structure of the YOLOvS model

Table 2: Comparison with YOLO model detection results

Model P (%) R (%) mAP (%) Size (MB) Tr (ms) GFLOPS
YOLOVS5s 89.3 83.8 88.5 13.8 4 15.8
YOLOvSI 91.4 81.3 87.7 88.5 13.7 107.7
YOLOv5m 88.5 85.5 88.9 40.2 8.6 479
YOLOv5x 90.3 80.7 87.1 165.1 28.6 203.8
YOLOVS 86.4 80.7 86.1 52.1 9.2 78.7
Faster-RCNN \ \ 76.7 629.2 \

2.3.1 Convolutional Block Attention Module (CBAM)

The CBAM module’s [37] schematic diagram is depicted in Fig. 6. The CBAM module primarily
consisted of two key components: the Channel Attention Module (CAM) and the Spatial Attention
Module (SAM). The main purpose of the CAM module was to explore the correlations among different
channels, thereby assigning appropriate weights to each channel in the rice feature map, which enabled
the more critical channels to receive greater attention. The specific calculation is detailed in the following
Eq. (1) as illustrated in Fig. 7:

max

Mc(F) = 6(MLP(AvgPool(F) + MLP(MaxPool(F))) = 0<W1 (Wo <F§gv)> + W (Wo (F ))) 1)

The rice feature map F(H x W x C) obtained from the input underwent global max pooling and global
average pooling along the width and height dimensions, resulting in two 1 x 1 x C rice feature maps.



1282 Phyton, 2024, vol.93, no.6

Subsequently, each rice feature map was fed into a two-layer neural network, where the first layer had C/r
neurons (with r representing the reduction rate) and an ReLU activation function, and the second layer had C
neurons. These two layers of the neural network were shared. Then, through element-wise addition, the
activated features outputted by the two-layer neural network produced the final rice channel attention
feature (Mc). Lastly, the element-wise multiplication operation was performed between Mc and the rice
input feature map F to generate the input features required for SAM.

/ Convolutional Block Attention Module \

Channel
Input Feature Attention Module

S
o /

Figure 6: Schematic diagram of CBAM module
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Figure 7: Schematic diagram of CAM module in CBAM

The goal of the SAM module was to focus on the spatial positions of the rice feature map, thereby
adjusting weights in the spatial dimension to enhance the model’s attention to specific regions. The
specific calculation is as follows detailed in Eq. (2) as illustrated in Fig. 8.

Mg(F) = 0(f7X7([Angool(F);MaxPool(F)])) = a( 7X7([F2vg;F‘;me> )

/ Spatial Attention Module \

conv (7
layer £7|
—> J o @ >

[MaxPool , AvgPool] Spatial Attention Ms

Channel-refined
K feature F'

Figure 8: SAM module structure diagram
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The rice feature map F’, outputted by the CAM, served as the input feature map for this module. First, a
channel-based global max pooling and global average pooling were conducted to obtain two H X W x 1
feature maps. These two feature maps were then concatenated along the channel dimension.
Subsequently, a 7 x 7 convolutional operation was applied to reduce the dimensionality to one channel,
resulting in an H x W x 1 feature map. This map was passed through a sigmoid function to generate the
rice spatial attention feature (Ms). The rice spatial attention feature was then multiplied with the input
feature of this module to obtain the final generated feature. By combining the CAM and SAM modules,
the CBAM module comprehensively enhanced the feature map, aiding in capturing more critical features
and thus improving the model’s performance in various visual tasks. Rice disease recognition primarily
relies on identifying the position and characteristics of diseased regions in comparison with healthy areas
based on characteristics such as color and texture. On this basis, YOLOv5s embedded the CBAM module
into its backbone network to enhance attention to both channel and spatial information in small-station
rice disease images. By integrating CBAM into the YOLO backbone network, it selectively extracted key
features and achieved precise feature localization. This is shown in Fig. 9.

1.Input

2.Backbone

PEOE—E0—-008

/ Improved backbone

[ CBS CBS C3CBAM CBS C3CBAM ]—'.ﬂ_’. C3CBA\I SPPCSPC

CBCB _ m CB -

Figure 9: Improved backbone network

608*608*3

2.3.2 Spatial Pyramid Pooling and Connected Spatial Pyramid Convolution (SPPCSPC)

The original model’s SPPF module was substituted with the SPPCSPC module. The SPPCSPC module
is a structure used in YOLOV7 that had the main purpose of increasing the receptive field. The structure is
shown in Fig. 10. The function of SPP is to increase the receptive field, which allows that the algorithm to
adapt to different image resolutions, and it is uses maximum pooling to obtain different receptive fields.
SPPCSPC uses four different scales of maximum pooling with four receptive fields to distinguish
between large and small targets. The CSP module first divided the features into two parts, one of which
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was for conventional processing, whereas the other part was for SPP structure processing. Finally, these are
merged, which allows the amount of computation to be reduced by half, which increased the speed and
accuracy.

- :. :. ”

Maxpool

Figure 10: Schematic diagram of the SPPCSPC module
2.3.3 Ghost Module
Y =Xx*f"+b 3)
yi=¢,00),Vi=1,...omj=1,....s 4)

The addition of the Ghost module [38] in the prediction stage mainly reduced the model size and
improved the model accuracy. The Ghost module had three main steps: regular convolution, Ghost

generation, and feature map stitching, as shown in Fig. 11.
Identity \

N Conv

Input

Figure 11: Ghost module

In the first step, assuming the input feature was X € R“"" and the convolutional kernel was
represented as f € R®¥*¥ then the output feature was Y € RIwen, Using regular convolution, the
intrinsic feature maps Y,,,,.,, were obtained, where this operation was approximately equal to
nxw xh' xcxkx*k. InEq. (3), " and w' represent the height and width of the output data, respectively,
and k x k represents the size of the convolutional kernel f'.

In the second step, each channel of the rice feature maps Y, denoted as )/, underwent the operation ®; ;
to generate the Ghost feature maps yj;, as described in Eq. (4).
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An analysis of the images revealed that the diseases were primarily concentrated in the centers of the
images. As shown in Fig. 12, the disease labeling was mainly concentrated at small targets, and medium-
sized conditions were less present. Therefore, C3Ghost replaced the C3 module in the prediction medium
section. GhostConv replaced the Conv module and reduced the training footprint, as shown in Fig. 13.

1.0- = =

0.4 0.6 0.8 1.0
width

Figure 12: Distribution of data in the dataset

3.Neck Improved Neck

GhostConv
4 C3Ghost

Figure 13: Improved Neck network

To improve the accuracy and speed of disease detection, the C3CBAM module was added, and YOLO
adjusted the focus on both ward and non-ward areas to improve the accuracy of the model. The SPPCSPC
module was added to improve the receptive field of disease identification, and the Ghost module was added
to reduce the size of the model. The final model structure is shown in Fig. 14.
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Figure 14: YOLOvVS and its improved technology schematic

2.4 Evaluation Criteria

To assess the enhanced YOLOVS architecture based on detection results, we utilized the following
evaluation metrics: Precision (P), Recall (R), Fl-score (F1), mAP, detection time (tr) and model size,
which were calculated using the following equations:

TP
p—— - (%)
TP + FP
TP + FN
2-P-R
Fl= PR (7

where TP represents the number of accurately predicted true samples, FN represents the number of accurately
predicted false samples, and FP represents the number of false samples predicted to be true. P represents the
correct number of all the rice diseases. R represents the number of correct predictions of disease.

-1
AP = / P(R)dR ®)
0

1
mAP = ;Z,—: AP ©)

Here, n represents the total number of categories in the training sample set, and i signifies the number of
the current categories under consideration.

2.5 Experimental Setup

The server configuration is shown in Table 3, and all the experiments were run on this device. The
YOLO-CRD network underwent fine-tuning using datasets and transfer learning techniques to create a
rice disease detection model. The model’s configuration parameters were initialized through pre-training
on the VOC image dataset. All the input images were standardized to dimensions of 640 x 640 pixels. A
batch size of 32 and an initial learning rate of 0.01 were used. The model was trained for 200 iterations
to attain the optimal performance. Following the determination of training parameters, the model was
trained accordingly.
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Table 3: Equipment Model

Setup Equipment model

System Windows 10

Processor Intel Xeon Sliver 4214R Processor
Operating memory 128 GB

GPU 24 GB Nvidia GeForce RTX 3090

3 Results

3.1 Performance of YOLO-CRD Model

The performance of the YOLO-CRD network was evaluated on a custom dataset, and the detection
outcomes are presented in Table 4 and Figs. 15 and 16. As shown in Table 4, brown spot and rice fever
mAP values were high compared with those of bakanae and dry apical leaf nematode. In practice, the two
latter diseases’ symptoms are difficult to distinguish from the environment. Bakanae exhibits
characteristics of yellowing leaves, but in practice, yellowing leaves are mixed with healthy leaves, which
also cause shading, resulting in the main characteristics being more difficult to learn. Dry tip nematode
disease is more widely distributed and causes more severe shading. The average results produced P, R,
mAP, and Fl-scores of 90.4%, 85.4%, 90.2%, and 88, respectively. The model achieved an average
detection time of 7.2 ms, with a model weight size of 24.4 MB. The accuracy-recall curve and the loss
curves are shown in Fig. 12. The model maintained an excellent real-time detection performance of
different rice diseases. Thus YOLO-CRD can adapt to the complex natural environment, allowing it to
efficiently detect early rice diseases early.

Table 4: Evaluation results of YOLO-CRD detection model on test sets

Model Class P (%) R (%) mAP (%)
All 90.4 85.4 90.2
Bakanae 87.2 80.3 85.8
YOLO-CRD Ricefever 92.3 90.6 94.0
Brownspot 93.9 88.8 93.5
Dry apical leaf nematode 88 81.9 87.4

To enhance the robustness of the results, we combined the training and test sets and conducted
five rounds of model training using the Five-fold cross-validation approach. The outcomes, depicted in
Fig. 17, illustrate that the improvements in the model’s performance were consistent and not random,
because the enhanced model consistently outperformed the original model.

3.2 Ablation Experiment

The YOLO-CRD algorithm improved the backbone and feature fusion layer of the YOLOv5s network.
To evaluate the effectiveness of the improved method and modules, a series of ablation experiments were
designed in a unified experimental environment. The experimental results are shown in Table 5. The
modifications to YOLOvS improved the accuracy. The C3CBAM module was introduced to the
backbone, and this increased the mAP by up to 0.7% and the Fl-score by 1. After adding the SPPCSPC,
P increased by 1.4%, R increased by 0.5%, and mAP increased by 1%. Although the addition of
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SPPCSPC increased the size of the model, accurate identifications of diseases are required for practical
applications, making the addition of SPPCSPC necessary.

Loss curve mAP curve
1.0
—\
0. 04 0.8
0.6
2] =%
8 <
= =]
0.02 0.4
0.2
0. 00 T 0.0 T T T
0 100 200 0 50 100 150 200
Epoch Epoch

Figure 15: Loss curve and mAP curve of YOLO-CRD model

/

Figure 16: Detection results of rice test, (a) bakanae disease, (b) bacterial brownspot, (c) leaf rice fever, (d)
dry tip nematode disease
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Figure 17: Five-fold cross-validation results of our model

Table 5: Comparison of results before and after model improvement

C3CBAM Ghost module SPPCSPC P (%) R (%) mAP (%) Modelsize (MB) Fl-score

89.3 838 885 13.8 86
x/ 89.0 849 892 12.5 87
\ \ 89.0 849 892 12.2 87
\ N \ 90.4 854  90.2 24.4 88

To confirm that the enhanced model could effectively emphasize color and texture features, we
incorporated Gradient-weighted Class Activation Mapping [39], and its visualizations of four rice disease
images in the target domain are illustrated in Fig. 18. This visualization in Fig. 18 demonstrates that the
improved model exhibited a more pronounced focus on the disease sites in comparison with the
unimproved model.

As shown in Fig. 19, during the detection process, YOLOVS overlapped more times, and some small
targets could not be detected. However, YOLO-CRD had an increased focus on texture and color owing
to the use of C3CBAM, which allowed a more comprehensive identification of the dry tip nematode
disease. During the test set detection, YOLO-CRD missed two images showing bakanae disease, whereas
YOLOVS missed three images showing bakanae disease. Compared with YOLOvVS, the model had lower
false and missed detection rates and maintained high detection and positioning accuracy. Owing to the
relatively large range of bakanae disease, the labeling range was narrowed, resulting in the identification
accuracy of bakanae disease being lower than those of the other three diseases. In this model, the mAP
for bakanae was also improved.

3.3 Comparative Experiments of Fusion Attention Mechanism

After the YOLO-CRD network model was enhanced with the C3CBAM module, the outcomes were
compared with the original YOLOvVS network and other attention mechanisms, including SE, SIM,
SPACE, and CBAM. Furthermore, we integrated the Ghost module with the attention mechanism and
conducted a comparison with YOLO-CRD. The model’s detection results are presented in Table 6. For
accuracy, YOLO-CRD was 0.1%—6.3% higher than other models. For mAP, YOLO-CRD was 1%—6.1%
higher than other models. For R, YOLO-CRD is 0%-8.1% higher than other models. YOLO-CRD has
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better performance in terms of accuracy, mAP and R. The Swin Transformer algorithm was used to improve
YOLOVS, but it still did not perform as well as YOLO-CRD.
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Figure 18: Grad-CAM visualization examples, (a) bakanae disease, (b) bacterial brownspot, (c) leaf rice
fever, (d) dry tip nematode disease
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Figure 19: Detection comparison between YOLO-CRD and YOLOvS



Phyton, 2024, vol.93, no.6 1291

Table 6: Performance measure values for YOLOv5

Model Name P (%) R (%) mAP (%)
YOLOvVS-SPACE 88.4 81.4 88.6
YOLOv5-GHOST 87.7 81.9 87.9
YOLOvVS5-SWIM 84.1 77.3 84.2
YOLOvVS-SE 89.7 84.5 88
YOLOv5-GHOST-SIM-RFB 87.9 81.3 87.3
YOLOvVS5-SPACE-CBAM 85 81.6 84.1
YOLOv5-C3CBAM 89 84.9 89.2
YOLOvVS5-C3SE 90.4 81.7 89
YOLO-CRD 90.4 85.4 90.2

3.4 Comparison with State-of-the-Art Models

The performance of YOLO-CRD was evaluated on the same custom dataset as the most advanced
models available, including the five standard models YOLOv3, YOLOv7, YOLOVS, Faster-R-CNN, and
SSD. The comparative outcomes are shown in Table 7. Compared with YOLOv7 and YOLOv8, YOLO-
CRD increased mAP by 1.3% and 4.1%, respectively, indicating that the model improved the detection of
rice diseases. In a comparison among YOLOv7, YOLOv8, and YOLOvS5, YOLOvVS had a better model
size than YOLOV7 and a higher model accuracy than YOLOvVS; consequently, YOLOvS5 was selected as
the benchmark model. Compared with YOLOv3, YOLO-CRD’s mAP was 5.7%. Compared with Faster-
R-CNN, YOLO-CRD’s mAP was 13.5%. Compared with SSD, YOLO-CRD’s mAP was 14.6% higher.
The model was also better than the two-stage model. As shown in Table 7, compared with GFLOPs,
YOLO-CRD was less computationally intensive and had a faster processing time.

Table 7: Test results of benchmark models

Model P (%) R (%) mAP (%) Size (MB) GFLOPs
YOLO-CRD 90.4 85.4 90.2 24.4 18
YOLOvV3 90.6 80.1 84.5 117.8 154.6
YOLOVS 89.3 83.8 88.5 13.8 4
YOLOv7 91.3 81.1 88.9 71 103.2
YOLOvS 86.4 80.7 86.1 52.1 78.7
Faster-RCNN \ \ 76.7 629.2 \

SSD \ \ 75.6 103 \

As shown in Fig. 20, YOLO-CRD better detected color changes in the images, detecting bakanae early
when it was not readily evident. YOLOv7 missed three images of in bakanae disease, one of bacterial brown
spot disease, and one of dry tip nematode disease. The detection accuracy of YOLOv7 for small and distant
targets was slightly superior to that of YOLO-CRD. However, the YOLOv7 model size was significantly
larger than that of YOLO-CRD, making the former not suitable for direct use in hand-held devices.
Moreover, even though YOLOV7 had higher detection rates of small and long-distance targets, it also had
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more false positives. In particular, bacterial brown spot and rice fever which have relatively similar disease
characteristics, were misidentified more often by YOLOv7 compared with YOLO-CRD. Although YOLO-
CRD missed slightly more long-distance targets, it had higher prediction frame positioning accuracy.

YOLO-CRD YOLOv7
s S —

bakanae

leaf rice
fever

Figure 20: Detection comparison between YOLO-CRD and YOLOv7

Owing to the sparse and relatively small distribution of rice diseases in the images, the existing detection
models may result in false predictions and failed disease detection, which in time would affect the subsequent
yield. The C3CBAM, SPPCSPC, and Ghost modules were introduced into the YOLO-CRD network, and an
attention map was generated by considering the information between channels and the spatial axis
relationship. The detection outcomes revealed that the YOLO-CRD network model offers a high
detection accuracy and precise positioning predictions for small targets, while maintaining computational
efficiency.

4 Discussions

At present, research on rice diseases mainly focuses on rice fever, a high-incidence disease of rice, but it
varies among different regions and different rice species. Errors in the identification of plant diseases can
easily lead to the use of the wrong pesticides, reduce economic benefits, and reduce crop yields.
Therefore, this paper mainly collected images of common diseases of small-station rice, which is mainly
cultivated in the Tianjin area. For these diseases, YOLO-CRD, a rice disease identification and detection
method based on deep learning, was proposed. First, as shown in Table 2, we compared three basic
models of YOLOvVS, YOLOvVS, and Faster-RCNN. YOLOVS5 outperformed YOLOvVS and Faster-RCNN.
YOLOVS also had the smallest model size, making it suitable for portable smart devices. Therefore, this
paper adopted YOLOvVS as the base model for further improvements. Second, various improvement
methods were undertaken, and it was determined that adding the C3CBAM, SPPCSPC, and Ghost
modules to the model had the best effect. The improved method was named YOLO-CRD, and in a
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comparison with the existing YOLOv7, YOLOvVS, Faster-RCNN, and SSD models, YOLO-CRD had the
best performance. The proposed YOLO-CRD achieved high recognition rates and small weights for rice
diseases, and it can be applied to mobile devices. Fig. 21 shows the model on a mobile phone.

Disease identification system for small station
rice based on deep learning

Model: o
FullScreen: ‘

Frame size: w 2201x1440
Inference time: — 166ms

Figure 21: Schematic diagram of model on-board device identification

The mAP of the YOLO-CRD testing model was 90.2%, but the mAP values of bakanae and dry tip
nematode disease were lower than those of the other two diseases. These two diseases are easily
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occluded, and their environmental background are more complex, resulting in low recognition rates. In the
future, more images will be collected for bakanae and dry tip nematode disease to address the problem of low
recognition rates. In the future, images of all the rice growth periods will be collected to increase the
robustness of the model. Additionally, we will integrate images and meteorological data to aid in
diagnosing rice disease conditions.

5 Conclusion

In this study, a YOLO-CRD model was established by collecting diseased rice images for rice disease
detection. This study used YOLOVSs as the basic model and added C3CBAM, SPPCSPC, and Ghost
modules. The detection results indicated that YOLO-CRD accurately and swiftly detected rice diseases,
making it suitable for different rice varieties, lighting conditions, distances, and degrees of obstruction. In
real-world experiments, YOLO-CRD achieved an average accuracy of 90.4%, a recall rate of 85.4%, a
mAP of 90.2%, an Fl-score of 88, and a detection time of 7.2 ms. When compared with the YOLOVS5s,
YOLOvV7, and YOLOv8 algorithms, YOLO-CRD outperformed them in terms of performance. In
summary, the model has a better recognition rate in the early disease stages and can reduce the use of
pesticides during the rice production process. Owing to the short detection time, this method may be
applied to mobile devices. However, our method still has some shortcomings, such as not considering
different rice varieties growth stages. In the future, the following two additional research objectives will
be undertaken: first, collect data from the seedling stage and add it to the model, allowing the
identification of seedling disease, bacterial brown spot, dry tip nematode disease, and rice fever during
the whole growth period of rice; and second, apply meteorological data to the rice disease detection process.
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