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ABSTRACT

Rosaceae represents a vast and complex group of species, with its classification being intricate and contentious.
The taxonomic placement of many species within this family has been a subject of ongoing debate. The study
utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae. The cp genomes, vary-
ing in size from 153,366 to 159,895 bp, followed the typical quadripartite organization consisting of a large single-
copy (LSC) region (84,545 to 87,883 bp), a small single-copy (SSC) region (18,174 to 19,259 bp), and a pair of
inverted repeat (IR) regions (25,310 to 26,396 bp). These genomes contained 132–138 annotated genes, including
87 to 93 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes using MISA software, 52 to 121 simple
sequence repeat (SSR) loci were identified. D. arbuscular contained the least of SSRs and did not have hexanotides,
A. lineata contained the richest SSRs. Long terminal repeats (LTRs) were primarily composed of palindromic and
forward repeat sequences, meanwhile, The richest LTRs were found in Argentina lineata. Except for Argentina
lineata, Fragariastrum eriocarpum, and Prunus trichostoma, which varied in gene type and position on both sides
of the boundary, the remaining species were found to be mostly conserved according to IR boundary analysis. The
examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1, indicating that this
gene was primarily subjected to positive selection during evolution. Additionally, 9 hotspots of variation were
identified in the LSC and SSC regions. Phylogenetic analysis confirmed the scientific validity of the genus Prunus
L. sensu lato (s.l.) within the Rosaceae family. The separation of the three genera Argentina Hill, Fragariastrum
Heist. ex Fabr. and Dasiphora Raf. from Potentilla L. may be a more scientific classification. These results offer
fresh perspectives on the taxonomy of the Rosaceae.
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1 Introduction

The Rosaceae family is estimated to have originated in the Late Cretaceous period [1]. With fewer
species in the southern hemisphere and a greater richness in the northern temperate areas, it is extensively
dispersed around the planet. This family consists of three subfamilies, 88 to 100 genera, and around
3000 species. China is the distribution center of the Rosaceae family, with more than 1,000 species in
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51 genera [2]. Because of frequent hybridization, apomixis (asexual reproduction), and rapid radiation
evolution, the phylogenetic connections within the Rosaceae family have always been a source of debate [3].

The classification of Rosaceae differs from that of other angiosperms and is greatly influenced by
molecular phylogenetic studies. Besides Chrysobalanaceae and/or Neuradaceae, previous classifications
have sometimes included Saxifragaceae, Crassulaceae, and Cunoniaceae [4], or Dichapetalaceae and
Calycanthaceae [5] within the Rosales order. However, molecular evidence does not support these
families as being particularly closely related to Rosaceae. Within the Rosaceae family itself, there have
been published numerous taxonomic treatments pertaining to the Rosaceae’s classification. The family is
divided into four subfamilies, Amygdaloideae (Prunoideae), Maloideae, Rosoideae, and Spiraeoideae, the
most frequently accepted taxonomy to date, primarily based on fruit kinds [6]. However, Potter et al.
classified the Rosaceae into three subfamilies, namely Dryadoideae, Rosoideae, and Amygdaloideae,
based on phylogenetic analysis of six nuclear and four chloroplast genes. Former members of Prunoideae,
Maloideae, Spiraeoideae, and a few taxa belonging to Rosoideae are included in the Amygdaloideae [7].
Subsequently, Hong et al. revised the Potter system by eliminating the level of supertribe and merging
Osmaronieae and tribe Kerrieae into a broader Kerrieae tribe [8]. It also divided some tribes into
subtribes and genera. After revisions, Rosaceae now has three subfamilies and fifteen tribes.
Understanding the evolutionary history of the Rosaceae family is crucial for biodiversity conservation and
the improvement of commercially important species.

The economically valuable species of the Rosaceae family is mainly concentrated in genera with a large
number of species, such as Rubus L., Rosa L., and Potentilla L. There are also some species with medicinal
value in smaller genera like Malus Mill. and Crataegus L. [2]. Rubus is the largest genus in the Rosaceae
family, encompassing over 700 shrubs and herbaceous plants [9]. The fruits of the Rubus plants have
been dubbed “superfruits” due to their rich content of anthocyanins, phenolic acids, flavonoids, tannins,
and other beneficial secondary metabolites [10]. The origin center of the Rubus has long been debated.
Some researchers suggested that it originated in southwest China [11,12], while others believed North
America is the center of Rubus origin [13]. Research on Rubus has primarily focused on the taxa in
Europe and America, and the phylogenetic relationship of Chinese Rubus species remains unresolved
[14]. Rosa L. is a typical genus in the Rosaceae family that has gained popularity in recent years due to
its therapeutic properties. For example, the famous traditional Chinese medicinal plant, the rose flower
(Meiguihua), is known for its blood circulation-promoting, qi-regulating, and mood-lifting properties.
Therefore, it is frequently used to treat female disorders such as irregular menstruation and dysmenorrhea
[15]. Extracts from rose flowers also serve as anti-inflammatory and expectorant agents for respiratory
diseases [16]. Historically, plants from the Potentilla have been used for medicinal purposes in both
China and Europe [17]. Modern medical research has discovered that the extracts of various Potentilla
species exhibit good antioxidant, anti-tumor, and anti-ulcer effects [18]. The fruits of Fragaria L.,
commonly known as strawberries, are the most favored. Apart from their appealing taste, strawberries
also possess antioxidant, antibacterial, and anti-inflammatory properties. China is the Sorbus L. genus’s
primary distribution location, and it is widely recognized for its ornamental value [19]. In the Rosaceae
family, each genus has unique traits, although there is frequently debate on the genealogical relationships
both within and across species.

The angiosperm chloroplast genome displays a quadripartite structure with a pair of repeats (IRs)
dividing a small single-copy region (SSC) from a large single-copy region (LSC) [20,21]. The chloroplast
genome is extensively utilized in reconstructing phylogenetic relationships and facilitating species-level
identification [22,23]. It serves as a crucial molecular marker for analyzing intraspecific genetic diversity
[24,25]. Our comprehension of the evolution of the chloroplast genome can be improved by comparing
whole chloroplast genomes [26,27]. Moreover, the genome of chloroplasts offers a perfect paradigm for
phylogenetic connection resolution and molecular markers in genome evolution [28]. As of 27 March
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2024, the NCBI database has documented the chloroplast genomes of 16,554 plant species, underscoring
their pivotal role in DNA barcoding applications [29]. Consequently, the chloroplast genome remains an
integral component in the realms of plant identification, taxonomic classification, and phylogenetic
studies [30].

The unique ecological environment of the Tibetan Plateau has nurtured distinct medicinal resources,
particularly within the Rosaceae family, a primary group of Tibetan medicinal plants [31]. These plants,
characterized by slow growth and long life cycles, face the risk of resource depletion, posing significant
challenges for domestication and introduction [32]. Furthermore, the extremely fragile ecological
environment supporting these medicinal resources—vulnerable to damage and difficult to restore—
underscores the importance of understanding the genomic characteristics and phylogeny of Rosaceae
Tibetan medicines. Such knowledge is crucial for the effective protection and sustainable utilization of
these valuable medicinal resources. The Rosaceae family, characterized by its vast species diversity and
complex taxonomy, has always presented challenges in the classification of certain genera, notably
Potentilla and Prunus. This research offers new perspectives on the taxonomic disagreements pertaining
to these genera, thereby laying a foundational framework for further research on the phylogeny and
structural diversity of the Rosaceae. Such contributions are pivotal for advancing our understanding of
the family’s evolutionary relationships and morphological variations.

2 Materials and Methods

2.1 Materials
Dr. Zhong Guoyue of Jiangxi University of Chinese Medicine (JUTCM) confirmed plant samples

belonging to 19 different Rosaceae species that were obtained in the Tibet Autonomous Region of China
(Table S1). Every voucher specimen is stored at the JUTCM Herbarium.

2.2 Methods

2.2.1 DNA Extraction and Sequencing
Using the Plant Genomic DNA Kit (TIANGEN BIOTECH (BEIJING) Co., Ltd., Beijing, China) and a

manual technique, genomic DNA was isolated from leaf material. A NanoDrop spectrophotometer was
utilized to quantify the concentration of DNA. DNA (>50 ng/μL) was fragmented using sonication,
purified and then subjected to end repair. The size of the DNA fragments was determined by gel
electrophoresis. Following the standard Illumina genomic DNA library preparation protocol, the Illumina
Novaseq 6000 platform (Genepioneer Biotechnologies, Nanjing, China) was used to build and sequence a
dual-indexed library with an insert size of 350 bp.

2.2.2 Chloroplast Genome Assembly and Annotation
Trimmomatic v0.36 software [33] was used to filter the raw reads. After trimming the endpoints of the

sequences, single bases with a Phred quality score of less than 20 and consecutive uncalled bases with a value
more than three were eliminated. Sequences with a trimmed median quality score below 21 or a length below
40 bp were discarded. After quality filtering, Bowtie2 v.2.2.6 [34] was used to map the reads to the available
cp genomes of Rosaceae species, downloaded from NCBI, to exclude sequences from nuclear and
mitochondrial sources. Subsequently, all putative cp sequences were mapped back to the reference
sequences and then de novo assembled using GetOrganelle v1.7.5 [35]. Finally, the high-quality clean
data were mapped to the complete plastome for error checking. The CpGAVAS2 software [36] was used
to automatically annotate the cp genome, and manual correction was performed using the Geneious
v11.0.5 software [37] with reference to previously published cp genomes. The cp genome map was
generated using the online tool OGDRAW v1.1 [38].
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2.2.3 Repetitive Structure
MISA [39] was used to identify simple sequence repeats (SSRs), and 10, 5, 4, 3, 3, and 3 were the lowest

thresholds for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Four types of long repetitions
were identified using REPuter [40]: forward, reverse, palindromic, and complimentary repeats. The
following detection parameter values were applied: repfind 30-h 3-best 1000-c-f -p-r-l.

2.2.4 Codon Usage Bias and Ka/Ks Ratio
To determine patterns of codon use and compute codon bias (RSCU), CodonW software 1.4.2 [41] was

employed. Using the CODEML method in PAML V4.973 software [42], the ratio of nonsynonymous
nucleotide substitution rate to synonymous nucleotide substitution rate (Ka/Ks) for each gene was
calculated. Pairwise comparisons were conducted, and each protein-coding gene’s dN/dS ratio was
computed using the PAML yn00 program. The specific parameters were set to icode = 10, weighting = 0,
common f3 � 4 = 0, and all CODEML control file parameters were kept at their default values.

2.2.5 IR Boundary
The IR (Inverted repeat) boundaries were created and the gene type and position inside the boundary

region were determined using the IRscope software [43] (https://irscope.shinyapps.io/irapp/). Additionally,
the expansion and contraction of genes were found.

2.2.6 Nucleotide Diversity
The nucleotide variability (Pi) of cp genomes was determined by aligning sequences using MAFFT

V5 software [44], then manually modifying the sequences with the BioEdit program [45]. DnaSP version
5.1 was utilized to do the study of sliding windows [46]. 200 bp was the step size and 600 bp was the
window length that were specified.

2.2.7 Phylogenetic Analysis
To construct the phylogenetic relationships and examine the phylogenetic status of Rosaceae, the

complete cp genomes of 110 Rosaceae species were download from GenBank (Table S2), In this study,
we selected two species from the Rosales as outgroups: Hippophae rhamnoides subsp. sinensis Rousi
(NC_049156) and Berchemiella wilsonii (Schneid.) Nakai (NC_043912). This choice allows us to
establish a comparative framework for phylogenetic analysis, providing a reference point for the genetic
background of the taxa under study. Using the following parameter settings, we used MAFFT [44] online
to align the 131 complete cp genomes (including 19 Rosaceae species). Then, we used the Gblocks [47]
algorithm in PhyloSuite v1.2.275 [48] to remove the ambiguously aligned fragments: minimum number
of sequences for a conserved/flank position (17/17), maximum number of contiguous non-conserved
positions (8), minimum length of a block (10), and allowed gap positions (with half). The best fitting
nucleotide substitution model (TVM+F+I+I+R6) was chosen by ModelFinder [49]. The maximum
likelihood (ML) (bootstrap = 1000) and Bayesian inference (BI) (generations = 2,000,000; chains = 4;
runs = 2) trees were constructed by IQ-tree and MrBayes in Phylosuite, respectively. Finally, The trees
were modified by iTOL online (https://itol.embl.de/).

3 Results

3.1 Chloroplast Genome Features
The Q30 values of the cp genomes of the 19 Rosaceae species ranges from 92.11% to 93.75%, indicating

that the sequencing quality was reliable. The 19 cp genomes range from 153,366 bp (D. arbuscula) to
159,895 bp (S. koehneana), and all exhibit a typical quadripartite structure, consisting of LSC region
(8,445–87,883 bp), SSC region (18,174–19,259 bp), and IR region (25,310–26,396 bp) (Table S2). The
total GC content was 37.81%–41.1%. The GC content in LSC region, SSC region and IR region was
34.2%–35.23%, 30.25%–31.45% and 42.54%–42.9%, respectively. The total number of annotated genes
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in all species ranges from 132 to 138, including 87–93 PCGs, 37 tRNA genes, and 8 rRNA genes (Fig. 1,
Table S3).

3.2 Codon Usage Bias
The relative likelihood of synonymous codons expressing a certain amino acid is known as the Relative

Synonym Codon Usage (RSCU). The codon composition of 87–93 PCGs in the 19 cp genomes of Rosaceae
species was analyzed, and RSCU values were calculated. The cp genomes contained 63 codons (including

Figure 1: Cp genome map of 19 Rosaceae species. Genes on the inside of the large circle are transcribed
clockwise and those on the outside are transcribed counterclockwise. The genes are color-coded based on
their functions. The dashed area represents the GC composition of the cp genome. LSC, large single copy
region; IR, inverted repeat; SSC, small single copy region
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UAG, UAA, UGA) (Fig. 2), encoding 20 amino acids. The total number of codons encoding proteins ranged
from 26,361 (A. lineata) to 27,014 (R. graciliflora).

Leucine (Leu) has the highest codon usage rate (2,776 to 2,847), while Cysteine (Cys) has the lowest
codon usage rate (298 to 315). The RSCU values of the 19 cp genomes ranged from 0.3684 to 3.962.
Methionine (Met), which was encoded by AUG, had the greatest RSCU value among them, whereas
leucine (Leu) was encoded by CUG, which had the lowest. Furthermore, 30 codons had an RSCU greater
than 1 and 33 codons had an RSCU less than 1. All of the codons with RSCU > 1 terminated in A or U,
which was in line with the numerous A/T features of angiosperm cp genomes (Fig. 2).

3.3 Repetitive Structure Analysis
A total of 52 (P. fruticosa) to 121 (R. biflorus) SSR loci were detected in the 19 cp genomes, comprising

six types of repeats (Fig. 3). Among them, the mononucleotide repeats were the richest (38–84), followed by
di- (10–20), tetra- (2–11), tri- (0–7), pentanucleotide repeats (0–4), and hexanucleotide repeats (0–3),
respectively. Mononucleotide, dinucleotide, and tetranucleotide repeats existed in the cp genomes of all

Figure 2: Heatmap of relative synonymous codon usage (RSCU) of 19 Rosaceae cp genomes
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19 species. Trinucleotide repeats were absent in P. trichostoma, C. adpressus, C. multiflorus, C. wardii, and
S. koehneana. Pentanucleotide repeats were present in P. trichostoma, C. adpressus, C. wardii, R.
sweginzowii, S. diandra, and S. koehneana, but absent in the other 13 species. Hexanucleotide repeats
were only found in P. trichostoma, R. graciliflora, R. macrophylla, R. sweginzowii, S. diandra, and S.
koehneana (Fig. 3).

SSRs were not evenly distributed across the cp genomes. The LSC region included 46–96 SSRs, the
SSC region had 5–12 SSRs, and the IR region contained 0–15 SSRs. More specifically, there were no
SSRs in the IR region of D. arbuscula’s cp genome. Future research on genetic diversity may find areas
of fast evolution and suitable targets due to the large number of SSRs found in the LSC region.

There are 32–77 long repeat sequences in the cp genomes of 19 Rosaceae species. There are four
different types of repeat sequences: forward (F), reverse (R), palindromic (P), and complementary (C).
The large repeat sequences were between 30 and 26,396 bp long. Complementary repeat sequences were
found only in nine species, i.e., C. multiflora, C. wardii, F. moupinensis, F. eriocarpa, A. lineatum, R.
biflorus, R. pedunculosus, S. diandra, and S. koehneana. Forward, palindromic, and reverse repeat
sequences were found in all 19 species. The number of forward repeat sequences ranged from 13 to 38,
palindromic repeat sequences ranged from 15 to 27, and reverse repeat sequences ranged from 1 to 10.
The most prevalent sequences were palindromic repeats, which made up 31.17% to 55.56% of all
sequences, followed by forward repeat sequences, accounting for 29.17% to 49.35% (Fig. 4).

3.4 IR Boundary Analysis
This study offers a meticulous examination of the IR boundaries and adjacent genes within 19 species of

the Rosaceae family. Despite the similar lengths of the IR regions across these species—spanning from
25,310 to 26,396 base pairs—variations in their expansion and contraction were noted. The study
highlights the conservation of the SSC/IRa boundary, in stark contrast to the variability observed in the
LSC/IRb, IRb/SSC, and IRa/LSC boundaries, with significant differences notably present at the LSC/IRb
and IRb/SSC junctures. Particularly for P. trichostoma, an anomaly in the LSC/IRb boundary positioning
between the rp122 and rps19 genes was identified, diverging from the consistent placement between the
rps19 and rp12 genes seen in the other 18 species.

Figure 3: Analysis of cpSSRs in 19 Rosaceae cp genomes
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The positioning of the rps19maintained consistency across seven Rosa species, precisely 11 bp from the
LSC/IRb boundary. Conversely, in Cotoneaster and Sorbus species, the gene straddled the LSC/IRb
boundary, with portions extending into both the LSC and IRb regions. Rubus species displayed the rps19
gene merely 7 bp away from the LSC/IRb boundary, indicating a variance among different genera. The
rp12 gene resided entirely within the IRb region across all species examined.

The ndhF gene, situated in the SSC region, either crossed the IRb/SSC boundary or was positioned at
various distances from it in 16 species across 8 genera, excluding Cotoneaster and Sorbus. The ycf1 gene
consistently spanned the transition from the SSC to IRa regions in all species. Furthermore, the trnH gene
crossed the IRa/LSC boundary in seven Rosa species, diverging in its precise location across different genera.

In terms of boundaries, variations were most prominently observed at the LSC/IRb (JLB) and IRb/SSC
(JSB) boundaries. Among the species examined, those in the genera Cotoneaster and Sorbus showed the
greatest similarity in their IR boundaries, with sizes and distances being remarkably consistent.
Interestingly, A. lineata, F. eriocarpum, and D. arbuscula exhibited significant divergences in their
boundary configurations, suggesting that these differences may have contributed to their evolutionary
divergence from Potentilla (Fig. 5). These findings highlight the complexity and variability in the
positioning of genes relative to the IR boundaries across the Rosaceae family, providing valuable insights
into the evolutionary relationships and genetic diversity within this group.

3.5 Selection Pressure Analysis
The evolutionary rate of sequences is influenced by nucleotide substitutions and selective pressures. The

Ka/Ks ratio is commonly used to measure whether PCGs are under selective pressure. Only 83 PCGs in the
19 cp genomes had Ka or Ks values (Fig. 6). Since Ka or Ks = 0, which indicates that these sequences were
preserved without nonsynonymous or synonymous nucleotide alterations, the Ka/Ks values for the other
PCGs cannot be computed. The Ka/Ks values ranged from 0.00 to 1.06, indicating purifying selective
constraints acting on the chloroplast PCGs. Genes with a Ka/Ks value of 0 included at pH, orf188, petN,
psaC, psbA, psbD, psbE, psbF, psbI, psbM, psbN, rpl36, rps12, rps7, and ycf15, indicating that they were
under strong purifying selection. Genes with both Ka and Ks values of 0 included orf42, psaJ, psbL,
rpl23, and ycf68. Only three genes, ycf2, psaI, and infA, had a Ka/Ks value greater than 0.5. Among the
83 genes, only infA had a Ka/Ks value greater than 1, indicating positive selection acting on this gene (Fig. 6).

Figure 4: Analysis of cpLTRs in 19 Rosaceae cp genomes
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3.6 Hot Spot Analysis
Higher pi values indicate greater polymorphism and divergence hotspots. By using a sliding window

approach to calculate nucleotide diversity (pi) values, the average nucleotide diversity (pi) values in the
LSC, SSC, and IR regions of the 19 cp genomes ranged from 0.000 to 0.215 (Fig. 7), suggesting that
these species may have undergone rapid nucleotide substitutions. Among them, the SSC region exhibited

Figure 5: IR boundaries of 19 cp genomes. JLB, JSB, JSA, and JLA represent the four different junctions on
the cp genome boundaries

Figure 6: KaKs value of 83 PCGs in 19 cp genomes
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the highest pi value, indicating that the variation was concentrated in this area. The pi value of IR region was
the lowest, which once again verified that IR region was more conservative than LSC and SSC region. A total
of nine regions with higher pi values (pi > 0.13) were identified, including 36401–37000 (0.131), 61601–
62200 (0.137), 55801–56400 (0.141), 12801–13400 (0.159), 129801–130400 (0.152), 130001–130600
(0.160), 130201–130800 (0.175), 56201–56800 (0.183), and 128801–129400 (0.215). Among them, five
regions were in the LSC region, and 4 regions were in the SSC region (Fig. 7).

3.7 Phylogenetic Analysis
Using the complete cp genomes of 19 Rosaceae species obtained in this study and 110 Rosaceae species

downloaded from the NCBI website, the ML and BI phylogenetic trees were constructed using the
Phylosuite software. The ML and BI trees have exactly the same topological structure, and the bootstarp
value of most branch nodes was greater than 75 and the posterior probability was greater than 0.997,
indicating that the phylogenetic relationship was reliable. The 129 species of the Rosaceae family can be
divided into 8 branches, namely Clade I to Clade VIII. Clades I to III belong to Prunus L., Sorbus L.,
and Cotoneaster Medik., respectively, all of which are part of the Amygdaloideae subfamily. Prunus L
falls within the Amygdaleae tribe, whereas Clades II and III are grouped into the Maleae tribe, forming a
cohesive monophyletic cluster. These clades, representing the Maleae, stand as sister groups. Moving to
Clades IV through VIII, they comprise Rubus L., Sanguissorba L., Rosa L., Argentina L., Fragariastrum
L., Dasiphora L., and Fragaria L., all under the Rosoideae subfamily. Within Clade IV, Rubus L. is
categorized under the tribe Rubeae and bifurcates into two branches, each supported by a 100% bootstrap
value. Clade IV and Clades V to VIII share a sister group relationship. Clade V is uniquely defined by a
monophyletic lineage of Sanguissorba. Clade VI features Rosa L. of the Roseae tribe, with its internal

Figure 7: Nucleotide diversity of 19 cp genomes
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nodes primarily exceeding an 89% bootstrap value, barring one at 69%. Clades VII and VIII, belonging to the
Potentilleae tribe, include Argentina L., Fragariastrum L., Dasiphora L., and Fragaria L., with Clade VI
being a sister group to these clades (Fig. 8).

Figure 8: The ML and BI phylogenetic trees based on the complete cp genomes of 129 Rosaceae species.
The ★ symbol represented the 19 cp genomes sequenced in this study
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4 Discussion

4.1 Characterization of the Cp Genomes
This study sequenced and compared the complete cp genomes of 19 Rosaceae species from Tibet. The

results indicated that the 19 cp genomes exhibited a conserved gene order and gene content, and displayed a
typical quadripartite structure (LSC, SSC, IRa, and IRb). These cp genomes are similar in size, structure, and
gene content to previously published Rosaceae cp genomes [50–52].

The cpSSRs are characterized by maternal inheritance, abundant polymorphism, and good
reproducibility in plants, as a result, they are frequently employed as molecular markers for species
identification, and population genetics research [53–55]. The distribution of SSRs in the cp genomes of
plants is uneven. The number of detected SSR loci in the 19 Rosaceae species ranged from 52–121, with
the largest number of single nucleotide repeats. Among them, 46–96 SSRs were distributed in the LSC
region, 5–12 SSRs in the SSC region, and 0–15 SSRs in the IR region, while the IR region of D.
fruticosa lacked SSR distribution. In line with earlier research, there were much more SSRs in the LSC
region than in the SSC and IR regions [56]. Long repetitive sequences may accelerate cp genome
rearrangements and increase population genetic diversity [56]. A total of 32–77 long repetitive sequences
were identified in all 19 species, including three types, i.e., forward (F), palindrome (P), and reverse (R).

Plants exhibit a preference for synonymous codon usage [57]. Codon usage bias is the result of long-
term evolution and adaptation to the environment [58], and therefore is related to phylogenetic
relationships [53]. The 19 Rosaceae plants’ cp genomes exhibit comparable overall codon use patterns
and a propensity for A/U-end synonymous codons. The frequent A/T traits seen in the cp genomes of
angiosperms are consistent with this [59,60].

4.2 Cp Genome Variation
Genes containing a single intron are widely present in organisms. The infA gene is a gene with a single

intron. However, among the 19 species studied, the infA gene was only found in the cp genome of
R. pedunculosus. The infA gene is unstable and is easily lost from the cp genome of angiosperms and
transferred to the nucleus [61]. Similarly, the atpF gene is also a gene with a single intron, and it is only
found in C. adpressus, C. multiflorus, C. wardii, S. koehneana, and P. trichostoma. The complete atpF
gene has been discovered in some cp genomes of the Amygdaloideae subfamily, while the loss of the
atpF gene has also been observed in some genera of the Rosaceae [62]. The loss of the atpF gene was
widespread in the 19 cp genomes of Rosaceae family.

The cp genome may be utilized to research phylogenetic categorization and genome evolution among
plant lineages since variations in the IR region’s size are frequently caused by these changes [63]. The
length of IR region and LSC region was similar in most of the 19 species. However, three species in the
genus Cotoneaster, as well as S. koehneana, have significantly longer IR and LSC regions than species in
other genera. Additionally, these four species all possess the atpF gene, while the atpF gene is missing
in six of the remaining seven genera. The loss of the atpF gene is one of the reasons for the differences
in the sizes of the IR and LSC regions in the cp genomes of Rosaceae species.

The IRb/SSC (JSB) boundary in these 19 cp genomes is positioned between the ycf1 and ndhF genes,
and it is consistently spanned by the ycf1 gene. However, the distance between the ndhF gene and the JSB
boundary varies. For example, among the seven species of Rosa, ndhF gene is located less than 100 bp away
from this boundary in six species, while in the three species of Cotoneaster, ndhF gene spans across the
boundary by 12 bp. In the two species of Rubus, the ndhF gene is approximately 30 bp away from the
boundary. The results above indicate that ndhF exhibits strong genus-specific characteristics and may be
used to determine the correct classification of genera within the Rosaceae family.
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Nine areas (pi > 0.13) with high values were identified in 19 different species. Four of them were in the
SSC region and five of them were in the LSC region. As further evidence of the IR region’s greater
conservation than the LSC and SSC regions, the SCS region had the greatest pi value and the IR region
the lowest. The nucleotide diversity of the IR area did not contain any substantially divergent sequences,
suggesting that these regions are largely conserved [64].

A common method for assessing nucleotide evolutionary rates and selection pressure locations in coding
sequences is the ratio of dN/dS [65]. Due to the fact that infA is the sole gene that has experienced positive
selection, as shown by a Ka/Ks value more than 1.

4.3 Phylogenetic Analysis
According to years of morphological and molecular research, the Rosaceae family can be divided into

three subfamilies, namely the redefined Rosoideae, expanded Amygdaloideae, and the newly separated
Dryadoideae which was formerly a part of Spiraeoideae. However, the relationships between these three
subfamilies are still uncertain. Studies suggested that Dryadoideae could most likely be placed at the base
of the entire Rosaceae family, or serve as the sister group of Rosoideae or Amygdaloideae [8]. Within the
framework of these three subfamilies, a new system for Rosaceae family was proposed by Potter et al.
[7]. In 2016, Xiang et al. [8] had further refined the classification within the Rosaceae family under the
Potter system, positioning the Roseae at the forefront of the Rosoideae subfamily’s divergence,
subsequently followed by the Agrimonieae. Contrary to this arrangement, the present study had proposed
an alternative order. Notably, the Potter system did not delineate the Agrimonieae as a separate entity.

Prunus trichostoma belongs to the Amygdaleae tribe of Prunus genus. There have been two ways to
classify Amygdaleae tribe. One is only composed of the “Genus Prunus sensu lato”, which is further
divided into sub. Genus, including subg. Prunus, subg. Amygdalus, subg. Cerasus, subg. Padus, and
subg. Laurocerasus. However, it is not yet clear whether Maddenia and Pygeum belong to the “Genus
Prunus sensu lato”. The other way is to divide “Genus Prunus sensu lato” into smaller genera that make
up the Amygdaleae tribe. The previously popular Rydberg system follows the former way. Due to
technological limitations, early molecular studies usually constructed phylogenetic relationships based on
a single sequence. Except that the subgenus in the Rydberg system were not monophyletic groups, and
Maddenia and Pygeum were also embedded within “Genus Prunus sensu lato”, making it difficult to
differentiate the various evolutionary lineages. In addition, the inconsistencies between phylogenetic trees
constructed from cp and nuclear genomes have led taxonomists to prefer to maintain a “Genus Prunus
sensu lato”, so that the Amygdaleae tribe has only one genus and no sub. Genus. Some researchers
separate Cerasus as a genus [66]. However, APG Ⅳ systems maintain the concept of “Genus Prunus
sensu lato” in the end, which is consistent with our analysis based on ML and BI trees. Besides, it is
appropriate to include P. trichostoma in the “Genus Prunus sensu lato”.

The taxonomic status of Argentina Hill, Dasiphora Raf., and Fragariastrum Heist. ex Fabr. has long
been a subject of debate. Initially classified within the genus Potentilla, they were later separated to form
independent genera [67–69]. The species of Fragariastrum, Dasiphora, and Argentina clustered together,
aligning with the taxonomic relationship in the APG IV system. A. lineata and F. eriocarpum formed
Clade VII, while Dasiphora and Fragaria formed Clade VIII, indicating a closer relationship between
Fragariastrum and Argentina. Therefore, the genera Argentina, Fragariastrum, and Dasiphora should be
separated from Potentilla.

The investigation encompassed 19 species within the Rosaceae family. Hence, to deepen our
comprehension of the phylogenetic interrelations within this family, it is imperative to extend the research
to a broader array of species.
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5 Conclusions

These results expand researchers’ understanding of the diversity and evolutionary relationships in the
Rosaceae family. In summary, this study provides abundant resources for the study of cp genomes in
Rosaceae family, and has reference value for evolutionary research and species identification within the
family.
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