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ABSTRACT

Beans contain a wide range of vitamins, proteins, calcium, and zinc which make them an important food source
for many countries. To meet the demand for bean production worldwide, large amounts of fertilizers and pesti-
cides are used. However, the cost of production and environmental impact increases. To produce food sustainably,
the use of beneficial nutrients such as silicon as a biostimulant has been proposed. However, information about
the effect of different sources of silicon on the metabolism of bean plants is scarce. Bean plants cv. Strike were
grown in pots for 60 days and the effect of foliar application of silicon nanoparticles and the silicon-based bios-
timulant Codasil� at 4 concentrations (0, 1, 2, and 4 mM) on total biomass, yield, photosynthetic pigment con-
centration, photosynthetic activity, stomatal conductance, transpiration rate, chlorophyll fluorescence, and
nitrogen assimilation were evaluated. The results obtained showed that the supply of silicon at a dose of
1 mM functioned as a biostimulant, favoring gas exchange and nitrogen assimilation within the plant, which sti-
mulated growth and yield. The results of this research work allowed a better comprehension of the effects of sili-
con application through silicon nanoparticles and the biostimulant Codasil� on the physiology of green bean
plants.
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1 Introduction

Beans are an important source of protein, vitamins calcium, magnesium, and zinc. Because of this, they
are a significant food source, mainly for developing countries [1]. Additionally, green beans (Phaseolus
vulgaris L.) contain several bioactive compounds: phenolic compounds, lectins, oligosaccharides, and
flavonoids that help prevent cardiovascular diseases, obesity, diabetes, and cancer [2]. These properties
make beans the most important legume for human consumption [3]. However, to meet production
demands, large amounts of fertilizers and pesticides are used, the increasing cost of production and
environmental impact [4]. Hence, one of the objectives of modern agriculture is to sustainably produce
the adequate quantity and quality of food [5]. An alternative for sustainable production is the use of
biostimulants and nanoparticles of different elements, which improve crop productivity, efficient use of
nutrients, and tolerance against biotic (plant pathogens, pests) and abiotic stresses (drought, salinity,
heavy metal, extreme temperatures) [6,7].

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/phyton.2024.048742

ARTICLE

echT PressScience

mailto:esteban@ciad.mx
https://www.techscience.com/journal/Phyton
http://dx.doi.org/10.32604/phyton.2024.048742
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/phyton.2024.048742


A plant biostimulant is any product that can stimulate vegetative growth, and yield and can ameliorate
the harmful effects of stress [8]. They contain a wide array of molecules, compounds, and nutrients
including Zn, Si, vitamins, amino acids, and plant hormones [9,10]. Their complex chemical nature
promotes growth by regulating plant physiological processes, notably, biochemical pathways and
regulatory systems within the plant. Examples of such processes include seed germination,
photosynthesis, nutrient absorption, and antioxidant systems [11,12]. In addition, a key factor in the use
of biostimulants is the significant effects on crops when applied in small quantities, which differentiates
them from agrochemicals and fertilizers [13].

Similarly, nanotechnology is an emerging and promising tool to stimulate plant growth and
development by influencing metabolic processes such as transpiration and photosynthesis [14]. The small
size of nanoparticles (1–100 nm), porosity, high surface area-to-weight ratio, and high reactivity of their
surface make them readily available for plant uptake [12,15]. Furthermore, they can serve as delivery
systems for other particles (nutrients) in a controlled manner [7]. It also has been reported that
nanoparticles improve resilience to biotic and abiotic stress [16]. Therefore, nanoparticles could be
employed in precision agriculture, delivering in a precise and controlled manner the necessary inputs for
the correct development of plants, offering greater productivity, efficiency, and economic benefits.

Specifically, the application of silicon (Si) in the form of nanoparticles (NanoSi) is of particular interest,
owing to the considerable benefits of Si in plant metabolism, particularly in coping with biotic and abiotic
stresses [17]. Nonetheless, Si accumulation capacity is directly linked to beneficial effects on the plant, in
addition to the fact that the amount of Si hoarded is dependent on the stress level of the plant [18].
Nanoparticle nutrition is a relatively new area of plant mineral nutrition. For example, Si uptake is
species and Si transporter-dependent, making Si fertilization less effective in certain species compared to
others [19]. Certainly, information on how different Si sources can affect the basic physiological
parameters of green beans such as photosynthetic gas exchange and nitrogen metabolism parameters is
scarce. The purpose of this study was to assess the effects of NanoSi and the biostimulant Codasil at
4 doses each (0,1, 2, and 4 mM) on total biomass, yield, photosynthetic gas exchange parameters, and
nitrogen assimilation parameters.

2 Materials and Methods

2.1 Crop Management
The experiment was established under shade net conditions in Cd. Delicias, Chihuahua, Mexico (28°11′

36′′ N, 105°28′16′′ W) during the period August–October 2022. A shade net was necessary to protect the
green bean plants from the high solar radiation (1100 W m−2) present in the region. Green bean seeds
(Phaseolus vulgaris L.) cv. strike was sown in plastic pots (13.4 L capacity). These pots contained a
mixture of vermiculite and perlite in a 2:1 weight/weight ratio as substrate (Two plants per pot). Two
plants per pot were used because some analyses were carried out with dry material and others required
freshly harvested material. A modified Hoagland solution by Sánchez et al. [20] was used for plant
irrigation and composed as follows: 6 mM NH4NO3, 1.6 mM K2HPO4, 0.3 mM K2SO4, 4 mM CaCl2,
1 µM ZnSO4, 5 µM Fe-EDDHA, 2 µM MnSO4, 0.25 µM CuSO4, 0.3 µM Na2MoO4, 0.5 µM H3BO
with pH of 6.0–6.1 and electrical conductivity of 2 dS m−1. This solution was applied at a volume of
0.5 L per pot per day until 30 days after sowing, whereafter one L of solution was applied every third
day until harvest (60 days after sowing).

2.2 Experimental Desing and Treatments
Seven treatments with six replicates each were distributed in a completely randomized experimental

design (Table 1): NanoSi and Codasil� at doses of 1, 2, and 4 mM, with 0 mM being the control for
both; these doses were based on previous reports, although they were slightly higher in this experiment
[19,21]. Randomization was achieved by Excel’s random number generator.
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All treatments were randomly foliar sprayed at evening once the first true leaves appeared, and
subsequently every week for a period of two months.

The chemical compositions of the treatments used in this research are presented below (Table 2).

2.3 Plant Sampling
Plants were sampled 60 days after sowing when plants were physiologically mature and with ripe fruit.

After harvest, plants were washed to remove environmental residues.

2.4 Variables Measurement

2.4.1 Total Biomass
Biomass accumulation was determined from the average weight per plant. Fresh plant material was oven

dried (Shell) at 70°C for 24 h until constant weight. Subsequently, total biomass production was quantified
with an analytical balance (AND HR-120, San Jose, California, USA), and expressed as grams of plant dry
weight (g plant−1 d.w.).

2.4.2 Yield
Yield was obtained as the average fruit weight (AND HR-120, San Jose, California, USA) and reported

as the average plant gram fresh weight (g plant−1 f.w.).

2.4.3 Photosynthetic Gas Exchange
Readings of gas exchange variables were performed with a LI-COR 6400 portable meter on each plant,

choosing healthy and undamaged leaves. A concentration of 400 µmol/mol CO2 was used for the reference

Table 1: Description of treatments applied to the plants of green beans cv. Strike

Treatment Silicon doses applied (mM) Code

Control 0 Control

NanoSiO2 + KNO3 1 NanoSi1

NanoSiO2 + KNO3 2 NanoSi2

NanoSiO2 + KNO3 4 NanoSi4

Codasil® 1 Codasil1

Codasil® 2 Codasil2

Codasil® 4 Codasil4

Table 2: Products used and their characteristics

Silicon product used Chemical composition

SiO2 nanoparticles + 1 mM of KNO3 Average size of 70–90 nm

A molecular weight of 60.08 g mol−1

Codasil® product Density: 2.648 g/cm3

Purity: 99.9%

SiO2 (26.1% w/v)

K2O (14.6% w/v)

Free amino acids (5.2% w/v)
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cell, while a concentration of 380 µmol/mol CO2 was used for the sample cell. The vapor pressure deficit of
the air in the sampling chamber was less than 1.5 kPa and the temperature of the leaf storage block was 30°C.
Photosynthetic activity was expressed as μmol CO2 m

−2 s−1 and transpiration rate in mmol H2O m−2 s−1,
stomatal conductance as mol CO2 m2 s−1, photosystem II efficiency in Fv/Fm and transpiration rate in
mmol H2O m−2 s−1.

2.4.4 Photosynthetic Pigments
The concentration of photosynthetic pigments was determined by the method proposed by Wellburn

et al. [22], where 0.12 g of fresh leaves were weighed in the form of 7 mm diameter discs. Subsequently,
10 mL of methanol was added to the samples and were incubated at room temperature in darkness for
24 h. The absorbance was then measured at 470 nm (carotenoids), 653 nm (chlorophyll b, Chl b), and
666 nm (chlorophyll a, Chl a). photosynthetic pigment concentrations were expressed in µg cm−2 and
calculated using the following formulas:

Chl a ¼ 15:65 A666ð Þ � 7:34 a653ð Þ½ � (1)

Chl b ¼ 27:05 A653ð Þ � 11:21 A666ð Þ½ � (2)

Carotenoids ¼ 1000 �A470ð Þ � 2:86 Chl að Þ � 129:2 Chl bð Þ½ �=221 (3)

2.4.5 “In vivo” Nitrate Reductase Activity
Nitrate reductase (NR) enzyme activity (EC 1.6.6.1) was determined by adapting the methodology

proposed by Sánchez et al. [20], and Maurino et al. [23]. Discs of 7 mm diameter were obtained from the
leaf blade of fresh material, weighing between 0.125–0.150 g, and placed in 10 mL of filtration medium
consisting of potassium phosphate buffer (100 mM, pH 7.5% and 1% v/v propanol). Subsequently, the
tissues were subjected to low pressure (0.8 bar) for 10 min in absence of light, and thereafter incubated at
30°C in darkness for 1 h. To stop NR activity, the samples were immersed in a hot water bath (100°C)
for 15 min. After this, NR activity was performed with 1 mL aliquot, 2 mL of sulfanilamide at 1%
dissolved in 1.5 M HCl (1 g sulfanilamide + 20 mL 35% HCl dissolved in 100 mL water), and 2 mL of
0.02% NNEDA (N-1-naphthyl ethylenediamine) dissolved in 0.2 M HCl (20 g NNEDA dissolved in
100 mL 0.2 M HCl). After 20 min, absorbance readings were taken at 540 nm, against a NO2

− standard
curve between 0.025–2 µg mL−1, as proposed by Hagelman and Hucklesby [24]. NR activity was
reported as µmol of NO2

− formed per g f.w.−1 h−1.

2.4.6 Soluble Amino Acids
For the determination of amino acids, the method proposed by Yemm et al. [25], was used with the

ninhydrin reagent with slight modifications. Approximately 0.5 g of plant material was weighed and
homogenized with 5 mL of 50 mM phosphate buffer pH 7.0. After this, a mesh screen filtered the
homogenate and was centrifuged at 12360 g for 15 min. The supernatant was used for the quantification
of amino acids and soluble proteins. Subsequently, 100 µL of supernatant was placed in a test tube with
1.5 mL of ninhydrin reagent. The mixture was placed in a hot water bath at 100°C for 20 min. A glycine
curve was prepared (in the same manner as the sample). After 20 min, the samples were transferred to a
container with ice. Then, 8 mL of 50% propanol was added to each of the sample tubes and the curve
tubes and left to stand for 30 min. Subsequently, they were read at a wavelength of 570 nm, against the
glycine standard curve. The concentration of amino acids and soluble proteins was expressed as mg g−1 f.w.

2.4.7 Soluble Proteins
Soluble proteins were determined after homogenization of 0.5 g of fresh sample in cold 50 mM KH2PO

buffer at pH 7 and centrifugation of 12360 g, at 4°C for 15 min. The supernatant was also used for amino acid
determination. The method used was that proposed by Bradford [26]. 1 mL of Bradford’s reagent was taken
in a test tube and 20 µL of bovine albumin (BSA) was added from each of the tubes with known

966 Phyton, 2024, vol.93, no.5



concentration, corresponding to each point of the curve. Subsequently, it was read at an absorbance of
595 nm against the standard curve. Soluble proteins were expressed as mg g−1 f.w.

2.5 Data Statistical Analysis
The data obtained were subjected to an analysis of variance and a mean separation test by the least-

significant difference (LSD) method (95%), using SAS statistical software (SAS Inst. Inc. Cary, NC,
USA). The data presented are mean values ± standard error.

3 Results and Analysis

3.1 Total Biomass
The application of 1- and 4-mM doses of both NanoSi and Codasil had beneficial effects on total

biomass accumulation. The NanoSi4 treatment presented the highest total biomass accumulation
concerning the control (no Si application), with an increase of 16%, although no significant differences
were found with NanoSi1, Codasil1, and Codasil4 (Fig. 1).

3.2 Yield
In the present study, application of NanoSi and Codasil improved yields, except for Codasil1 and 2. The

NanoSi2 treatment showed the highest yield, with a 36% increase over the control (Fig. 2).

Figure 1: Effects of two silicon sources on total biomass in green beans cv. Strike. Different letters present
statistical differences between them (LSD p ≤ 0.05). The application of both sources of Si was beneficial for
the accumulation of biomass

Figure 2: Effects of two silicon sources on yield in green beans cv. Strike. Different letters present statistical
differences between them (LSD p ≤ 0.05). Yield was improved by the application of NanoSi and Codasil
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3.3 Photosynthetic Activity
In the present study, the foliar application of silicon was beneficial for photosynthetic activity, where the

NanoSi1 treatment showed the highest activity compared to the control, with an increase of 50% (Fig. 3).

3.4 Stomatic Conductance
In the present study, the NanoSi treatment was superior to the other treatments except for the control,

with which it did not present significant differences although it had a 10% increase (Fig. 4).

3.5 Transpiration Rates
In the present study, Codasil1 exhibited the lowest transpiration rates compared to the rest of treatments

(Fig. 5). This treatment reduced the transpiration rate by 32% compared to the control group.

3.6 Chlorophyll Fluorescence
The Codasil1 treatment presented the best Fv/Fm ratio, with an increase of 21% compared to the control,

although it was not significantly different from the NanoSi1 and NanoSi4 groups (Fig. 6). With higher doses
of each treatment, a decline in the Fv/Fm values is observed.

Figure 3: Effects of two silicon sources on photosynthetic activity in green beans cv. Strike. Different letters
present statistical differences between them (LSD p ≤ 0.05). Photosynthetic activity was enhanced by
NanoSi1 application

Figure 4: Effects of two silicon sources on Stomatal conductance in green beans cv. Strike. Different letters
present statistical differences between them (LSD p ≤ 0.05). Stomatic conductance was improved by
NanoSi1 application, although with no significant difference with the control plants
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3.7 Photosynthetic Pigments
Total chlorophyll concentration was higher in the NanoSi1 treatment, with an increase of 48% over the

control (Fig. 7). A progressive increase in doses of both treatments results in a downward trend of chlorophyll
concentrations.

Figure 5: Effects of two silicon sources on transpiration rates in green beans cv. Strike. Different letters
present statistical differences between them (LSD p ≤ 0.05). Transpiration rates were reduced with the
application of Codasil and higher doses of NanoSi

Figure 6: Effects of two silicon sources on chlorophyll fluorescence in green beans cv. Strike. Different
letters present statistical differences between them (LSD p ≤ 0.05). Chlorophyll fluorescence was
enhanced by the lowest doses of NanoSi and Codasil

Figure 7: Effects of two silicon sources on total chlorophyll in green beans cv. Strike. Different letters
present statistical differences between them (LSD p ≤ 0.05). Chlorophyll contents were increased with the
lowest doses of each treatment and a downward trend was observed with the higher doses of each treatment
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3.8 Nitrate Reductase Activity
In the present work, the application of Codasil2 increased nitrate reductase (NR) enzyme activity by

191% compared to the control (Fig. 8), although no significant differences were found with the rest of the
treatments. NR activity declines with progressive increases in NanoSi doses.

3.9 Soluble Amino Acids
In the present study, the Codasil2 treatment presented an increase in the soluble amino acid

concentration of 28% concerning the control, although this difference was not significant compared to the
rest of the treatments, except the Codasil4 treatment (Fig. 9). A downward trend is observed the highest
dose of each treatment.

3.10 Soluble Proteins
Soluble protein concentration was higher in the Codasil1 treatment, with an increase of 38%, concerning

the control (Fig. 10). However, the Codasil1 treatment was not significantly different from the NanoSi4,
NanoSi2, and Codasil2 treatments.

Figure 8: Effects of two silicon sources on nitrate reductase activity in green beans cv. Strike. Different
letters present statistical differences between them (LSD p ≤ 0.05). Codasil increased the NR activity of
bean plants

Figure 9: Effects of two silicon sources on soluble amino acids in green beans cv. Strike. Different letters
present statistical differences between them (LSD p ≤ 0.05). Amino acid concentration was increased with
NanoSi and Codasil
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In general, the application of both silicon sources had beneficial effects on plant metabolism. However,
NanoSi enhanced yield, biomass accumulation, photosynthetic activity, stomatic conductance a
photosynthetic pigment concentration. Whereas Codasil improved transpiration rates, chlorophyll
fluorescence, nitrate reductase activity, and soluble amino acid and protein contents (Fig. 11).

4 Discussion

Biomass accumulation is dependent on plant photosynthetic activity, and its distribution to reproductive
organs plays a key role in obtaining higher yields [27,28]. Several authors have reported biomass increase in
a variety of conditions, such as drought and salinity in crops such as strawberries and beans at Si doses of 0.5
1 and 1.5 mM [11,21]. Furthermore, the beneficial effects of Si enhanced biomass accumulation in sweet
basil by improving photosynthesis, photosystem II efficiency, stomatic conductance, electron transport
rate, and photochemical quenching [29]. Biomass increase was also observed in soybean grown under
cold stress and without cold stress [30]. Cold stress raises reactive oxygen species levels and upregulates
the antioxidant systems to prevent oxidative stress damage. In addition, stress-signaling genes sharply

Figure 10: Effects of two silicon sources on soluble proteins in green beans cv. Strike. Different letters
present statistical differences between them (LSD p ≤ 0.05)

Figure 11: Graphic abstract of the parameters affected by exogenous application of NanoSi and Codasil on
green beans cv. Strike
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increase ABA levels in response to stress. In our study, it may be possible that Si influenced gene expression
of amino acids or proteins involved in photosynthesis, nutrient uptake, transpiration, hormone production,
and reinforcement of the antioxidant system [31–33]. In this experiment, the increased efficiency and/or
regulation of these processes results could increase biomass accumulation for the plant.

Crop yield responds to the interaction between the genotype and the environment [34]. The small size of
NanoSi makes them readily available for plant uptake and has a favorable impact on the nutritional balance
and physiological activities of the plant which improves its growth and, therefore, its yield [35]. Indeed,
studies in soybean, grapevine, bean, and strawberry have shown the influence of silicon in stimulating
physiological processes such as photosynthesis, transpiration regulation, nutrient uptake, and resistance to
both biotic and abiotic stresses which increases yield [36–38]. In a recent study done on wheat, Si
supplementation increased yield not only in drought conditions but also in well-irrigated plants [39]. In
this study, yield was improved by enhanced antioxidant systems, higher chlorophyll contents, and buildup
of photoassimilates. Moreover, exogenous application of NanoSi in water-stressed potatoes increased
yield by optimizing water use efficiency and leaf gas exchange [40].

Photosynthesis is the main way to obtain energy to drive plant growth and yield, let alone the generation
of the oxygen necessary for the rest of living beings [41]. That is why the optimization of such a process is
essential to obtain higher yields. These results are those reported by Mahmoud et al. [42], in potatoes, where
the application of NanoSi resulted in improved stomatal conductance and increased chlorophyll content in
the leaves. In our case, a boosted stomatal conductance allows for increased intracellular CO2, better light
absorption, and improved photosystem II quantum yield. Mukarram et al. [32] also reported that
photosynthesis in Cymbopogon flexuosus was enhanced by NanoSi due to improved photochemical
quenching and electron transport rate. The antioxidant system of Cymbopogon flexuosus was also
strengthened by accelerating enzymatic superoxide dismutase (SOD), peroxidase (POD), catalase (CAT),
and non-enzymatic (ascorbic acid and GSH) antioxidant activity, limiting cell damage by lipid
peroxidation. This result was also observed in wheat [43]. Another reported benefit is the increase in the
size of chloroplasts, greater number of grana in leaves, and leaf erectness due to silicon deposition
allowing for better light absorption, which increases the efficiency of photosynthetic activity [44–46].

Stomatic conductance modulates gas diffusion between the leaf and the atmosphere, regulating CO2

assimilation, water loss, and evaporative cooling [47]. Stomata are in a continuous cycle of opening and
closing in response to external and internal signals, such as light or hormones to maintain a balance
between CO2 assimilation and water loss by transpiration [48]. Although NanoSi1 showed no significant
difference from the control treatment, the enhanced stomatal conductance could be due to a change in cell
wall plasticity and elasticity which facilitates the passage of CO2 between the environment and the plant
[32]. The increased passage of CO2 further boosts photosynthesis and increases yield as mentioned
before. NanoSi also enhanced stomatal conductance in Cymbopogon flexuosus growing under salinity
conditions, improving CO2 assimilation and reducing transpiration rates [49]. Previous studies have also
indicated that Si supplementation can form a cuticle double layer in the leaf reducing transpiration and
maintaining water status within the plant [50]. In addition, exogenous silicon application could improve
stomatal conductance by increasing the sensitivity of stomata to K+ flux, an element that is also related to
stomata opening and closing, reducing water loss and increasing CO2 uptake [51,52].

The movement of water throughout the plant is a physiological process known as transpiration.
Transpiration rates are influenced by distinct biophysical drivers (temperature, water vapor pressure
deficit, and net radiation) and stomatal conductance [53]. The Codasil treatments decreased transpiration
through the stomata, thus increasing water use efficiency. One of the components of Codasil is K+ which
participates in osmotic regulation, aquaporins functioning, and maintenance of cell turgor pressure as
documented in water-stressed lettuce [54,55]. In addition, the free amino acids also present in Codasil
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could function as osmolytes regulating osmotic potential in the cells and stomatal opening as noted by
Abdelkader et al. [56] when they applied exogenous amino acids to salt-stressed lettuce. Another study
applied an amino acid-based biostimulant in drought-stressed soybean reported that the accumulation of
soluble sugars also has a key role in maintaining osmotic balance under such conditions [57]. It is also
possible that Si may upregulate the expression of aquaporins in green bean, as was reported in sorghum
[58]. As such, more efficient water movement along with better nutrient uptake improves performance in
all physiological activities of plant cells.

When light is absorbed by chlorophyll, the energy assimilated can be used to drive photosynthesis,
dissipate as heat, or re-emit as light (fluorescence). Thus, fluorescence is an indicator of plant
photosynthetic performance, where a decrease in the Fv/Fm index represents a reduction in photosystem
II efficiency, especially caused by photoinhibition [59]. In both treatments and at the lowest doses, high
chlorophyll content together with optimized fluorescence due to enhanced cell homeostasis could further
support the photosynthetic process. In the case of Codasil, the treatment reduced transpiration rates,
improving the water supply to photosynthesis and increased photosynthetic efficiency. These results agree
with those documented in Pinus sylvestris and Quercus robur [60]. In another study with peppermint,
NanoSi improved chlorophyll fluorescence values and also noted a gradual decline of this parameter at
higher concentrations [61].

Chlorophyll is the main pigment for carrying out photosynthesis and is involved in the process of light
absorption, transfer, distribution, and transformation, leading to improved leaf health and crop yield [62].
These results coincide with those reported in sorghum under iron deficiency [63], where Si application
increased chlorophyll concentration by facilitating Fe uptake, an element that plays an important role in
chlorophyll synthesis [64]. Similarly, Si application improved Mg uptake in cold-stressed alfalfa, this
additional supply of Mg could also enhance chlorophyll content [65]. Si decreased the concentration of
malonaldehyde in leaves and roots, which restricted chlorophyll degradation. Moreover, Si increased
chlorophyll concentration in young barley leaves, maize seedlings, and green peas by upregulating the
activity of antioxidant enzymes including SOD, CAT, and guaiacol peroxidase resulting in less
accumulation of reactive oxygen species [66–68]. Nonetheless, chlorophyll concentration showed a
downward trend when higher doses of Si were applied. An excess of chlorophyll generates reactive
oxygen species and must be removed to avoid harmful effects on plant growth [69,70]. Therefore,
catabolic regulation of chlorophyll biosynthesis is essential for normal growth, although its elucidation
remains incomplete. Additional studies of reactive oxygen species are required to verify this information.

The enzyme nitrate reductase (EC 1.7.1.1) is essential for nitrogen assimilation for higher plants and
directly regulates nitrate reduction [71,72], where nitrate reductase activity is proportional to the amount
of nitrate present, i.e., the higher the nitrate concentration, the higher the enzymatic activity of nitrate
reductase [73]. These results coincide with those reported in maize seedlings and cucumber under nitrate
stress, where the application of Si improved the effects of N in plants by being absorbed in greater
quantities, which in turn increased the activity of nitrate reductase and therefore, had a higher metabolic
activity [74,75]. In addition, the application of biostimulants with bioactive molecules such as amino
acids could have a positive effect on nitrate reduction by down-regulating nitrate transporter genes, as
well as, increasing the transcription levels of related genes in the nitrogen metabolic pathway [76,77].
However, the addition of NanoSi at higher doses (2 and 4 mM) together with the addition of 1 mM
KNO3, decreased nitrate reductase activity. Concerning this decrease, there may be a limit to the nitrate
concentration that regulates nitrate reductase enzyme activity. Hao et al. [78] documented that high doses
of NanoSi applied to maize hampered nitrogen metabolism by inhibiting nitrogen assimilation or by
breaking down nitrogen metabolites due to catabolism. In their study, they found that activities of key
enzymes including glutamine synthetase (GS), glutamate dehydrogenase (GDH), and glutamate synthase
(GOGAT) were reduced by these high doses, thus affecting plant growth. In our experiment, only NR
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activity was measured and the study of GS, GDH, and GOGAT is necessary to further understand how high
doses of silicon affect nitrogen metabolism.

Amino acids, in addition to being involved in protein synthesis, serve a variety of functions, which
include precursors of hormones, signaling factors in physiological processes, root development,
antioxidant metabolism, and regulators of nitrogen uptake [1,79,80]. Recent studies in water-stressed
wheat documented that foliar application of Si raised soluble amino acid levels [81]. In addition, Trejo-
Tellez et al. [82] also found that silicon increases soluble amino acid concentrations in pepper plants.
However, foliar application of amino acids could influence nitrogen uptake and assimilation by regulating
enzymes responsible for nitrogen assimilation [83]. For example, the application of amino acids (L-
methionine, L-tryptophan, and L-glycine) in lettuce functions as signal transducer molecules of various
beneficial physiological processes for the plant [84]. Within this group of amino acids, L-methionine
induces better sulfur and nitrogen uptake when applied in low amounts [85]. It is important to note that a
high concentration of L-methionine could cause stress to the plant [86], which would explain the
downward trend in amino acid concentration with increasing doses of Codasil by altering processes such
as photosynthesis and causing physiological disorders by interfering with normal amino acid metabolism
[87]. Similarly, the application of NanoSi at higher doses could hurt amino acid accumulation.

Proteins are composed of long chains of amino acids that can perform multiple functions owing to the
unique sequence of their constituent amino acids [88]. These results coincide with what has been reported in
research conducted in wheat and rice, where the application of both Si in conventional form and NanoSi
improved the content of soluble proteins [89]. Additionally, Sattar et al. [39] documented a surge in
soluble protein content when applying exogenous Si to wheat plants under drought stress. Moreover,
foliar application of Si in wheat under different water deficits (mild, moderate, and severe) increased the
total soluble protein content [81]. In our study, this increase in the concentration of soluble proteins in
NanoSi4 may be because amino acids are used for protein synthesis, or for better nitrogen translocation,
which improves nitrogen metabolism and protein synthesis in plants. Similarly, Si could affect the
synthesis of specific proteins and the efficacy of mRNA and DNA synthesis, increasing protein
concentration [90].

5 Conclusions

The foliar application of Si through NanoSi and the biostimulant Codasil� was beneficial since it
increased biomass accumulation and yield by influencing photosynthetic activity, stomatal conductance,
transpiration rates, and chlorophyll fluorescence, as well as the accumulation of photosynthetic pigments.
In addition, the application of Si stimulated nitrate reductase activity, which in turn allowed a greater
accumulation of amino acids and proteins. This translates into improved nitrogen assimilation. Based on
these results, the supply of silicon at low doses (1 mM) functioned as a biostimulant, favoring gas
exchange and nitrogen assimilation within the plant, which stimulated growth and yields in green beans.
However, further studies are necessary to understand how higher doses of NanoSi affect plant
metabolism, especially in chlorophyll synthesis and catabolism, nitrate reductase, and soluble amino
acids. Likewise, Codasil has beneficial effects on plant physiology due to its complex chemical nature,
but the isolation of the amino acids present in Codasil will help pinpoint how these individual amino
acids help plant growth. Finally, the results of this research work allowed a better understanding of the
effects of silicon application through silicon dioxide nanoparticles and the biostimulant Codasil� on the
physiology of the green bean plant.
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