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ABSTRACT

Grassland biomass is an important parameter of grassland ecosystems. The complexity of the grassland canopy
vegetation spectrum makes the long-term assessment of grassland growth a challenge. Few studies have explored
the original spectral information of typical grasslands in Inner Mongolia and examined the influence of spectral
information on aboveground biomass (AGB) estimation. In order to improve the accuracy of vegetation index
inversion of grassland AGB, this study combined ground and Unmanned Aerial Vehicle (UAV) remote sensing
technology and screened sensitive bands through ground hyperspectral data transformation and correlation ana-
lysis. The narrow band vegetation indices were calculated, and ground and airborne hyperspectral inversion mod-
els were established. Finally, the accuracy of the model was verified. The results showed that: (1) The vegetation
indices constructed based on the ASD FieldSpec 4 and the UAV were significantly correlated with the dry and
fresh weight of AGB. (2) The comparison between measured R2 with the prediction R2 indicated that the accuracy
of the model was the best when using the Soil-Adjusted Vegetation Index (SAVI) as the independent variable in
the analysis of AGB (fresh weight/dry weight) and four narrow-band vegetation indices. The SAVI vegetation
index showed better applicability for biomass monitoring in typical grassland areas of Inner Mongolia. (3)
The obtained ground and airborne hyperspectral data with the optimal vegetation index suggested that the dry
weight of AGB has the best fitting effect with airborne hyperspectral data, where y = 17.962e4.672x, the fitting
R2 was 0.542, the prediction R2 was 0.424, and RMSE and REE were 57.03 and 0.65, respectively. Therefore, estab-
lished vegetation indices by screening sensitive bands through hyperspectral feature analysis can significantly
improve the inversion accuracy of typical grassland biomass in Inner Mongolia. Compared with ground monitor-
ing, airborne hyperspectral monitoring better reflects the inversion of actual surface biomass. It provides a reliable
modeling framework for grassland AGB monitoring and scientific and technological support for grazing
management.
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1 Introduction

The aboveground biomass (AGB) of grasslands is an important indicator for the sustainable use of
grassland resources and assessment of the livestock carrying capacity [1,2]. As an important predictor,
AGB can reflect vegetation growth status and gross primary product and is one of the important
manifestations of constant grassland quality and grassland carbon sequestration capacity [3,4]. Rapid and
accurate estimation of grassland AGB is crucial for regional grassland management and sustainable
development [5,6], making it a research hotspot in the field of the grassland ecosystem. The traditional
field survey methods can achieve high-precision results in estimating grassland biomass. However, this
process is highly destructive, with a small range of applications and high labor, material, and time
costs [7–9].

Remote sensing technology allows rapid, efficient, and dynamic observation of grassland vegetation at a
macroscopic scale. By establishing regression models between field measurement values and vegetation
indices, the estimates of regional grassland AGB can be quickly obtained [10–12]. Vegetation index (VI)
is a linear or nonlinear combination of two or more spectral bands. It can reduce or eliminate the
influence of background noise on the spectral information of grassland vegetation canopy, thus enhancing
the estimation of vegetation structure [13]. Therefore, it has been widely used in the field of remote
sensing inversion of grassland biomass. Zhao et al. [14] calculated vegetation indices such as the
Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) using Moderate-
resolution Imaging Spectroradiometer (MODIS) data and A regression model was established with
aboveground biomass to invert the aboveground biomass and changes of Xilingol Grassland in Northern
China. Liang et al. [15] calculated 12 vegetation indices such as NDVI, EVI and Ratio Vegetation Index
(RVI) to establish a regression model of alpine grassland biomass in the Three-River Headwaters Region.
The results showed that NDVI had the best correlation with AGB of alpine grassland, and the model
accuracy was the best. John et al. [16] established a rule-based regression tree model based on the
vegetation index obtained from MODIS-adjusted reflectance data to invert the spatial and temporal
distribution of AGB in Mongolia and Inner Mongolia grasslands in China. Although these studies have
obtained accurate AGB estimates using statistical models based on vegetation indices, there are still some
shortcomings. When the original spectral information of canopy vegetation is directly used to calculate
the vegetation index to invert AGB, the model is easily saturated. Therefore, it is necessary to deeply
mine the original spectral information and analyze the characteristic parameters to improve the accuracy
of AGB inversion.

The traditional multispectral vegetation indices are limited to the characteristic bands of red, near-red,
and mid-infrared. These vegetation indices have the disadvantages of small band numbers, large bandwidths,
and restricted wavelength positions, which cannot accurately reflect biomass characteristics [17,18].
Hyperspectral remote sensing, on the other hand, has a high spectral resolution and spectral information
in hundreds of bands. It provides detailed and continuous spectral profiles and solves problems that
cannot be addressed in multispectral broadband studies [19–21]. In the study of non-imaging
spectroscopy, Zhang et al. [22] measured the spectra of four types of grass (including Leymus chinensis,
Stipa capillata, Carex pediformis, and Cleistogenes) based on a ground ASD spectrometer in Xilingol,
Inner Mongolia. Four hyperspectral feature parameters were selected through correlation analysis and
principal component analysis. In addition, a neural network model was used to identify grass species,
with an accuracy of up to 80%. Through correlation analysis and regression analysis, Kong et al. [9]
developed a multi-scale remote sensing inversion model of alpine grassland biomass based on ground-
measured spectral data and dry biomass. The results showed that the original bands at 550, 680, 860, and
900 nm and their combined forms were significantly correlated with biomass. The remote sensing
biomass estimation model based on the normalized values of green peak reflectance and red valley
reflectance and two spectral features of NDVI exhibited a high inversion accuracy, with R2 of 0.869.
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Ulan-Tuya et al. [23] used ASD spectral data to extract 13 hyperspectral feature variables with ground sample
data to construct a model. The results showed that the correlation coefficient of the ratio between reflectance,
blue-edge area, and red-edge area of the red valley reached 0.86. Moreover, the correlation coefficient
between the Atmospherically Resistant Vegetation Index (ARVI) and grassland biomass reached 0.85,
which was the highest among the eight vegetation indices. The development of UAV imaging technology
offers new possibilities for hyperspectral remote sensing. Its hyperspectral camera has low cost and
excellent efficiency, allowing rapid and efficient acquisition of hyperspectral imaging data with high
resolution through sub-cloud image acquisition [24–27]. On this basis, relevant studies have been
conducted by scholars. Yang et al. [28] used UAV hyperspectral data to estimate maize biomass. The
Kappa coefficient was 0.69 after fitting with the Convolutional Neural Networks (CNN) model, with
higher prediction accuracy by combining spectral and image information. Li et al. [29] used UAV to
acquire hyperspectral imaging data of the potato canopy at two growth stages to establish AGB and crop
yield prediction models. The R2 of the fitted model for the four narrow-band vegetation indices was 0.9.
In order to develop models for estimating fresh and dry biomass, Wengert et al. [30] collected UAV
hyperspectral data in eight grassland sites in North Hesse, Germany. The yield distribution map was
developed with the best model, providing new technical support for AGB monitoring with high
prediction accuracy. There have been many studies on the estimation of grassland AGB based on ground
remote sensing and low-altitude UAV remote sensing, but few studies have combined the two. The single
remote sensing data source inversion of grassland biomass has deficiencies in accuracy and plant
information extraction richness, which will affect the accuracy of the inversion results. Therefore, it is
necessary to combine multi-source data to monitor grassland growth.

In addition to high spectral resolution and rich information, hyperspectral remote sensing data is also an
important means to monitor grassland conditions. However, the hyperspectral data has many bands, and the
spectral information may have disadvantages such as invalidity, redundancy, and overlap, resulting in
unstable full-band inversion models and difficulties in improving model accuracy [31]. Therefore, the
selection of key wavelength variables is essential. In the above studies, several scholars used vegetation
indices or a combination of vegetation indices and analysis methods to estimate AGB production [32,33].
Although good inversion accuracy was achieved, the original spectral information was not deeply mined,
making it difficult to further improve the prediction performance of the model by filtering, redundancy,
and collinearity information. Furthermore, inner Mongolia grassland is characterized by wide area and
spatial heterogeneity. In order to quickly understand the grassland conditions across regions, it is
necessary to construct the model in different regions.

Therefore, establishing an AGB estimation model based on hyperspectral data at the regional scale is
important for the deep mining of spectral information [34].

Currently, there are two main types of modeling inversion methods for biomass. One is the statistical
modeling method, which uses spectral reflectance or some transformation of reflectance (e.g., vegetation
index) as the independent variable, biomass obtained from field trials as the dependent variable, and
establishes an inversion model based on the correlation between the two, and is widely used in studies of
inverted biomass with the advantages of being easy to implement and simple and straightforward [35].
Although the statistical method is simple in structure and easy to compute, the difference in sensitivity of
the method to vegetation type, soil background, and climatic influences, as well as a certain degree of
saturation of vegetation indices in the inversion process, results in a relatively poor generalisability of the
model; The second is the physical modeling method, which is based on the non-Lambertian
characteristics of the vegetation canopy, and simulates the radiative transfer process within the canopy to
achieve the inversion of biomass based on the consideration of the mechanism of light and foliage action,
so the model does not change according to the different vegetation types, and the applicability is
relatively good. However, the physical modeling method is relatively complex, the model requires many
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input parameters and some of them are not easy to obtain, and the inversion process is relatively difficult
[36,37].

The saturation phenomenon of vegetation indices results from a significant decrease in the sensitivity of
vegetation indices to changes in biomass under conditions of high vegetation cover, most typically in the case
of NDVI, which usually constrains the accuracy of models [38]. In order to solve this problem, some scholars
have studied the improvement of the vegetation index. Huete et al. [39] proposed SAVI, which reduces the
disturbance of soil and vegetation canopy background. Liu et al. [40] introduced blue and green light bands
to construct a moderated normalized vegetation index (ANDVI) containing four spectral bands, blue, green,
red and near-infrared, which increased the universality and robustness compared to NDVI. Some scholars
constructed biomass estimation models with multiple vegetation index characteristics, Gao et al. [41]
compared the potential of the multivariate linear regression model and univariate nonlinear model in
AGB estimation, and the results showed that the multivariate model has a better accuracy, but due to the
multivariate covariate problem, the multivariate model is prone to overfitting phenomenon, and there are
some deficiencies in the stability of the model. This study aimed to analyze the hyperspectral curve of
grassland canopy in typical grassland of Inner Mongolia by ground remote sensing data, screen out
sensitive bands, and calculate vegetation index, so as to establish an AGB inversion model combining
ground non-imaging and UAV imaging. This would allow to improve the inversion accuracy of biomass
vegetation index and achieve accurate and rapid estimation of grassland AGB in the region. The results
can provide a theoretical basis for the strategic adjustment and management optimization of grassland
ecosystems in Inner Mongolia. The specific objectives were as follows:

1. Grassland canopy spectral characterization was conducted. It involves the first- and second-order
derivative changes of the raw spectra, logarithmic changes, trilateral characterization, and
correlation analysis with dry and fresh weights of AGB to screen out sensitive bands.

2. Based on the above sensitive bands, four narrow-band vegetation indices were established. In
addition, the remote sensing estimation models of ground hyperspectral and UAV imaging
hyperspectral were developed for the air-ground experiment of AGB in typical grasslands of Inner
Mongolia.

3. The determination coefficient (R2), root mean square error (RMSE), and estimated relative error
(REE) were used to verify the accuracy of the inversion model. Finally, the AGB monitoring
method suitable for typical grassland in Inner Mongolia was obtained.

2 Materials and Methods

2.1 Research Area
The research area is in a typical grassland in Xilingol League, Inner Mongolia Autonomous Region,

China. The research site is the Grassland Ecology Research Base of Inner Mongolia University (N44°
12.621′, E116°15.446′), Elevation is about 900 m.a.s.l. which has a temperate semi-arid climate with an
average annual temperature of 3.5°C, an average annual precipitation of 270 mm, and an average
precipitation of 229 mm from May to September. The research area has abundant grassland resources,
favorable livestock conditions, and typical grassland vegetation, with the soil type of chestnut-calcium
soil. The most common plants include Leymus chinensis, Stipa spartea, and Cleistogenes squarrosa [42,43].

2.2 Data Source
Field quadrat data were collected in the study area in July and August 2021. First, a 1 m × 1 m sample

plot was established for each treatment plot, followed by random sampling with three replicates in each
sample plot. The plant species, total AGB, and the total height of each species in the community were
recorded, with 66 sample squares investigated. Finally, the plants of each quadrat were cut off and
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brought back to the laboratory to weigh the fresh weight. To take the dry weight, samples were put in an oven
to 65°C until constant weight was reached. The dried samples were then weighted.

The ASD canopy spectra were divided into two time periods for data collection, which are referenced in
Table 1. To obtain canopy reflectance of grassland communities, spectral data were collected from each
quadrat using an ASD FieldSpec4 spectrometer. The data was collected between 10 a.m. and 2 p.m. in
cloudless, breezy weather. During the measurement, the view angle of the spectrometer was 25°, and the
sensor probe was placed vertically downward. To ensure the validity of the spectral data, 10 spectral data
were set as one unit before data collection. For each spectral data collected, 10 canopy reflectance
spectral curves were automatically recorded in the instrument, and the average value was automatically
calculated as the final reflectance data. Three measurements were performed directly above each sample
target to exclude abnormal spectral data [44].

UAV remote sensing data and ground-based ASD spectral data were simultaneously collected in July
and August 2021; the parameters of the two different spectroscopic devices were described in Table 2.
Hyperspectral remote sensing data of grassland in the research area were obtained by UAV, along with
the data of 107 ASD grassland canopy reflectance sample points and the AGB data of 54 sample squares
corresponding to the field test as ground verification data.

The UAVused in this study was a DaJiang Innovations (DJI, Uav manufacturer) Matrice 600 Pro with an
A3 professional flight controller (Fig. 1a). Flight tasks were created and executed in grid mode in DJI Ground
Station Pro, and image acquisition tasks were performed in autonomous mode. The DJI Ronin MX was used
to carry an airborne hyperspectral imaging component that keeps the camera at the lowest point during UAV
flight. The weight of the platform was 10 kg, the maximum load was 5 kg, and the flight time was 20 min.
The flight height was set to 120 m, speed 4 m/s, overlap rate 30%, and spatial resolution 4.5 cm. Then, the
UAV was taken off to an open test environment, and the flight was controlled automatically and manually.
During the initial and final alignment phases, the test environment was kept open, and the roll and pitch
angles of the UAV were kept at 0° to ensure a good alignment.

Table 1: List of data collection times

Data type Time

ASD canopy hyperspectral data 2017.07–08, 2018.07–08, 2021.07–08

Ground sample data 2021.07–08

UAV-resonon hyperspectral data 2021.07–08

Table 2: Parameter description of ASD and UAV sensors

Spectral equipment Ground-ASD FieldSpec 4 UAV-Resonon

Model Std-Res Pika L

Spectral range (nm) 350~2500 400~1000

Spectral resolution (nm) 3 (350~1000) 10 (1001~2500) 2.1

Number of spectral channels 2151 561
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Due to the small sample area, the Real-time kinematic (RTK, coordinate setting) measurement system
was used for sample point positioning, and the distribution of field measurement points was shown in Fig. 1c.
Two flight routes were preset for data collection (Fig. 1d). The flight was automatically controlled using the
GS PRO software of DJI UAV. Through the Resonon Ground Station software of the hyperspectral camera
(Fig. 1b), relevant flight parameters and sample range data were imported and uploaded to the camera
computer, enabling the collaboration of the UAV and camera.

The geometric correction and orthorectification of Resonon data require high-resolution images as
reference data, and the DJI Genie 4 image data were collected simultaneously. According to the sample
area, the DJI GO 4 software was used to set the route height to 80 m. The route was generated
automatically, and the image overlap rate was set to 50% to obtain true color images with a spatial
resolution of 2 cm.

Figure 1: Hyperspectral platform based on UAV. (a) UAVused in the research. (b) Hyperspectral camera; (c)
Distribution of field monitoring sample points (The study area was divided into 3 blocks with 9 plots in each
block. The ‘1–7’ plot represented different grazing gradients, the ‘8’ plot was mowing, and the ‘contrast’ was
blank control.); (d) UAV flight route
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2.3 Data Pre-Processing
Highly accurate control points were obtained by collecting sample coordinates and sample plot fence

inflection coordinates to fine-tune DJI Genie 4 and Resonon hyperspectral images. The coordinates were
imported into the computer through the electronic handbook of RTK. Then, the sample point location
map and the boundary map of the fence were generated in ArcMap software, as shown in Fig. 1c.

The camera on the DJI Genie 4 Pro UAV features a 1-inch 20-megapixel image sensor, allowing it to
capture 4K/60 fps video and still photos at 14 fps. The DJI GO 4 software controlled the automatic flight
to obtain true color images of the sample area. Afterward, the images were processed in PhotoScan
software to export orthophoto and Digital Elevation Model (DEM) stitching results (Fig. 2a).

Resonon hyperspectral raw data requires pre-processing, such as radiance conversion geometric
correction, which can be completed in Spectronon Pro software. When performing the radiance
conversion, the raw data were first subjected to dark current correction to convert the K-Type
hyperspectral data to radiance brightness values that can be recognized by ENVI image processing
software. Next, the average reflectance value was calculated by bringing the data of dark current
correction and standard whiteboard reflectance into the equation to obtain the data for each image
element. The reflectance data of each cell were averaged as the final reflectance value:

Reflectance ¼ D1 � D2
D3

(1)

where Reflectance represents the reflectance of image data elements;D1 is the radiant luminance value of the
image element; D2 is the standard whiteboard reflectance; D3 is the radiant luminance value of the
whiteboard.

Reflectance conversion was performed using the spectral data measured by ground-based ASD.With the
ASD FieldSpec spectrometer, the spectral curve of the reflectance of the pre-arranged target was measured.
Afterward, the radiance data were converted into reflectance images in Spectronon Pro software based on the
spectral data measured by ASD. The geometric correction of the image data started with a coarse geometric

Figure 2: Hyperspectral image data. (a) Mosaic correction image of DJI Genie 4 Pro; (b) Hyperspectral
image data of sample plot
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correction of the hyperspectral image data. The correction was performed using the Georectify Airborne
Datacube tool in the Spectronon Pro software based on the positioning data collected by the inertial guide
on the sensor. As a result, there were large distortions and offsets in the image. The coarse-corrected
images were further subjected to fine geometry correction. Based on the true color images taken by DJI
Genie 4, the control points were manually selected using the Georeferencing tool of the ArcMap software
to output high-precision image data. Finally, the whole image of the sample area was mosaicked by the
Mosaic tool of ArcMap software (Fig. 2b).

2.4 Spectral Analysis Method of Grassland Canopy
When analyzing grass canopy spectra, the spectral data need to be transformed to obtain the

characteristics of the absorption-reflection spectra of the monitored objects, thus enabling their hybrid
spectral decomposition and spectral matching [45,46].

The derivative transform is a commonly used hyperspectral transform method. In addition to the pre-
processing of raw spectral data, first-order, second-order, derivative, and logarithmic transformations are
the main ways to process hyperspectral data [47,48]. The derivative spectral transformation can attenuate
or eliminate background signals, mitigate the effects of atmospheric scattering, and improve the contrast
of different absorption features [49].

First-order derivative spectrum:

q0 kið Þ ¼ dq kið Þ
dk

¼ q kiþ1ð Þ � q ki�1ð Þ
24k

(2)

Second-order derivative spectrum:

q00 kið Þ ¼ d2q kið Þ
dk2

¼ q0 kiþ1ð Þ � q0 ki�1ð Þ
24k

¼ q kiþ2ð Þ � 2q kið Þ þ q ki�2ð Þ
4 4kð Þ2 (3)

where λi is the wavelength value of band i; q(λi) is the spectral value of wavelength λi; λ is the difference
between wavelength ki�1 and ki.

The pseudo-absorption coefficient refers to the absorption characteristics of the ground biomass, which
can be reflected by the log(1/q) transformation of the original spectrum. General vegetation has low original
spectral reflectance in the visible region. After logarithmic transformation, the spectral differences in the
visible region can be enhanced, and the effect of multiplicative factors in lighting conditions can be
reduced, as expressed by the following equations [50]:

½ logqðkiÞ�0 ¼ d log qðkiÞ
dk

¼ 1

qðkiÞ ln 10 :
dqðkiÞ
dk

(4)

½logð1=qÞ�0 ¼ d log½1=qðki�Þ
dk

¼ � 1

qðkiÞ ln 10 :
dqðkiÞ
dk

(5)

where λi is the wavelength value of band i; q(λi) is the spectral value of wavelength λi (e.g., reflectance and
transmittance).

2.5 Correlation Analysis
Current inversion studies measure the accuracy of remote sensing inversion values using statistical

metrics. The Pearson correlation ri refers to the linear correlation coefficient between the two data sets. A
large value of ri indicates a better linear correlation between the two sets of variables. The value ranges
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between [−1, 1], with a negative sign indicating a negative correlation and a positive sign indicating a
positive correlation [51,52]. The corresponding equation is as follows [53]:

ri ¼ Cov R;Biomassð Þffiffiffiffiffiffiffiffiffiffiffi
D Rð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D Biomassð ÞÞp ¼
PN

n¼1 Rni � �Rið Þ Biomassn � Biomass
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 Rni � Ri

� �2PN
n¼1 ðBiomassn � BiomassÞ2

q (6)

where ri is the single correlation coefficient between vegetation dry/fresh weight biomass (Biomass) and
hyperspectral variables (denoted by R) or canopy reflectance; i represents the band number; Rni is the
hyperspectral variable (or canopy reflectance value) of vegetation fresh biomass in band i of the nth
sample; �Ri is the average of vegetation dry/fresh biomass in band i of the N sample.

2.6 Model Construction and Evaluation
This study used the Generalized Linear Model (GLM) to establish a functional relationship between

sample data and vegetation indices, enabling the regression analysis of grassland AGB and vegetation
indices.

The accuracy of the AGB inversion model was assessed using RMSE, REE, and R2 with a sample
retention rate of 20%. The R2 also reflects the goodness of fit, with a value closer to 1 indicating a better
fit between the actual measurements and the simulated values [54,55]. Regression analysis is based on
correlation analysis, which transforms the correlation of the variables into a functional relationship. In
addition, smaller RMSE and REE suggest higher accuracy of model estimation and smaller errors
between the measured and simulated values [56]. The specific equation is as follows [57]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Yi � Y 0
i

� �2
N

s
(7)

REE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Yi � Y 0
i

� �
=Y 0

i

� �2
N

s
(8)

R2 ¼
P

ŷi � �yð Þ2P ðyi � �yÞ2 (9)

where Yi is the actual AGB (fresh weight); Yi′ is the estimated AGB; N is the sample size.

3 Results

3.1 Analysis of Hyperspectral Characteristics of Grassland Canopy

3.1.1 The Original Reflection Spectrum Curves in Different Periods
When water vapor absorption in the atmosphere affects the scaling of the reference and target spectra,

slight random fluctuations (i.e., noise) can produce large fluctuations in the spectrum [58]. In this study, the
typical grassland canopy spectral reflectance data in Inner Mongolia were affected by water vapor in the band
range of 1350–1420 nm, 1800–1950 nm, and 2380–2500 nm. The field spectral reflectance curves in the
above three ranges were heavily affected by the noise, with anomalous spectral data and large inversion
errors. Therefore, the data within these three ranges were excluded, and the remaining spectral curve was
divided into three discontinuous segments (Fig. 3a).

The canopy reflectance curves of the grassland after exclusion show the spectral patterns of green
vegetation. However, the peaks and valleys of some curves are insignificant, which is caused by the
variability in the composition of grass plant species, vegetation cover, and non-uniform grass growth.
After eliminating the invalid spectral curves, the final grass canopy reflectance curves of different months
were obtained (Fig. 3b).
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The original spectral curves exhibit no green light reflection peaks and red light absorption peaks in
May, June, and September. The plants were in the re-greening period in May and June. In September,
they were disturbed by the mowing period and the bare soil, resulting in no significant spectral
reflectance characteristics. In contrast, the spectral characteristics are significant in July and August due to
the continuous growth of the grass community. During this period, new leaves kept growing, with
increasing biomass and leaf area index. The increased photosynthetic capacity of the plant population and
the promoted absorption of blue and red light gradually decreased the reflectance of blue and red light
areas. The reflectance of the green light region formed a small reflection peak (green peak) and an
absorption valley (red valley). With the increase of AGB and the leaf area index, the reflectance in the
near-infrared region continuously increases, forming a wave peak at 675–760 nm with a significant and
gentle change in reflectance. The reflectance decreases significantly in the near-infrared band between
1418 and 1530 nm, with an absorption valley near 1460 nm and an absorption peak near 1660 nm. In the
shortwave infrared region, the reflectance continuously decreases until the stabilization of the grass
community.

These results indicate that July and August are the best time to collect field data for remote sensing
inversion of typical grasslands in Inner Mongolia. However, there are no significant reflection spectral
features in May, June, and September due to the influence of soil and anthropogenic activities, leading to
more uncertainties in remote sensing inversion.
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Figure 3: Original reflection spectrum curve. (a) Canopy reflectance curve of grassland in some sample
plots; (b) Grassland canopy reflectance curve in different months
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3.1.2 Spectral Derivative Transformation Curves of Typical Grasslands in Different Periods
After the first-order derivative transformation of the original spectral reflectance, the “double peaks”,

“red edge” and “blue edge” of the canopy spectrum appear in July and August (Fig. 4a), with a larger
amplitude of the red edge and a smaller amplitude of the blue edge. However, the spectral curves in May,
June, and September are affected by biomass and leaf area, and the “peaks” and “valleys” of reflectance
in the visible and near-infrared regions are insignificant. These results suggest that the first-order
derivative spectra can well eliminate the effect of soil background on the canopy spectra.
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The second-order differential transformed spectra curves show similar trends in July and August, with a
significant difference at 719 nm. The changes in May, June, and September are basically the same, exhibiting
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Figure 4: Canopy spectral derivative conversion curves and trilateral feature analysis images of typical
grassland in different periods
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no regular variations (Fig. 4b). The minor second-order differences in the reflectance of the grass canopy
spectra suggest that the second-order derivative spectra can completely or largely eliminate the
background noise spectrum. However, the actual field background spectra are more complex and can be
eliminated using higher derivative spectra.

The logarithmic transformation enhances the variability of the spectral features in the visible region
while reducing the influence of multiplicative factors due to different lighting conditions (Fig. 4c). In July
and August, a clear peak is observed in the visible region for spectral reflectance, while no significant
pattern occurs in the near-infrared region. It indicates that the reflectance amplitude in the visible region
of the original spectrum is low. After spectral transformation, more significant amplitude differences
occur in the visible region.

3.1.3 Trilateral Characteristics of Typical Grasslands in Different Periods
The parameters based on the spectral position mainly include “blue edge”, “yellow edge”, and “red

edge” (called “trilateral”), reflecting important spectral features of the vegetation. The “red edge” refers to
the transition region from red to near-infrared light, with wavelengths ranging from 680 to 760 nm and
first-order derivatives. The “blue edge” refers to the transition region from blue to green light, with
wavelengths ranging from 490 to 530 nm and first-order derivatives. The “yellow edge” refers to the
transition zone between green and red lights, with wavelengths ranging from 560 to 640 nm and first-
order derivatives. The first- and second-order derivatives for July and August were used to extract the
grass spectral parameters, as shown in Fig. 4.

The first-order derivative spectral curves of the red edge show inconsistent trends in different periods
(Fig. 4e). The spectral reflectance increases in July and August and decreases after reaching the peak,
with “double peaks” at 701 and 717 nm. In addition, no significant changes were observed in June, July,
and September. The reason may be that May and June are in the stages of grass growth with small plant
canopy areas. The “double peak” phenomenon is insignificant due to the soil background. September is
in the late stage of grass growth, at which the leaves begin to turn yellow and fall off, and the “double
peak” phenomenon gradually diminishes. The first-order derivative spectra of the blue edge also show a
trend of first increasing and then decreasing in July and August, with a significant peak at 524 nm
(Fig. 4f). No significant changes were observed in June, July, and September. The first-order derivative
spectra of the yellow edges show “double peaks” at 589 and 628 nm in July and at 593 and 628 nm in
August (Fig. 4d). No significant changes are observed in June, July, and September.

3.1.4 Correlation Analysis of Biomass and Reflectance
As shown in Fig. 5, dry biomass and vegetation canopy reflectance negatively correlated with the

350–716 nm band, with a correlation coefficient of −0.441 at 678 nm. A positive correlation was
observed on the 717–1350 nm band, and a plateau appeared on the 744–966 nm band. All correlation
coefficients were above 0.25, with an average of 0.291 and a maximum value of 0.302 at 887 nm. Two
peaks appeared on the 967–1350 band, with correlation coefficients of 0.324 at 1090 nm and 0.332 at
1291 nm, respectively. A negative correlation was observed on the 1421–1601 nm band, with the
minimum correlation coefficient of −0.140 at 1460 nm. A positive correlation was observed on the 1602–
1800 nm band, with the maximum correlation coefficient of 0.188 at 1661 nm. A negative correlation
was observed on the 1951–2350 nm band.

The minimum negative correlation coefficient appeared at 678 nm in the red band, and the maximum
positive correlation coefficient appeared at 887 nm in the NIR band.
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3.2 The Estimation Model of the Ground Spectrum and UAV Imaging Spectrum Was Constructed

3.2.1 Analysis of Resonon Hyperspectral Data and Grassland Canopy Spectral Characteristics
As shown in Fig. 6a, figure shows the spectral reflectance curves of grassland canopy collected by

ground-based ASD and UAV remote sensing, where the trends of hyperspectral information are generally
consistent. However, the UAV data are slightly higher than the ASD on the green light band. The
different geometric positions of the target, sensor, and sun for the two remote sensing platforms result in
different reflectance distribution functions in both directions. Research has demonstrated that the
bidirectional reflectance distribution function significantly affects low-altitude UAV data. Furthermore,
different spectral response functions may also cause differences.
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Comparison between the UAV Resonon hyperspectral data and the ground-based ASD spectral
reflectance of grassland canopy suggested a significant correlation between the two sensor spectral data
(Fig. 6b). This result was verified by Pearson correlation analysis, with correlation coefficients of 0.99 or
above, the results were shown in Table 3.

3.2.2 Sensitive Band Selection
Sensitive bands were screened by ASD grassland canopy spectral analysis and hyperspectral

feature correlation analysis. The red edge band was 701 nm, the blue edge band was 524 nm, the red
light band was 678 nm, and the NIR band was 887 nm. On this basis, the narrow-band vegetation index
was calculated. In the three-edge feature analysis, significant peaks were observed at 701 nm on the red
edge and 524 nm on the blue edge. In the correlation analysis between biomass and raw spectra,
the minimum negative correlation coefficient was observed at 678 nm, and the maximum positive
correlation coefficient was observed at 887 nm. Based on the sensitive bands, four vegetation indices
were selected for hyperspectral yield estimation in this study. The establishment of vegetation index was
shown in Table 4.

3.2.3 Correlation Analysis of ASD/Resonon Data and AGB Dry/Fresh Weights
The following results were obtained from the correlation analysis (Table 5). A significant

correlation was obtained between grassland biomass and vegetation indices extracted from ASD and
Resonon data. Regarding the ASD reflectance-based vegetation indices, the fresh weight of
aboveground standing biomass showed the strongest correlation with NDVI, with a correlation
coefficient of 0.715. The dry weight of aboveground standing biomass exhibited the strongest
correlation with RVI, with a correlation coefficient of 0.737. In terms of the vegetation indices
extracted from the Resonon data, SAVI, RVI, and NDVI were positively correlated with the
aboveground fresh/dry biomass, with RVI having the largest correlation coefficients of 0.693 and
0.734. TCI showed negative correlations with the aboveground fresh/dry biomass, with correlation
coefficients of −0.700 and −0.742.

Table 3: Reflectance correlation coefficients of ASD and Resonon hyperspectral data

ASD Resonon

ASD Pearson correlation 1 0.992**

Significance (bilateral) 0.000

N 300 300

Resonon Pearson correlation 0.992** 1

Significance (bilateral) 0.000

N 300 300
Note: ** indicates a significant level of 0.01 (p < 0.01).

Table 4: Calculation formulas of the four vegetation indices

Narrow band vegetation index Calculation formula References

SAVI (1+0.16) * (ρ887 - ρ678)/(ρ887 + ρ678 + 0.16) [59]

RVI ρ887/ρ678 [60]

NDVI (ρ887 − ρ678)/(ρ887 + ρ678) [61]

TCI [(ρ887 + 1.5 * ρ524) - ρ678]/(ρ887 − ρ701) [62]
Note: Triangular chlorophyll index (TCL).
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3.2.4 Estimation Models of ASD/Resonon Data with AGB Dry/Fresh Weights
The GLM model was used to develop the best-fit model. The results showed that the goodness of

fitting between ASD canopy reflectance-based vegetation indices and AGB fresh weight was NDVI >
RVI > SAVI > TCI. The exponential model constructed with NDVI as the independent variable had the
highest R2 of 0.549. The goodness of fitting between ASD canopy reflectance-based vegetation indices
and AGB dry weight was RVI > NDVI > SAVI > TCI. The exponential model constructed with RVI as
the independent variable had the highest R2 of 0.587 (Table 6). After the model accuracy validation, the
following results were obtained. ASD canopy reflectance-based vegetation indices and AGB dry/fresh
weights exhibited strong correlations. The validation models selected the model with the highest fitting
R2 and prediction R2 for ASD hyperspectral estimation of AGB dry/fresh weight. According to the
comparative analysis between the measured and predicted fresh weight of aboveground standing biomass
based on the four vegetation index models, the optimal performance ranked as SAVI > NDVI > RVI >
TCI (Fig. 7).

According to the previous section, the Resonon hyperspectral vegetation indices significantly correlated
with AGB dry/fresh weights. On this basis, the AGB dry/fresh weight GLM fitting model was established.
The results showed that the goodness of fitting between the four Resonon data-based vegetation indices and
AGB fresh weights was TCI > RVI > NDVI > SAVI. Among them, the quadratic function model with TCI as
the independent variable was optimal, with an R2 of 0.614. The goodness of fitting of the GLM models built
with the four vegetation indices and AGB dry weight was TCI > RVI > NDVI > SAVI. The optimal model
fitted with the TCI vegetation index was a quadratic model with an R2 of 0.660. This result was consistent
with the fitting results of AGB fresh weight. The following results were obtained from model validation. The
model with the highest fitting R2 and prediction R was selected for Resonon hyperspectral estimation of AGB
fresh weight. According to the comparative analysis between the measured and predicted dry weight of
aboveground standing biomass based on the four vegetation index models, the optimal performance was
SAVI > RVI > EDVI > TCI (Fig. 8).

Table 5: Correlation coefficients between ASD/UAV reflectance and AGB dry/fresh weights

TYPE AGB SAVI RVI NDVI TCI

ASD Fresh weight 0.671** 0.712** 0.715** -0.604**
ASD Dry weight 0.670** 0.737** 0.731** -0.550**
Resonon Fresh weight 0.668** 0.693** 0.688** -0.700**
Resonon Dry weight 0.686** 0.734** 0.727** -0.742**

Note: ** indicates a significant level of 0.01 (p < 0.01).

Table 6: Optimal models of aboveground dry/fresh biomass estimation based on ASD and Resonon data

TYPE AGB Variables Models R2 F

ASD Fresh weight NDVI y = 16.741e4.1941x 0.549 38.979

ASD Dry weight RVI y = 18.909x1.2894 0.587 45.568

Resonon Fresh weight TCI y = 598.77x2 – 2533.1x + 2798.6 0.614 24.678

Resonon Dry weight TCI y = 319.05x2 – 1373.7x + 1539.1 0.660 30.026
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According to the modeling analysis between ASD/Resonon hyperspectral data and AGB fresh/dry
weights, SAVI, NDVI, RVI, and TCI were significantly correlated with aboveground standing biomass.
Regression analysis was conducted based on the data of 54 sample points collected in the field (excluding
5 outliers), and the estimation model was established, where the number of test samples was 34 and 15,
respectively. According to the comparison between the fitted and predicted results, the best inversion
models in all generalized linear simulations of aboveground standing biomass were those with SAVI as
the variable:

(1) Resonon data with AGB fresh weight: y = 33.952e4.526x, with the fitting R2 of 0.488, the prediction
R2 of 0.449, and the RMSE and REE of 105.75 and 0.62, respectively.

(2) Resonon data with AGB dry weight: y = 17.962e4.672x, with the fitting R2 of 0.542, the prediction R2

of 0.424, and the RMSE and REE of 57.03 and 0.65, respectively.

(3) ASD hyperspectral data with AGB fresh weight: y = 1203.5x2.0469, with the fitting R2 of 0.474, the
prediction R2 of 0.412, and the RMSE and REE of 123.28 and 0.53, respectively.

(4) ASD hyperspectral data with AGB dry weight: y = 16.468e4.5684x, with the fitting R2 of 0.461, the
prediction R2 of 0.461, and the RMSE and REE of 104.63 and 0.79, respectively.

Among all variables, SAVI was the best, making it suitable for hyperspectral remote sensing inversion
modeling of typical grasslands in Inner Mongolia. The best SAVI model was used to invert the dry weight
distribution of AGB, and the results were shown in Fig. 9.

0

100

200

300

400

500

0.4 0.5 0.6 0.7 0.8

F
re

sh
 A

G
B

 (
g/

m
2 )

ASD-NDVIR2 = 0.549
p = 5.38e-07

0

100

200

300

400

500

0 100 200 300 400

P
re

di
ct

ed
 d

ry
 A

G
B

 (
g/

m
2 )

Measured Fresh AGB (g/m2)
ASD-SAVI

R2 = 0.492
p = 3.55e-03

0

100

200

300

2.0 4.0 6.0 8.0

D
ry

 A
G

B
 (

g/
m

2 )

ASD-RVI
R2 = 0.587
p = 1.26e-07

0

100

200

300

0 100 200 300

P
re

di
ct

ed
 d

ry
 A

G
B

 (
g/

m
2 )

MMeasured Dry AGB (g/m2)
ASD-SAVI

R2 = 0.462
p = 5.35e-03

Figure 7: Optimal fitting model and validation model of dry/fresh AGB and ASD canopy reflectance

Phyton, 2024, vol.93, no.2 403



0

100

200

300

400

500

1 1.5 2 2.5

F
re

sh
 A

G
B

 (
g/

m
2 )

Resonon-TCIR2 = 0.614
p = 3.88e-07

0

100

200

300

400

500

0 100 200 300 400

P
re

di
ct

ed
 fr

es
h 

A
G

B
 (

g/
m

2 )

Measured Fresh AGB (g/m2)
Resonon-SAVI

R2 = 0.497
p = 3.36e-03

0

100

200

300

1 1.5 2 2.5

D
ry

 A
G

B
 (

g/
m

2 )

Resonon-TCI
R2 = 0.660
p = 5.59e-08

0

100

200

300

0 100 200 300

P
re

di
ct

ed
 d

ry
 A

G
B

 (
g/

m
2 )

Measured dry AGB (g/m2)
Resonon-SAVI

R2 = 0.425
p = 8.56e-03

Figure 8: Best fit model and validation model of dry/fresh AGB and resonon reflectance data

Figure 9: Spatial distribution of dry AGB predicted by SAVI based on the resonon data
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4 Discussion

4.1 Mixed Spectral Analysis of Grassland Canopy
The spectral reflectance of grassland canopy is a mixed spectrum, and its complexity depends on factors

such as vegetation type, vegetation coverage, growth period, atmosphere, and soil background [63]. In the
visible region, plant chlorophyll was an important factor affecting reflectivity. As shown in Fig. 3a, the
spectral curve shows a “steep slope” shape in the red edge region of 675–760 nm, indicating that
the spectral characteristics are closely related to the biophysical parameters of grassland. During the
growth and development period of grassland, significant spectral characteristics of vegetation were
observed in July and August, while the plants in May and June were affected by the re-greening period.
The influence of the weeding period in September and the interference of the soil background resulted in
no significant spectral reflection characteristics on the spectral curve. After the derivative transformation
of the original spectrum, a significant “double peak” phenomenon was observed in July and August on
the first-order differential curve, accompanied by “red edge” and “blue edge” phenomena. However, the
red edge radiation value was larger, and the blue edge radiation value was smaller, suggesting that the
first-order derivative spectrum of the grassland community canopy can well eliminate the influence of soil
background. As shown in Fig. 4b, the spectral curves of July and August after the second-order
differential transformation are close in the spectral range, indicating that the second-order derivative
spectrum can completely or basically eliminate the background noise. The logarithmic transformation can
enhance the difference of spectral characteristics in the visible region, but no significant rule was
observed in the near-infrared region.

“Red edge” is an important parameter to characterize the chlorophyll content of vegetation and a critical
index to describe the health status of vegetation [64]. The “red edge” phenomenon refers to the strong
absorption of visible light in the red band by vegetation chlorophyll, and the “vegetation climbing”
phenomenon appears in the spectral range of the strong reflection near-infrared band (about 680–
750 nm). It is the most significant spectral feature that distinguishes green vegetation from other ground
objects, and it is also the “inflection point” of the first derivative of hyperspectral in this interval. Tang
et al. [65] identified a significant correlation between hyperspectral “red edge” parameters and rice
aboveground fresh/dry biomass and leaf area index. Feng et al. [66] established models for estimating
winter wheat yield using a single vegetation index and a combination of the vegetation index and red
edge parameters. The results showed that the combination of the vegetation index and red edge
parameters achieved improved yield estimation compared to using the vegetation index alone. This result
further validated the importance of the “red edge” parameter in extracting hyperspectral features. This
study conducted the derivative transformation and hyperspectral characteristic variable correlation
analysis of the grassland canopy spectrum. Based on the analysis results, the sensitive bands were
selected. The red edge band was 701 nm, the blue edge band was 524 nm, the red light band was
678 nm, and the near-infrared band was 887 nm.

4.2 Analysis of Model Inversion Accuracy
Compared with traditional multispectral remote sensing data, hyperspectral remote sensing data exhibit

higher spectral resolution and more spectral information, enabling the identification of many problems that
cannot be solved by multispectral broadband studies. However, due to a large number of hyperspectral data
and high band dimensions, the full-band inversion model is unstable with low accuracy. The selection of
sensitive bands and their optimal combinations are the keys to the accuracy of the fitting model. Yang
et al. [67] proposed a sensitive band of nitrogen concentration in potato plants by band optimization
algorithm in the field test areas of Siziwang Banner and Wuchuan County, Inner Mongolia. The blue-
violet light in the band range of 400–450 nm and the red edge band in the band range of 690–720 nm
were used to establish the vegetation index to estimate the nitrogen concentration of potato plants, which
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improved the index sensitivity in the diagnosis of high nitrogen concentration. Zhang et al. [68] used the
continuous projection algorithm and the regression coefficient method to extract the 690–720 nm spectral
information of the visible and near-infrared bands. The sensitive bands of rape at different growth stages
were obtained. Kim et al. [69] monitored the corn canopy nitrogen fertilizer experimental field by
hyperspectral technology. The results showed that the more sensitive bands were 800, 650, and 550 nm.
As shown in Table 4, the vegetation index constructed by ASD non-imaging hyperspectral data and UAV
imaging hyperspectral data was significantly correlated with AGB fresh/dry weight. The estimation model
integrates ground hyperspectral and UAV imaging spectrometer data. The comparison between fitting R2

and verifying R2 shows that the AGB in dry weight form fits the inversion model better. The UAV
imaging hyperspectral shows better goodness of fitting with the AGB estimation model. Li et al. [29]
used low-altitude UAVs to measure the spectra of potatoes at different growth stages. The two narrow-
band vegetation indices selected by the characteristic bands were combined to predict the AGB. Taking
the typical desert shrub area in Inner Mongolia as an example, Peng et al. [26] developed an improved
method and used UAV RGB (red, green, and blue) images to simultaneously extract three feature metrics
to estimate AGB. Mowll et al. [70] used a combination of UAV-derived data sets to generate a vegetation
index and micro-terrain model. A random forest algorithm was adopted to estimate grassland AGB, and a
more accurate estimation model was obtained.

In this study, four (NDVI, RVI, TCI, SAVI) vegetation indices of ground and airborne hyperspectral
were calculated based on sensitive bands, and the AGB inversion models of typical grasslands in Inner
Mongolia were established, respectively, and the model results showed that the nonlinear fitting
accuracies of the four vegetation index models were higher than that of the linear fitting, which indicated
that the four index-fitting models were affected by different degrees of supersaturation problems [71]. By
comparing the fitting R2 it was found that the TCI and RVI vegetation index construction models had
better accuracy, but comparing the fitting results of the inversion models with the measured results, the
SAVI model validation R2 was 0.424, and the NDVI model validation R2 was 0.353, which improved the
estimation accuracy by 20%, and compared with TCI and RVI, the estimation accuracies were improved
by 46% and 14%, respectively. Therefore, the SAVI vegetation index model was finally found to be the
optimal AGB inversion model were the best. This is consistent with the findings of many scholars (Zhang
et al. [72], Zhen et al. [73]). Compared with the NDVI index, the SAVI index introduces a soil
adjustment factor L, which further reduces the effect of soil background changes on the vegetation index,
and also reduces the effect of insufficient accuracy of the inversion model caused by the easy saturation
of the NDVI index in areas with high vegetation cover.

4.3 Discussion on Uncertainty Factors of Remote Sensing Inversion
Grassland biomass inversion using remote sensing faces many uncertainties. Some potential

improvements are summarized as follows. (1) There are uncertainties in remote sensing image
acquisition. Different remote sensing platforms and the physical parameters of the sensors can result in
differences in obtained remote sensing data. (2) The spatial resolution refers to the size of the actual
ground area represented by each image element on the remote sensing image. For example, the MODIS
1,2 band image element area is 250 m × 250 m. Regardless of size, only one DN value was recorded for
each image element. In the case of small and diverse surface biomass classes, a higher spatial resolution
allows for the acquisition of cleaner image elements. Considering the diverse grassland types in northern
China, remote sensing images with low spatial resolution can hardly meet the accuracy requirements, and
the rapid acquisition of high spatial resolution data has become a challenging problem. (3) The band
location, bandwidth, and spectral response function of different sensors jointly determine the amount of
radiation energy acquired on a sensor band. Therefore, using sensors with different parameters for ground
biomass monitoring inevitably leads to uncertainties due to the different resolutions of the sensor spectra.
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(4) Uncertainties can be caused by radiometric calibration and atmospheric correction. Therefore, what was
observed by different remote data sources is only one aspect.

The modeling method in this study was five GLM functions, which was relatively simple, and the model
fitting accuracy was influenced by sample data quantity and quality. In contrast, machine learning and deep
learning algorithms with higher fault tolerance can help solve the non-vulnerable fitting problem. Therefore,
methods such as artificial neural networks and random forests will be considered in future research to
improve model accuracy [74]. Furthermore, to improve the accuracy of grassland biomass inversion
models, more influencing factors should be considered to improve vegetation index methods and establish
more representative feature variables when extracting hyperspectral feature variables and selecting
vegetation indices. Moreover, some studies showed that combining laser technology, microwave sensor
technology, and optical remote sensing can effectively improve inversion accuracy [75]. These features
will be considered in our future studies.

5 Conclusion

This study integrated ground-based hyperspectral and airborne hyperspectral data for remote sensing
inversion of typical grassland biomass in Inner Mongolia. Sensitive bands were screened by ASD
grassland canopy spectral analysis and hyperspectral feature correlation analysis. As a result, four
hyperspectral vegetation indices, SAVI, NDVI, RVI, and TCI, were established. By analyzing the
goodness of fitting between ground/airborne hyperspectral vegetation indices and aboveground standing
biomass (fresh/dry weight), the model with SAVI as the independent variable was the best. The
exponential equation for UAV hyperspectral data and the dry weight of aboveground standing biomass
had the best fitting result, where y = 17.962e4.672x, the fitting R2 was 0.542, the prediction R2 was 0.424,
and the RMSE and REE were 57.03 and 0.65, respectively.

The accuracy of estimating grassland AGB through inversion from multi-source remote sensing data
depends on the spectral characteristics of the grassland canopy, the selection of data sources, multi-source
data fusion, etc. These aspects were important development directions for remote sensing-based grassland
biomass inversion in the future.
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