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ABSTRACT

Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea. Tradi-
tional tea-picking machines may compromise the quality of the tea leaves. High-quality teas are often handpicked
and need more delicate operations in intelligent picking machines. Compared with traditional image processing
techniques, deep learning models have stronger feature extraction capabilities, and better generalization and are
more suitable for practical tea shoot harvesting. However, current research mostly focuses on shoot detection and
cannot directly accomplish end-to-end shoot segmentation tasks. We propose a tea shoot instance segmentation
model based on multi-scale mixed attention (Mask2FusionNet) using a dataset from the tea garden in Hangzhou.
We further analyzed the characteristics of the tea shoot dataset, where the proportion of small to medium-sized
targets is 89.9%. Our algorithm is compared with several mainstream object segmentation algorithms, and the
results demonstrate that our model achieves an accuracy of 82% in recognizing the tea shoots, showing a better
performance compared to other models. Through ablation experiments, we found that ResNet50, PointRend
strategy, and the Feature Pyramid Network (FPN) architecture can improve performance by 1.6%, 1.4%, and
2.4%, respectively. These experiments demonstrated that our proposed multi-scale and point selection strategy
optimizes the feature extraction capability for overlapping small targets. The results indicate that the proposed
Mask2FusionNet model can perform the shoot segmentation in unstructured environments, realizing the indivi-
dual distinction of tea shoots, and complete extraction of the shoot edge contours with a segmentation accuracy of
82.0%. The research results can provide algorithmic support for the segmentation and intelligent harvesting of
premium tea shoots at different scales.
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1 Introduction

Tea leaf harvesting is a critical phase in tea production. The quality of harvested tea directly affects its
overall quality and value. Currently, tea leaf harvesting can be broadly categorized into bulk tea harvesting
and premium tea harvesting, whose quality and value are much higher than bulk tea. According to statistics,
in 2020, the production and value of premium tea in Zhejiang Province were 102,000 tons and 21.34 billion
yuan, accounting for 53.18% and 89.43% of the total in the province, respectively [1]. Traditional tea
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harvesting machines often use mechanical power to cut tea leaves rapidly, lacking selectivity and prone to
damage the woody parts of the tea bushes [2]. Such machines are typically suitable for bulk tea
harvesting. However, premium tea requires a selective plucking approach, with only the tender shoots [3],
one shoot-one leaf, or one shoot-two leaves being harvested, and manual harvesting has been the primary
method. With the increasing demand for tea and rising labor costs, it is necessary to replace manual labor
with automated harvesting technologies, leading to the emergence of intelligent tea harvesting machines.
In these devices, the accurate recognition and detection of tea shoots through computer vision is essential
for precise harvesting [4–6]. Thus, research of algorithms for recognition of the premium tea shoots holds
both theoretical value and practical significance.

In the agricultural application scenarios, the background types of the detected objects are divided into
two categories: clean background and complex background. A clean background refers to a solid color
plane with significant color deviation from the object to be detected, and a complex background refers to
indistinguishable colors similar to the detected object [7]. Early studies focused on the identification and
detection of tea shoots primarily using traditional machine learning and image processing techniques to
analyze RGB images [8], but they have certain drawbacks. The double threshold method is sensitive to
image noise, and can only be applied to single-object segmentation [9]. Regarding HIS color space and
region growing, limitations arise from the involvement of only three spectral bands, resulting in fewer
hierarchical levels in the fused color scheme and impacting the interpretation of land cover types [10].
Otsu threshold method fails to accurately separate targets and backgrounds when there is substantial
grayscale overlap and k-means mean clustering, with its completely random selection, may lead to slow
algorithm convergence [11]. Furthermore, these traditional methods often required manual parameter
selection and were mostly applicable to specific scene conditions, such as clean backgrounds, limiting
their applicability in complex agricultural scenarios [12]. In recent years, advancements in parallel
computing hardware have made deep learning algorithms, especially convolutional neural networks
(CNN), increasingly popular in the field of harvesting robotics [13,14]. Deep learning methods have
superior feature extraction capabilities and strong generalization abilities, more suitable for practical
harvesting tasks, including target recognition and detection in unstructured environments [15,16]. To seek
more effective and accurate solutions in the field of tea shoot image processing and intelligent tea leaf
harvesting, numerous scholars utilized deep learning and computer vision technologies. Yang et al. [17]
used an improved YOLOv3 model to obtain feature maps of tea leaves at different scales, enabling the
model to better identify tea leaf types and positions. Luo et al. [18] established an automatic detection
model for tea shoots based on the Faster R-CNN [19] network framework with a VGG16 network [20],
improving detection accuracy and algorithm robustness. Chen et al. [3] combined Faster R-CNN with the
fully convolutional network (FCN) to identify harvesting points in tea shoot regions using a complex
two-stage model. Qian et al. [21] introduced an improved deep convolutional encoder-decoder network
with skip connections and a contrastive center loss function for semantic segmentation of tea shoots. Lv
et al. [22] addressed the sensitivity of existing tea shoot detection algorithms to changes in lighting
conditions by proposing a tea shoot detection model based on region brightness adaptive correction,
enhancing shoot feature saliency and detection accuracy.

However, most of the aforementioned deep learning-based methods primarily focus on crop detection.
Further steps are required for crop segmentation and precise harvesting point localization before providing
information to the harvesting equipment. In recent years, to achieve precise segmentation of tea shoots,
several algorithm modules have emerged in the field of instance segmentation, such as the Mask R-CNN
[23] network, which builds upon Faster R-CNN by adding an FCN (Fully Convolutional Network)
branch. The method enables simultaneous object detection and instance segmentation, allowing for pixel-
level recognition of multiple object outlines. Researchers have already applied instance segmentation
methods to agricultural scenarios, including strawberries [16], cucumbers [24], and apples [25]. Wu et al.
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proposed an approach based on the CNN model Deeplab V3+ and classical image processing algorithms to
segment banana bunches [26]. Additionally, there are also algorithms like YOLACT: Real-time Instance
Segmentation [27], which divides instance segmentation into two parallel tasks: generating a dictionary of
non-local prototype masks across the entire image and predicting a set of linear combination coefficients
for each instance. Currently, Liu et al. [28] have achieved real-time instance segmentation of tomato
plants based on the YOLACT. Wang et al. introduced SOLOv2: Dynamic and Fast Instance
Segmentation [29], which transforms the segmentation problem into a position classification problem.
This eliminates the need for anchors, normalization, and bounding box detections in instance
segmentation. To address the target similarity problem in complex backgrounds, Chen et al. proposed a
rapid visual gender detection method for pigeon features based on the YOLOv5 model [30]. The above-
mentioned research relies primarily on CNN models. However, the convolutional operations in CNN can
only capture local information and struggle to establish long-distance connections for a global image. In
contrast, the Transformer models allow for direct global relationship modeling, thereby expanding the
image’s receptive field, obtaining more contextual information, and supporting parallel computation [31].
Recently Cheng et al. [32] proposed the Masked-attention Mask Transformer for Universal Image
Segmentation (Mask2Former) model for image segmentation. This is a new architecture capable of
addressing any image segmentation task. When compared with state-of-the-art models on the COCO [33]
dataset, Mask2Former produces final results with better boundary quality and further achieves end-to-end
object detection.

However, the tea shoots are relatively small in the regular real-field pictures and are very similar to the
complex background. Thus, it is very challenging to obtain an accurate edge image of the tea shoots as well
as the plucking information, which is very important in intelligent picking machines. So based on the self-
made small tea shoots dataset. We construct a multi-scale instance segmentation network Mask2FusionNet
with attention mechanisms [34] at its core to comprehensively extract features from tea shoot images based
on a self-constructed tea shoot dataset. Firstly, we analyzed the characteristics of the tea shoot harvesting
dataset. Confronting the challenge of distinguishing small targets in the complex backgrounds within this
dataset, we proposed a detection method employing a multi-scale edge point selection strategy. This
method effectively utilizes contextual information at different scales to differentiate the relationship
between captured targets and the green leaf background. By separating overlapping targets and the edge
contours of tea trees, we enhanced the clarity of contour information extraction and the accuracy of small
target identification. Subsequently, we conducted comparative experiments, pitting our proposed
algorithm against mainstream algorithms, and revealing improvements in both accuracy and convergence
speed. The ablation experiments were then performed to validate the effectiveness of ResNet50,
PointRend, and FPN, further affirming the superiority of our algorithm in detecting small-scale targets in
complex backgrounds. Finally, we conducted a visual analysis of different modules, and experimental
results indicated that our model exhibits superior detection capabilities in tea shoot recognition.

2 Materials and Methods

2.1 Image Acquisition and Processing
All the tea leaf images were collected from multiple tea gardens in the West Lake Scenic Area of

Hangzhou, Zhejiang Province, China, in March 2021. The tea variety was “Longjing 43,” developed by
the Tea Research Institute of the Chinese Academy of Agricultural Sciences. The images were captured
under natural light conditions with the rear dual camera of mobile phones. These images were captured
with the rear dual cameras of a smartphone under natural lighting conditions on both cloudy and sunny
days. The shooting distance ranged from 60 to 80 centimeters, employing both oblique and vertical
shooting angles in a 1:1 ratio. The RGB images of tea shoots had a size of 3024 * 4032 pixels and were
stored in jpg format.
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The collected image data had a relatively large field of view, containing a high number of dispersed
tender tea shoots. To annotate the images, images with distinct features of tea shoots and stems and
visible harvesting points were selected and divided into 2 * 4 segments. Thus, a total of 464 images were
chosen, with the size of 1512 * 1008 pixels. These images were then divided into a training set, a
validation set, and a test set in a 7:2:1 ratio. The training set was used for learning the weight parameters
during the model training process, the validation set was used to optimize the network model’s structure,
and the test images were used to verify the accuracy of the proposed method. To improve the accuracy of
tea shoot labeling, we consulted with the tea experts and local farmers, ultimately establishing the tea
shoot image annotation scheme. We employed Labelme software for instance segmentation labeling of
tea shoots, creating a tea shoot dataset in COCO format with a total of 1703 samples. Fig. 1a depicts the
original harvested tea shoot image, while Fig. 1b illustrates the annotated tea shoot image. To prevent
overfitting during the model training process, an online data augmentation method was applied to expand
the dataset. Image augmentation helped reduce the imbalance in sample distribution and improved the
model’s generalization ability. The image augmentation methods used in the study mainly included scale
transformation, flip transformation, and pixel value normalization. The computer configuration for this
experiment includes an Intel(R) Xeon(R) Platinum 8124 M CPU @ 3 GHz, 64 GB of RAM, an NVIDIA
GeForce RTX 2080Ti GPU with 11 GB of VRAM, and the Linux Ubuntu 18.04 operating system.

2.2 Mask2FusionNet Tea Shoot Instance Segmentation Model
The tea shoot segmentation model based on Mask2FusionNet is illustrated in Fig. 2. Its structure

primarily consists of several modules, including the feature extraction network, pixel decoder, self-
attention [31], mask attention, and point selection strategy [35]. The tea shoots images are input in the
ResNet50 structure and the features specific to tea shoots are extracted with the feature extraction
network. Subsequently, the feature maps are passed through the pixel decoder module, which gradually
restores the low-resolution feature maps to the original image’s resolution using operations such as
deconvolution or upsampling. In each upsampling layer, convolutional layers and normalization layers are
added to generate high-resolution pixel embeddings. Among the four feature maps, the first three are
input into the transformer decoder. This decoder processes object queries to generate region predictions
and mask predictions. Within the predicted regions, a point selection strategy is applied to extract feature
points. These feature points are then mapped to the final mask predictions using a point-head network.

Figure 1: Segmentation sample of tea shoot dataset (a) original image (b) annotation image
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Tea shoots often vary in shape and size during the detection process due to different shooting angles and
growth stages. Therefore, a network architecture that combines input tea shoot images with the Residual
Networks (ResNet) [36] and the Feature Pyramid Network (FPN) [37] is employed to capture more
details from feature maps at different levels. The main backbone network in this setup is ResNet50,
which performs convolutional operations on the input images, reducing the image size by half and
doubling the number of channels with each convolutional operation. Feature maps are extracted at
different stages, denoted as C1 to C5, from shallow to deep. The middle part of the network is the feature
pyramid structure. Initially, a 1 × 1 convolution is applied to the deep-level feature map C5, followed by
downsampling. In the feature fusion phase, a 3 × 3 convolution is used to eliminate aliasing effects
introduced during upsampling, resulting in feature map P4. Similarly, a 1 × 1 convolution is applied to
C3, and after a 1 × 1 convolution with C4, the corresponding feature maps are element-wise summed to
produce P3. This process continues, yielding P2 and P1. The improved feature extraction network
enhances its focus capabilities and can be directly integrated into the model, allowing it to participate in
the iterative update of the entire model’s network parameters. In the feature extraction network, FPN
combines the detailed positional information of lower-level features with the rich semantic information of
higher-level features, enhancing the representation capacity of features. This provides richer and more
useful information for detecting small targets and segmentation. Consequently, in the context of tea shoot
recognition and segmentation, the FPN network can more accurately and efficiently detect tea shoots of
different scales, further improving the accuracy of instance segmentation [38,39]. The formulas for the
improved P2, P3, P4, and P5 feature maps are as follows:

Figure 2: Framework of tea shoot segmentation model based on Mask2FusionNet
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P5 ¼ Conv1�1ðC5Þ �M5ðConv1�1ðC5ÞÞ (1)

Pi ¼ Conv1�1ðCiÞ �MiðConv1�1ðCiÞÞ � f 2�2
upsamplingðPiþ1Þ (2)

In the equation, Ci means the feature map output from the i-th stage of feature extraction, Mi means the
weight matrix of the attention module corresponding to the feature map of the i-th stage, Pi means the feature
map after feature fusion, 4 is Element-wise addition, 5 is the element-wise multiplication and means
performing 2 × 2 upsampling.

The Pixel Decoder transforms the feature maps extracted by the model into pixel-level segmentation
masks. This is achieved through a series of convolutional and upsampling operations to generate
segmentation masks with the same resolution as the input image. The convolutional layers are used to
process the feature maps, extracting rich semantic information. Upsampling operations, either through
deconvolution or interpolation, restore the spatial dimensions of the feature maps to match those of the
input image. Finally, a classifier is applied using a 1 × 1 convolutional layer to convert the feature maps
into pixel-level segmentation masks. The objective of the Pixel Decoder is to produce high-quality
segmentation results, accurately delineating regions of different classes. It effectively translates abstract
feature representations into semantically meaningful segmentation masks, enabling precise image instance
segmentation.

By taking the feature maps generated by the Pixel Decoder as input, we employ masked attention to
process the foreground regions of the predicted masks. Following a series of convolutional operations, we
apply self-attention to the input feature maps through the following steps: Firstly, we calculate queries
(Q), keys (K), and values (V) through linear transformations. This yields corresponding Q, K, and V
vectors. Subsequently, by computing the similarity between queries and keys, attention weights are
obtained. These weights determine the importance of each position relative to others. Next, based on the
attention weights and the representation of values, we calculate weighted sums to obtain context feature
representations for each position. Finally, we utilize a Feed Forward Network (FFN) structure, comprising
a combination of nonlinear activation functions and multiple linear transformations, to produce the
corresponding image features. The Transformer Decoder module directs the model’s attention more
toward image regions relevant to the target, filtering out irrelevant features for the task. This helps in
selecting effective features more precisely, thus enhancing the model’s performance.

Compared to predicting all pixels in the high-resolution output grid, selecting only a few points can
significantly reduce computational and memory consumption. For the recognition of the tea shoots, which
often resemble the background, point selection strategies can sample uncertain regions, focusing on areas
with uncertain predictions for further analysis. This approach can enhance the model’s performance in
predicting blurry or boundary regions, thereby improving the overall segmentation results. After
extracting fine-grained features from the fused image and conducting rough predictions, point features are
generated, resulting in the final point prediction image. The point selection strategy can also maintain a
certain degree of uniform coverage, aiming to cover the entire prediction area as much as possible. This
ensures that the model learns sufficient features from the entire region and avoids excessive bias towards
specific areas.

2.3 Loss Function Calculation and Model Evaluation Methods
The model’s loss function consists of both a classification loss and a mask loss. For the classification

loss, binary cross-entropy loss is utilized, while for the mask loss, binary cross-entropy loss for a single
class is employed. The formulas for each loss function are as follows:
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Lclsðp�i ; piÞ ¼ �p� log p (3)

Lmaskðs�i ; siÞ ¼ �ðs� log sþ ð1� s�Þ logð1� sÞÞ (4)

In the equation, p means the probability of anchor box prediction being the target, p� is the actual labels
corresponding to the anchor boxes, s is binary predicted masks, s� is the corresponding ground truth masks.

The text uses mean Average Precision (mAP) as the performance metric for evaluating shoot recognition
and segmentation. This metric is calculated based on the values of True Positives (TP) and False Positives
(FP) and is computed using the following formula:

mAP ¼ mean
TP

TP þ FP

� �
(5)

In the evaluation of shoot recognition results using bounding boxes, TP represents the number of target
boxes that were accurately detected and recognized as target boxes, while FP represents the number of non-
target boxes that were incorrectly detected and recognized as target boxes. In the evaluation of shoot
segmentation results using masks, TP represents the number of target pixels that were accurately detected
and segmented as target pixels, while FP represents the number of non-target pixels that were incorrectly
detected and segmented as target pixels.

3 Experimental Process and Results Analysis

3.1 Tea Shoot Image Dataset
To gain a more intuitive understanding of the characteristics of the tea shoot dataset, we performed data

analysis by calculating and plotting the width and height distribution of all object-bounding instances within
the dataset, as well as the area distribution of object-bounding instances based on area rules. Fig. 3a displays
the width and height distribution of target box instances, showing that most of the target boxes in the dataset
have widths ranging from around 60 to 120 and heights ranging from around 150 to 220. This indicates that
the target sizes in the dataset are generally small. Fig. 3b presents the distribution of aspect ratios of target box
instances, indicating that most of the aspect ratios in the dataset fall between 0.2 and 0.8. The smallest aspect
ratio observed was 0.15, while the largest was 3.03. This suggests that the dataset has a relatively uniform
distribution of target box shapes. Fig. 3c shows the area distribution of target box instances based on area
rules. In this experiment, the area rules classified targets with resolutions smaller than 32 * 32 pixels as
small targets, resolutions between 32 * 32 pixels and 96 * 96 pixels as medium targets, and resolutions
greater than 96 * 96 pixels as large targets. The results indicate that small and medium targets constitute
89.9% of the dataset.

The results indicate that the tea shoot dataset primarily consists of small-scale objects. In the COCO
dataset, the proportion of small and medium-sized targets is approximately 75% [33]. In contrast, our
dataset has a higher proportion of small targets. Additionally, our dataset presents some challenging
scenarios, such as high similarity between small targets and the background, as well as target overlap.
These factors significantly increase the difficulty of detection and segmentation. As shown in Fig. 4, the
first row consists of original images, and the second row contains annotated images. Figs. 4a–4c show
examples of the small tea targets, target overlap, and high background similarity in the images. To further
study whether the proposed Mask2FusionNet model is suitable for this dataset, we conducted
comparative experiments in the following subsection.
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3.2 Comparison of Results with Mainstream Segmentation Algorithms
In this study, the proposed tea shoot instance segmentation model was compared with other mainstream

object detection algorithms to evaluate its performance in recognizing tea shoots, particularly in terms of
false negatives and overlapping instances. The comparative models selected for this evaluation were
Mask R-CNN [23], YOLACT [27], SOLOv2 [29], and Mask2Former [34]. The accuracy curve graph of
the final models is presented in Fig. 5. Fig. 4 displays the results of Average Precision (AP) on the
validation dataset for the four object detection algorithms. From the graph, it can be observed that our
model achieves the highest accuracy in recognizing tea shoots. Table 1 provides a summary of the results
for the four object detection algorithms in terms of Average Precision (AP) on the validation dataset,

Figure 3: Data set analysis results. (a) Instance width and height distribution chart, (b) instance width/height
distribution chart, (c) instance area distribution chart
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along with the evaluation metrics for our algorithm’s tea shoot segmentation results. The results show that
our model outperforms the Mask R-CNN model with a 6.7% improvement in AP50, compared to a 4.1%
improvement over the YOLACT model, and a remarkable 23.1% improvement over the SOLOv2 model.

Figure 4: Segmentation sample of tea shoot dataset (a) small targets (b) overlap targets (c) background
similarity targets

Figure 5: The accuracy of mainstream instance segmentation algorithms on the validation set
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The above experiments indicate that the proposed Mask2FusionNet model’s small-object detection
scheme is suitable for this dataset and demonstrates a superior recognition accuracy compared to other
models. To further validate which modules and parameters are crucial for the accurate detection of
overlapping tea shoots, we will conduct a series of ablation experiments in the following steps.

3.3 Ablation Experiments
We introduced a multi-scale hybrid attention model based on ResNet50, achieving precise segmentation

of tea shoots by incorporating FPN and PointRend networks. To validate the effectiveness of different
modules in small-object detection, we conducted a series of ablation experiments.

As shown in Table 2, experimental results demonstrate that our method significantly outperforms the
original Mask2Former network in terms of precision, achieving an AP25 of 63.6%, AP50 of 82.0%, and
AP75 of 69.1%. In Table 2, EXP1 to EXP4 used ResNeXt as the backbone, and the average precision at
AP50 for the four combinations is 79.2. EXP5 through EXP8 used ResNet50 as the backbone, and the
average AP50 for the four combinations is 80.9, which had a better performance than ResNeXt. In EXP2,
the PointRend was introduced based on EXP1, resulting in a 1.8% improvement in AP50 accuracy.
Similarly, EXP6 with PointRend, compared with EXP5, led to a 2.3% increase in AP50 accuracy. In
EXP3, the FPN was introduced based on EXP1, resulting in a 3.2% improvement in AP50 accuracy.
Similarly, EXP7, built upon experiment five, introduced the FPN, resulting in a 2.7% increase in AP50
accuracy. EXP4, which simultaneously introduced the PointRend and FPN architectures based on EXP1,
led to a 4.4% increase in AP50 accuracy. Similarly, EXP8, based on EXP5, simultaneously introduced the
PointRend and FPN, resulting in a 3.2% increase in AP50 accuracy. These results indicate that whether
using ResNeXt or ResNet50 as the backbone, the PointRend and FPN are effective for tea leaf detection.

Table 1: Tea shoot segmentation evaluation indicators of different modules

Models Segmentation FPS

AP AP50 AP75
Mask R-CNN 47.9 75.3 54.1 4.15

YOLACT 51.7 77.9 56.3 6.75

SOLOV2 26.2 58.9 22.5 7.36

Mask2Former 56.8 78.8 62.0 4.23

Ours 63.6 82.0 69.1 4.26

Table 2: Tea shoot segmentation evaluation metrics based on the Mask2Former model

Experiment Backbone ResNeXt Backbone ResNet50 PointRend FPN Segmentation

AP25 AP50 AP75
EXP1 + 56.6 76.8 60.8

EXP2 + + 58.3 78.6 61.7

EXP3 + + 59.9 80.3 63.5

EXP4 + + + 60.5 81.2 65.8
(Continued)
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Compared with Backbone ResNeXt (EXP1-EXP4), the average AP50 of ResNet50 (EXP5-EXP8)
improved by 1.6%. Compared with the original model, the inclusion of the PointRend structure (EXP2, 4,
6, 8) resulted in an average AP50 increase of 1.4%. The inclusion of the FPN structure (EXP3, 4, 7, 8)
resulted in an average AP50 increase of 2.4%. In conclusion, compared to the Mask2Former network, our
network architecture approach improves precision by 3.2%, and the experimental results demonstrate the
superiority of our model in the instance segmentation task of tea shoots.

3.4 Visualization of Mask2FusionNet Results
To further demonstrate the advantages of our model in tea shoot recognition, we conducted model

visualization to analyze the tea shoot recognition problem. As shown in Fig. 6, experimental results
indicate that our model has better detection capabilities in image recognition compared to other models.

Fig. 6 displays tea shoot instance segmentation results based on Mask2Former with the introduction
of different modules. The first column represents the original images, the second column shows the
results of the Mask2Former original network without adding any modules, the third column presents the
results of combining Mask2Former with the PointRend network, the fourth column shows the results of
combining Mask2Former with the FPN network structure, and the last column displays the results of our
network. In the first row of images, the baseline network made erroneous candidate box selections during
tea shoot recognition, while the other networks had more accurate selections. In the second row, the
baseline network made errors in recognizing pickable tea shoots, mistakenly identifying unpickable
shoots. Other networks avoided this issue, and both the baseline network and the PointRend structure
network had cases of missed detection while introducing the FPN structure achieved more precise
recognition. In the third row of images, the baseline network’s recognition of tea shoot contours was
incomplete, and it incorrectly grouped two shoots together as one. The PointRend network and FPN
network had false positives and missed detections in recognizing shoots, with lower accuracy compared
to the fused PointRend and FPN networks. In the fourth row of images, the baseline network failed to
completely recognize the tea shoots, while other networks could recognize them, with more accurate
contour recognition. These experimental results demonstrate that our network structure, compared to the
Mask2Former network structure, extracted more information from the target regions, achieved more
accurate and complete tea shoot edge contours, and improved the model’s accuracy by excluding older
leaves that are easily confused with the shoots.

Table 2 (continued)

Experiment Backbone ResNeXt Backbone ResNet50 PointRend FPN Segmentation

AP25 AP50 AP75
EXP5 + 56.8 78.8 62.0

EXP6 + + 60.9 81.1 65.7

EXP7 + + 61.9 81.5 68.1

EXP8 + + + 63.6 82.0 69.1
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4 Conclusion

In addressing the intelligent harvesting of tea shoots, there is a high demand for accuracy in
identification and precise edge segmentation. Consequently, we constructed a tea shoot dataset, analyzed
its characteristics, and proposed a multi-scale feature edge detection algorithm. Based on the

Figure 6: Example segmentation results of tea shoots with different modules
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Mask2Former architecture, we employed a multi-scale feature fusion method to enhance the detection
capability of small targets. A point selection strategy was employed to refine the clarity of edge contours,
ultimately achieving a higher accuracy and finer edge output in an end-to-end network. Through
comparative experiments, our model achieved a 3.2% improvement in accuracy compared to the original
Mask2Former. Specifically, the ResNet50, PointRend strategy and FPN architecture showed performance
improvements of 1.6%, 1.4%, and 2.4%, respectively. The Mask2FusionNet model obtains more accurate
and complete tea shoot edge contours, enhancing the model’s accuracy. Visual interpretation of the
model’s recognition results ultimately demonstrates that our proposed Mask2FusionNet model effectively
enhances the model’s feature extraction capabilities for tea shoot images, improves detection
performance, and reduces false positive rates. For tea shoots, segmenting multi-scale and overlapping
samples is crucial.

This module could have further application in conjunction with a depth camera for tea bud plucking.
Currently, Glenn Jocher et al. have proposed YOLOv5: v7.0, applying the Intel RealSense D455 depth
camera for depth image collection and achieving SOTA results [40], which will be a focal point in our
subsequent research. Currently, some studies have been applied in the actual picking of tea shoots. Li
et al. achieved a reliable algorithm based on red, green, and blue-depth (RGB-D) camera images
developed to detect and locate tea shoots in fields for tea harvesting robots [41]. In future work, we can
deploy the Mask2FusionNet algorithm further on the depth camera, exploring the potential application of
depth camera systems in tea shoot recognition. This will provide essential foundational information for
the automatic identification and precise harvesting of tea shoots.
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