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ABSTRACT

Insect pests cause severe crop damage, resulting in substantial economic losses and threats to global food security.
Conventional insecticides are low-cost chemical agents that kill the target insects and some non-specific beneficial
organisms. Due to their toxic and non-biodegradable nature, these conventional insecticides persist in the envir-
onment, thus causing pollution and accumulating in the food chain. The development of novel insecticidal pro-
ducts based on double-stranded (dsRNA)-based RNA interference (RNAi) technology is a sustainable tool to
effectively control insect pests. The dsRNA-based insecticides are known for their specificity, non-toxicity, and
biodegradability. The current review introduces the dsRNA-based RNAi technique as a novel tool to control crop
insect pests. The review highlights the mechanism behind dsRNA uptake into insect cells. Furthermore, it dis-
cusses the commercial aspects of different dsRNA-based products available in the market, their penetration rates,
and public acceptance. The review details the latest developments in the field and the regulatory landscape regard-
ing the technology. The advantages and limitations of dsRNA-based insecticides are discussed, and future research
directions to overcome the potential challenges have been briefly suggested. The dsRNA-based insecticidal pro-
ducts may be a better alternative to conventional insecticides, thus delineating the resistance among insects
and increasing agricultural productivity.
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1 Introduction

The introduction of the Green Revolution in the 1940s was a stepping stone in agriculture that led to high
agricultural productivity and made several nations self-sufficient in food production. The Rockefeller
Foundation spearheaded the revolution, thus making Mexico a self-reliant nation in wheat production by
1956 [1]. The increase in agricultural productivity is quite evident as the population grows. The farm
sector has resorted to injudicious farming practices to meet global food demands and achieve higher
productivity rates [2]. These include higher dependence on nitrogen fertilizers and intensive cropping
practices, resulting in higher pest infestations and crop damage [2]. Insecticides are harmful substances
that control insect infestations in crops and crop products. The sole aim of the insecticides has been to

Copyright © 2024 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI: 10.32604/phyton.2024.057956

REVIEW

echT PressScience

mailto:sbn.satyananda@gmail.com
https://www.techscience.com/journal/Phyton
http://dx.doi.org/10.32604/phyton.2024.057956
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/phyton.2024.057956


maximize crop yields and minimize post-harvest losses [3]. Insecticides play a significant role in
safeguarding crops, ensuring sufficient food supply to the growing global population of more than
9 billion people [4]. Most of the insecticides used in agriculture are of chemical origin and contain heavy
metals and sulfur. Besides chemical insecticides, organic substances such as plant extracts and
metabolites have also been used as an alternative. However, most farmers prefer inorganic chemical
pesticides to organic ones because of their low cost and stability, the most important of which are
neonicotinoids, organophosphates, and carbamates, which account for almost all insecticidal products [5].

The use of conventional insecticides has resulted in a significant number of deaths among agricultural
workers, with estimates ranging from 5000 to 20,000 per year. These pesticides are primarily toxic in nature,
which has contributed to the alarming number of fatalities. The ingestion of these pesticides has been linked
to several adverse health effects, including renal failure, cardiovascular disease, and respiratory problems [6].
Furthermore, the excessive utilization of these insecticides has resulted in the emergence of insect and pest
resistance. The development of resistance can occur via two distinct mechanisms. Exposure to insecticides
may sometimes result in the mutation of specific genes, thus leading to the development of insensitivity to the
chemicals among the insects. Alternatively, insects can alter the quantity and quality of their detoxifying
genes and enzymes, thus creating metabolic resistance [7]. Some insecticides may persist in the
environment and accumulate in different parts of the food chain, causing widespread toxicity [8]. There is
an urgent need to develop new alternatives to conventional insecticides to prevent the spread of
environmental toxicity and counteract the development of insect resistance.

RNA interference (RNAi) technology has emerged as a reasonably sustainable alternative to
conventional insecticides, thus balancing agricultural productivity and environmental health. This process
induces instability in the messenger RNA (mRNA) and disrupts transcription and translation in specific
targeted cells or organisms mediated by microRNAs (miRNAs), Small interfering RNAs (siRNAs), and
Argonuate (Ago) family protein complexes. RNAi mechanism leads to disruption of gene functions and a
reduction in the levels of gene products, mainly proteins [9]. RNAi has contributed significantly to
advancing our insights into insect biology. The importance of RNAi in modern agriculture is clearly
demonstrated by the growing number of publications in this field. The top three countries with the
highest number of publications in this field are the China, the USA, and India [10]. Several attractive
features of RNAi make it an efficient and responsible solution for breeders to induce varietal plant
improvement rather than going for more complicated and costly procedures like CRISPR/Cas9 or
TALENS. RNAi can achieve a knockdown effect (by blocking or degrading mRNA transcripts) in a gene
rather than complete gene knockout. Besides their unique characteristic features of high-spread mobility
inside the plant system, they can also be used as a topical formulation, thus making them a highly
competitive product in the market [11]. Furthermore, the demand for these products in the agricultural
field is increasing due to their sustainable approach, wherein they can induce mortality in specific target
insect pests or lead to the loss of a particular function in the organism without killing them [12]. The
increase in agricultural productivity has also led to large-scale insect infestations, with these insects
accounting for 18%–20% of global crop loss, estimated to be worth 470 billion USD [13]. RNAi
represent a potential tool to the control of crop loss and sustainably improve agricultural productivity in
such a situation.

2 Mechanism of Action

Double-stranded RNA plays a significant role in RNAi. Large-scale delivery of dsRNA can specifically
target genes in insects responsible for development and overall survival [14]. Particular genes accountable for
energy metabolism, digestion, internal cellular activities, chitin production, hormone balance, immunity, and
insecticidal resistance can be targeted. Besides, some other target genes, primarily responsible for different
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molecular processes like replication, transcription, translation, and fertility, can also be considered [15].
Table 1 accounts for different knockdown targets of dsRNA delivery and their impact on insect pests.

Table 1: Functional and knockdown targets in different insects of crops and their corresponding knockdown effects

Functional
targets

Knockdown targets Insects Effect Reference

Energy
metabolism

V-ATPase subunits
(A, B, D, E, G)

Coleopteran (Diabrotica
virgifera virgifera)
(Coccinellidae),
Hemipteran (Myzus
persicae), Orthopteran
(Locusta migratoria),
Lepidopteran (Tuta
absoluta), and Dipteran
(Drosophila melanogaster)

Control efficacy of 61% in
3 days against Myzus
persicae. Transcriptional
suppression of two host
genes in L. migratoria
nymphs (5th instar). 60%
reduced target gene
transcript in T. absoluta.
Selective killing of D.
melanogaster.

[15–17]

Arginine kinase Nylanderia fulva 15% higher larval mortality [18]

ADP/ATP
translocase

Diabrotica virgifera Stunted growth and death [19]

NADH
dehydrogenase

Chilo suppressalis 30% increased larval
mortality

[20]

Intracellular
components

α-tubulin Bemisia tabaci Upto 97% mortality after
6 days of feeding containing
6 ng of dsRNA per day

[21]

Shibire Dendroctonus frontalis Mortality rate exceeding
80%

[22]

Ribosomal proteins Diabrotica virgifera Larval death [19]

SNAP gene Tetranychus urticae More than 80% mortality [23]

Hormone
balance

Ecdysone receptor Helicoverpa armigera Mortality rates exceeding
90% in adults after 24 h

[24]

Juvenile Hormone
Binding Protein

Tuta absolute 55% increase in mortality
rate

[25]

Bursicon Phenacoccus solenopsis 28%–37% mortality [26]

Chitin
metabolism

Trehalase gene Aphis glycines 51% increased mortality [27]

Hexokinase gene Diaphorina citri 10% increase in larval
mortality

[28]

Chitin deacetylases
(CDA1)

Spodoptera frugiperda Retardation of growth and
mortality (40%) in the larva

[29]

Cuticle protein gene Aphis citricidus,
Acyrthosiphon pisum, and
Myzus persicae

Up to 64.2% gene silencing,
and 55.8% mortality

[30]

(Continued)
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The mechanism of RNAi in insect pests can be categorized into two main phases (Fig. 1). The first phase
involves the uptake of the dsRNA by the insect cells, which is then processed by the core RNAi system. It has
been demonstrated that insect cells are capable of efficiently uptaking dsRNA through clathrin-mediated
endocytosis [42]. Additionally, specific proteins, such as SID-1 like proteins, RNA binding proteins
(RBP), or extracellular vesicles may also facilitate the uptake process by fusing the dsRNA molecules
through the plasma membrane. These molecules are also thought to play a significant role during the
transfer of the silencing signal from one cell to another cell of an insect pest, thereby conferring systemic
silencing [2]. Three SID1-related genes were studied in Spodoptera litura by Gong et al. [43]. Analysis
using qPCR found homologoues of the SID1-like genes to be involved in the transfer of dsRNA into the
cell of S. litura. In another study, qPCR analysis revealed the expression of SID1 genes in various tissues
of Aphis glycines, thus implicating its important role in RNAi-based gene knockdown in the species [44].
In insects like Apis mellifera, the expression levels of the SIL gene increased upon exposure to dsRNA,
thus confirming its role in RNAi. Knockdown of the SIL mRNA in Leptinotarsa decemlineata resulted in
reduced RNAi efficiencies [42]. However, in certain other insects, the SID1 proteins are found to have no
particular role in the process of RNAi. In a study, the silencing of three orthologs of SID1 in Tribolium
castaneum had no effect on RNAi efficiency [45]. Similarly, SID1 proteins or their homologs have not
been found to play any role in RNAi [46]. This suggests variable roles of the protein or its homologs in

Table 1 (continued)

Functional
targets

Knockdown targets Insects Effect Reference

Digestion Snakeskin gene
(SSK)

Anoplophora glabripennis 80% mortality [31]

Kunitz-type Trypsin
Inhibitors

Ostrinia furnacalis 19.5% increased mortality [32]

α-amylase Helicoverpa armigera 17.7% increased mortality [32]

Immunity
and
insecticidal
resistance

Hemocytin Myzus persicae Higher mortality rates [33]

Apoptosis inhibitor
proteins

Anoplophora glabripennis 90% mortality [34]

P450 genes Nilaparvata lugens Approximately 50%
mortality in 5 days

[35]

Acetylcholinesterase Plutella xylostella Lower larvae weight gain
and high mortality rates

[36]

Synapsin Aphis gossypii 93.3% mortality in 4 days [37]

Other genes Calmodulin gene Varroa destructor Significant inhibition of
reproduction

[38]

Tektin 1 gene Bactrocera dorsalis Caused 64.5% sterility in
males

[39]

Hexamerin II gene Reticulitermes flavipes 86.7% mortality [40]

Integrin β1 Plutella xylostella Extended developmental
time, low pupa weight, and
rate of pupation and
mortality

[41]
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different insects. In certain insects, it may facilitate the uptake of dsRNA, while in some other insects, it may
not. Once inside the cell, the dsRNA is cleaved into sRNAwith the aid of the enzyme DICER. Subsequently,
the sRNA is then further loaded onto specific proteins of the AGO (Argonaute) family, forming the RNA-
induced silencing complex (RISC). The sRNA’s guide strand facilitates the attachment of the RISC
complex to the target RNA, which results in the degradation or inhibition of translation of the target
mRNA and, consequently, causes post-transcriptional gene silencing. The process primarily occurs in the
cytoplasm of the insect cell.; however, it can also occur by modifying chromatin within the nucleus [47,48].

The RNAi process can be broadly classified into two types—Cell Autonomous RNAi (CAR) and Non-
Cell Autonomous RNAi (NCAR) (Fig. 2). In CAR, the silencing effect of the dsRNA is limited to a single
cell where it is applied [49]. In NCAR, the silencing can be further divided into environmental RNAi and
systemic RNAi. Environmental RNAi involves the uptake of exogenously supplied dsRNA by cells from
the environment. This can affect those particular cells that uptake it. Sometimes, the silencing effect can
also pass from the primary cells that have taken up the dsRNA to secondary cells and tissues [50].

Figure 1: Mechanism of RNAi in insects. The dsRNA can be taken up by insect cells by either of the three
mechanisms or pathways—(A) Delivery mediated by SIL, (B) RBP, or (C) receptor-mediated endocytosis.
Step 1: Uptake of dsRNA by any of the pathways. Steps 2 and 3: Cleaving of long dsRNA fragments into
sRNA. Step 4: sRNA binds to proteins of the AGO family. Step 5: sRNA and AGO form an RISC complex
that guides the sRNA to the target sequence. Step 6: The sRNA binds with the target gene sequence, thus
degrading it to induce a silencing effect. (SIL: SID1-like proteins, RBP: RNA binding protein, AGO:
Argonaute, RISC: RNA-induced silencing complex)
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Environmental RNAi is primarily achieved in insects by feeding them the dsRNA or soaking them in a
dsRNA solution. Systemic RNAi involves the delivery of dsRNA to a single healthy cell from where the
silencing signal can further be spread to other cells and tissues [49]. In certain insects like red flour
beetle, extracellular vesicles have been found to transport dsRNA from one cell to another, thus causing a
silencing effect [51]. REXD-1, TBC-3, and SID-5 genes in C. elegans help promote systemic RNAi by
transporting dsRNA intracellularly [52].

Several methods achieve delivery of dsRNA, including microinjection, ingestion, topical application,
and nanoparticle delivery. Microinjection can directly apply the dsRNA to the target insect tissues or
hemolymph [53]. This ensures the safe passage of the dsRNA and prevents its degradation from the harsh
gut environment of the insect. However, the microinjection technique is too laborious and requires
experienced personnel. It is also impossible to use the technique in the field [54].

Ingestion is one of the simplest methods for delivering dsRNA into insects and is a feasible method for
field application [55]. The midgut cells can take up the dsRNA and be transported to other tissues [56]. The
delivery agent is basically a liquid formulation that can be applied to the foliar parts of the plant by soaking or
mixing with insect diets to facilitate their ingestion by the target insects. The dsRNA for the purpose is mostly
synthesized in vitro or by certain microbes [57]. The development of transgenic plants with the ability to
continuously produce dsRNA has been instrumental in inducing RNAi in insects feeding upon the plant
parts. Plant chloroplasts lack RNAi machinery, thus allowing the production and accumulation of stable
dsRNA [58]. Non-transgenic delivery options are less time-consuming, and cheaper as compared to the

Figure 2: The cell-autonomous and non-cell-autonomous RNAi processes
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transgenic approaches. Transgenic plant development reduces the need for pesticides but faces the problem
of practical application in different plants and low public acceptance [59].

Topical applications, also referred to as spray-based formulations, penetrate the cuticle of insects to
cause mortality [60]. Topical applications are quite easy to use but face the drawbacks of low silencing
efficiency in insects with thicker cuticles, limiting the dsRNA’s penetration [29].

Nanoparticles have been found to act as an efficient delivery vehicle for promoting the efficient uptake
and stability of the dsRNA. Chitosan nanoparticles, liposomes, and cationic dendrimers have been found to
prevent the degradation of dsRNA in the environment as well as inside the insect’s gut epithelium and further
help in the translocation into different cells. Nanoparticles are no doubt one of the best options for the safe
and efficient delivery of dsRNA, but they are too costly and may pose certain risks [61].

3 Current Scenario in dsRNA-Based Insecticides

There have been multiple research studies to formulate different dsRNA-based insecticides specifically
targeting insect pests in crops. The subsequent sub-sections deal with these insecticides’ commercial, R&D,
and regulatory aspects.

3.1 Commercially Available dsRNA Insecticides
The use of dsRNA-based products in agriculture is still in its nascent stage, with very few of them

commercialized to date. The first commercially available RNAi product was SmartStax Pro, a pioneering
transgenic corn crop developed by Bayer Crop Science (earlier known as Monsanto). The product in
question comprised a combination of two Bt proteins and a dsRNA, which targeted the snf7 gene and
conferred resistance against western corn rootworms [62]. Once the Bt proteins enter the gut epithelium,
they cause death by inducing gut paralysis. In contrast, the dsRNA leads to the downregulation of the
snf7 gene, which plays a significant role in the protein trafficking process, ultimately resulting in death
[63]. Some of the recent product developments in the field are provided in Table 2.

Table 2: Details of commercially available dsRNA products

Company Product Composition/Process Current stage of
development

Reference

Bayer crop science SmartStax Pro Combination of 2 Bt proteins and
dsRNA targeting snf7 gene in
western corn rootworms

Commercialized [63]

RNAissance Ag Sprayable
biopesticide

Safe and cost-effective
production of dsRNA using
industrial fermentative bacterial
species against diamondback
moth

Early field trials [64]

RNAgri APSE RNA
Containers

Use of E. coli for mass production
of encapsulated dsRNA

Developed [65]

Dow AgroSciences,
in collaboration with
Fraunhofer
Institute for
Molecular Biology
and Applied
Ecology, Europe

Transgenic plants
against
coleopteran and
hemipteran
pests

– Unknown [66]
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It is too early to compare the different dsRNA-based products that have been commercialized or are in
the process of development. This is because of the slow penetration of such products into the market and the
lack of sufficient customer feedback data. Silencing through the RNAi mechanism is broadly classified into
two types. When the dsRNA-based formulation is delivered on plant surfaces by spraying, it is known as
spray-induced gene silencing (SIGS). When the exogenous dsRNA is inserted into the plants to confer
resistance against specific pests, it is called host-induced gene silencing (HIGS) [67]. Plant-induced gene
silencing is known to offer long-lasting protection from insects. However, it faces several difficulties
associated with the genetic transformation of plants and regulatory issues, which are not a constraint in
the case of spray-based dsRNA products [68]. Here, the authors anticipate spray-based dsRNA products
to have an advantage owing to their non-transgenic nature and ease of use.

There has been a slow penetration of the dsRNA-based biopesticides used to treat insect pests. Although
several patents and intellectual property (IP) applications have been filed in the field of dsRNA-based
insecticides, but certain other limiting factors are responsible for the slow commercialization of these
products. These factors include the cost of production, the requirement for high-end infrastructure, skilled
labor, and stringent regulatory norms [69].

3.2 Research and Development
There has been a notable increase in research activity within the field of dsRNA-based insecticides. The

field of sustainable management of agricultural productivity and pest infestations has been a point of
attraction for numerous researchers. In recent years, several dsRNA-based insecticidal formulations and
strategies have been developed with the specific aim of targeting particular insects affecting crops. Recent
research has produced a dsRNA-based insecticide (Calantha), which contains ledprona as an active
ingredient against Leptinotarsa decemlineata (Colorado potato beetle) through RNAi interference. Low
doses of the insecticide were found to interfere with the pupation of the larvae (fourth instar) and reduce
mobility and fertility among the adults [70]. A recent study by Li et al. [71] aimed to knockdown the
Rdl2 gene in Plutella xylostella, thus increasing the insect’s sensitivity towards γ-aminobutyric acid
receptor targeting compounds like fipronil, pyrazoloquinazolines, and isoxazolines via RNAi mediated
gene silencing.

The stability of the dsRNAwithin the insect gut poses a significant bottleneck in the process of RNAi.
The gut environment of most insect pests is highly alkaline, thus leading to degradation of the dsRNA.
Besides, several microbiota present in the gut can also lead to the degradation of the dsRNA.
Lepidopterans express specific nucleases not found in other insects and can quickly degrade the dsRNA.
A gene termed ‘up56’ was identified in O. furnacalis and encodes for a protein previously
uncharacterized and found to be homologous in seven other lepidopteran species (while absent in other
insects) with an ability to degrade dsDNA, dsRNA, and ssRNA, both in-vivo and in-vitro. Guan et al.
(2018) named the gene as RNAse efficiency-related nuclease (Rease) [72]. Similarly, Hemipterans can
degrade the dsRNA in their saliva and within the digestive tract [73]. The degradation of naked dsRNA
molecules under several biotic and abiotic stresses invites the development of various carrier molecules
for safe delivery, efficient uptake, and systematic distribution of the same in insect target cells. Several
recent research studies have focused more on the efficient delivery of the dsRNA molecule to confer
effective silencing of the target genes.

Protection of dsRNA is quite essential, so as to prevent its degradation and improve the RNAi efficiency.
This can be achieved by several techniques, which include encapsulation of the dsRNA within liposomes
(lipid bilayer-based nanoparticles) [74], nanoparticles [75], or embedded onto nano clay sheets [76].
Delivery of dsRNA could also be facilitated through root absorption in plants. The dsRNA is integrated
into the crop irrigation system [77]. Insecticidal dsRNA can also be supplied via microorganisms like
yeasts and E. coli [78] and other gut microbiota of the insect [79]. Table 3 provides different methods
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employed for efficient dsRNA delivery. The advanced delivery methods protect the dsRNA from degradation
under high alkaline gut pH and help the molecule escape from the endosomes, thus protecting them.
Moreover, these delivery agents also protect the dsRNA from harsh environmental conditions like
fluctuations in temperature, pH, soil microbes, thereby ensuring the efficacy of the RNAi approach.

3.3 Regulatory Landscape
The regulatory landscape of dsRNA-based insecticides is quite complicated. The stringent regulatory

frameworks are the main reason for the availability of very few dsRNA-based insecticidal products in the
market. dsRNA-based crops are considered to be genetically modified and hence are strictly evaluated.
Being tagged as genetically modified, these crops lose acceptance among the common masses. The
European Union mentions that genetic engineering approaches are linked to specific safety concerns and

Table 3: Novel methods for safe and efficient delivery and uptake of dsRNA in insects

Method Target
gene

Insect Impact Reference

Egg soaking method V-ATPase Amphitetranychus
viennensis

Dose dependent RNAi effect.
Acts as both contact and stomach
toxicity. 8 ng/μL dsRNA induced
100% dark body color and
mortality

[80]

Nanocarrier star
polycation-based
transdermal delivery

CYP6CY3 Aphis gossypii 84.3% reduction in expression
levels at 48 h and 67.21% at 96 h
due to increased susceptibility of
4th instar aphids to imidacloprid
and prolonged doubling time and
development of the insect
population

[81]

Nanoparticle-mediated
delivery system

CaM Grapholita
molesta and
Cacopsylla
chinensis

Increased susceptibility to
cyantraniliprole

[82]

Chitosan nanoparticles
mediated delivery

GRK2 Apolygus lucorum Stability of dsRNA up to 48 h.
50% increased mortality, 26.54%
reduction in weight, 8.04%
increase in developmental period

[83]

Plastid-mediated RNAi
and foliar application of
gut bacteria—
Pseudomonas putida

β-Actin
and
Srp54k

Plagiodera
versicolora

Enhanced RNAi effectiveness [84]

Galanthus nivalis
agglutinin protein-
mediated delivery

V-ATPase
A

Spodoptera exigua Mortality rate increased to 48%
as compared to naked dsRNA
treatments (8.3%)

[85]

Encapsulation with
guanylated polymers

Chitin
synthase B

Spodoptera exigua 37% increase in RNAi efficiency [86]
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must be regulated. On the other hand, the regulatory system in Canada mentions that plants that only have
novel traits or foods can be sold in a marketplace [87]. The United States also follows a similar approach
wherein GM crops are riskier than crops cultivated conventionally and will be subjected to different
safety evaluations [87]. To date, there have been no clear guidelines on using dsRNA-based insecticides.
Suppose a biotech product in the form of a plant protectant is developed and is to be registered as an
insecticide. In that case, the developer must obtain an experimental usage permit from the Environmental
Protection Agency (EPA) before field testing on a minimum of 10 acres of land [88]. In the US, dsRNA-
based products are considered biopesticides, while in the EU, they fall under the category of chemical
pesticides. Similarly, in Australia, these products are labeled under agricultural chemicals. In December
2023, the USEPA approved the registration of the dsRNA pesticide Ledprona developed by GreenLight
BioSciences [69].

4 Advantages of dsRNA-Based Insecticides

Despite many uncertainties, dsRNA-based insecticides offer a number of advantages over their
conventional ones (Fig. 3). Conventional insecticides are mostly inorganic in composition and can easily
get transferred into the food chain as a consequence of their non-biodegradable nature and prolonger
persistence in the environment. However, in this case, dsRNA-based insecticides are mostly
biodegradable and non-toxic. This is due to the fact that these molecules are developed with the specific
intention of targeting particular genes, thereby being specific to a particular insect pest. In comparison to
their toxic inorganic counterparts, biodegradable dsRNA-based insecticides are less harmful to the
environment. Inorganic insecticides poison a wide range of insects and disrupt soil ecology and fertility
[89]. In contrast, dsRNA-based pesticides are natural products that can control insect infestations in crops
by acting as a sustainable tool. They can be easily included under integrated pest management (IPM)
strategies to confer resistance in plants or eradicate specific insect pests without harming the beneficial ones.

5 Challenges and Limitations

The RNAi technology via delivery of dsRNA faces several challenges and limitations. The stability of
the dsRNA is questionable in the environment. Several environmental factors like temperature,
photodegradation due to exposure to UV, microbial degradation, and wash-off due to rain may affect the
stability of the molecules [90–93]. Off-target effects are another limitation of dsRNA-based insecticides.

Figure 3: Advantages of dsRNA-based insecticides over conventional chemical insecticides

3226 Phyton, 2024, vol.93, no.12



Although these insecticides are specifically designed to target a specific gene in a particular insect,
sometimes, any other organism with the same sequence identity as that of the dsRNA will be affected
[94–97]. In a study conducted by Pan et al. [98], dsRNA designed to target the V-ATPase gene in D.
virgifera was found to induce RNAi in four other species that shared several 21 nucleotides continuous
matches with the dsRNA sequence. One of the major bottlenecks in dsRNA-based insecticides is the
development of resistance among the insects. Insects can bring about mutations to the target genes or to
the genes involved in core RNAi machinery, thus leading to degradation of the dsRNA. Insects have been
thought to bring about alterations in critical genes involved in RNAi mechanisms, thereby developing
resistance that is quite impossible to mitigate. Recent studies found that D. v. virgifera and L.
decemlineata developed resistance against Snf7 dsRNA and IAP dsRNA without any mutations to the
dsRNA target site [99,100]. This confirms that the mutation of genes involved in the uptake and transport
of dsRNA in both organisms is a potential reason behind the development of resistance. The production
of dsRNA, which involves acquiring trained researchers, chemicals, and equipment, increases the cost.
Increased production costs lead to increased market prices, a significant reason behind the non-acceptance
of the product among marginal farmers. There is a fear amongst the common masses regarding the
acceptability of dsRNA-based products similar to that of genetically modified ones. Moreover, certain
industrial insecticide producers feel the onset of these next-generation bioinsecticides is a looming threat
to their existing business.

6 Future Prospects

6.1 Technological Innovations
Several research studies are now focussed on delivering the dsRNA molecules and their stability inside

the insect pests and the environment [101–103,53]. Moreover, preparing the bio-insecticidal formulation is a
vital part of the journey. The addition of certain surfactants generally improves the applicability of these
products. Similarly, LDH-nano clays enhance the stability of up to 20 days in the foliar parts of a crop.
Natural polymers like chitosan are frequently utilized as encapsulating agents, thus confirming efficient
uptake of the dsRNA and protecting it from harsh alkaline pH conditions in the pest gut. The dsRNA
molecules are known to be quite unstable in the soil due to several factors like temperature, other
chemicals, and microbial degradation. Star cationic polymers have been developed as an efficient delivery
agent, which can improve the molecule’s stability for up to 3 weeks [95]. Plant plastids have emerged as
one of the most fascinating options for expressing and delivering dsRNAs in insects. Whitfield et al.
successfully induced the production of long dsRNAs in the chloroplasts of potato plants [104]. The
dsRNA produced from the transplastomic plants efficiently targeted the β-actin gene of the Colorado
potato beetle, thus providing crop protection [105]. Plastid based RNAi approach has proven successful
in tobacco plants against non-chewing herbivores like Frankliniella occidentalis thus causing high
mortality [106]. The gut microbiota in insects also plays a major role in sustaining them under varied
environmental conditions. They supplement insects with important nutrients, provide protection from
pathogens, and help circumvent plant defense systems [107]. These microbial symbionts also help insects
degrade pesticides, thus conferring high levels of resistance [108]. Targeting bacterial symbiosis in target
insects has been found to efficiently cause RNAi effects. Sap-feeding insects like pea aphids
demonstrated reduced growth and reproduction when two genes, namely amiD1 and LdcA1, acquired
from bacterial symbiont Buchnera, were targeted [109]. The symbiotic relationship between the insect
and its gut microbes has been efficiently explored for RNAi by genetically modifying the bacterial
symbiont. Genetically modified yeast expressing γ-tubulin dsRNA in Drosophila suzuki have been found
to reduce survivability in larvae and locomotor and reproductive activity in adults [110].
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6.2 Broader Applications
The development of dsRNA-based insecticides was initially concentrated on a few selective crops and

their insect pests. However, recent studies have broadened the research horizon by experimenting with insect
pests of several plants and animals, such as honey bees. The amount of dsRNA required for a successful
application needs to be analyzed. As a rough estimation, 10 g of dsRNA is required per hectare of
cultivable land to manage insects [111]. However, the dose may vary from insect to insect and crop to
crop, thus requiring the confirmation of the doses differently in each case [112,113]. The dsRNA can also
be used with certain pesticides to improve their efficiency. The synergistic effects of combining various
pest control strategies can be analyzed to enhance RNAi efficiency.

6.3 Research Directions
The Organization for Economic Co-operation and Development states that dsRNA-based products have

no ill effects on humans or the environment [114]. However, the non-target effects of RNAi make it highly
important to design the dsRNA properly to avoid sequence identity. Further research needs to be carried out
to improve the stability of these bioinsecticides in a way similar to conventional ones. In some cases,
resistance to dsRNA can develop due to reduced uptake of dsRNA. To counter such issues, paperclip
RNAs (pcRNAs) have been developed. These are the short-sized dsRNAs, and due to their closed-end
structure, they can be quickly taken up through a clathrin-independent manner. These can also be applied
to insects that do not respond to dsRNA-based RNAi machinery [115–118]. Developing such alternatives
to dsRNA that can effectively induce silencing amongst the insects becomes essential.

The production of dsRNA-based insecticides is costly and needs collaboration between industrial,
academic, and governing bodies to develop and market new sustainable pest control products. The
players in the agribusiness sector will have to play a crucial part in commercializing RNAi-based
insecticides.

7 Conclusion

The increasing global population is well substantiated by a corresponding increase in agricultural
production. Large-scale use of fertilizers and deviation from proper agricultural practices have led to a
rise in the population of insect pests in crops. These insects destroy crops and their products, thus
accounting for substantial annual losses. Conventional insecticides have been successful to some extent in
controlling these infestations. However, there has been an upsurge in resistance development in pests.
Conventional chemical pesticides are also responsible for causing large-scale environmental pollution and
negatively impacting certain beneficial organisms. The development of novel bioinsecticides has led to
using dsRNA molecules as bioinsecticides to induce lethality among pests through the RNAi mechanism.
The dsRNA-based bioinsecticides are characterized by their non-toxic, biodegradable nature and
specificity. These modern-day bioinsecticides are being widely explored for sustainable pest management
in agriculture. These molecules can induce mortality and target specific functions like mobility,
reproduction, fertility, replication, and many other insect factors. The dsRNA molecule is sensitive to
several biotic and abiotic stresses and prone to easy degradation. Several research and advancements in
the field have led to the development of different methods for safely delivering these molecules and their
efficient uptake within insect cells. Using dsRNA as an RNAi agent is also associated with several
drawbacks related to its stability, efficiency, dosage, resistance, and off-target effects. Several research
projects are being run to overcome these limitations. Few dsRNA products have been commercialized in
the global market. The market penetration of such products and their acceptance is relatively slow due to
the high costs involved, the need for a skilled workforce, and the fear of using genetically modified
products. The stringent regulatory compliances of different countries and regions towards dsRNA-based
insecticidal products hinder their commercialization. The paper advocates in favor of dsRNA-based
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insecticides as a sustainable tool for use in integrated pest management and highlights future research
directions. Moreover, the authors emphasize the need for collaboration among industries, academics, and
government bodies for efficient commercialization and acceptance of these products.
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