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ABSTRACT

Traditional machine vision algorithms have difficulty handling the interference of light and shadow changes, bro-
ken rows, and weeds in the complex growth circumstances of soybean fields, which leads to erroneous navigation
route segmentation. There are additional shortcomings in the feature extractFion capabilities of the conventional
U-Net network. Our suggestion is to utilize an improved U-Net-based method to tackle these difficulties. First, we
use ResNet’s powerful feature extraction capabilities to replace the original U-Net encoder. To enhance the con-
centration on characteristics unique to soybeans, we integrate a multi-scale high-performance attention mechan-
ism. Furthermore, to do multi-scale feature extraction and capture a wider variety of contextual information, we
employ atrous spatial pyramid pooling. The segmented image generated by our upgraded U-Net model is then
analyzed using the CenterNet method to extract key spots. The RANSAC algorithm then uses these important
spots to delineate the soybean seedling belt line. Finally, the navigation line is determined using the angle tan-
gency theory. The experimental findings illustrate the superiority of our method. Our improved model signifi-
cantly outperforms the original U-Net regarding mean Pixel Accuracy (mPA) and mean Intersection over
Union (mIOU) indices, showing a more accurate segmentation of soybean routes. Furthermore, our soybean
route navigation system’s outstanding accuracy is demonstrated by the deviation angle, which is only 3° between
the actual deviation and the navigation line. This technology makes a substantial contribution to the sustainable
growth of agriculture and shows potential for real-world applications.
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1 Introduction

In current agricultural production, due to changes in farmland tillage systems and the long-term use of
chemical herbicides, the weed structure in China’s farmland is complex and the harm is serious [1,2]. Weeds
in the field compete with crops for water, sunlight, nutrients, etc., which limits crop growth and reduces
yields [3]. The yield of crops under weed interference will gradually decrease with the increase of soil
fertility [4], and the residual time of herbicides is long, which will harm the next crop and affect the
adjustment of planting structure [5]. The machine vision-based mechanical weeding method is an
environmentally friendly and safe agricultural weeding method that does not produce harmful residues
and does not endanger human health. At the same time, it can better protect the ecological environment
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and avoid the damage caused by chemical weed control to the environment. Traditional machine vision
algorithms struggle to handle the complex light and shadow changes, broken rows, and weed interference
in the soybean field’s complex growth environment, leading to segmentation errors in navigation routes.
To address these issues, this study proposes a neural network-based machine vision technology for path
navigation in soybean environments. This technology can be applied to critical agricultural operations
such as weeding and pesticide spraying during soybean mid-season cultivation, thereby enhancing
efficiency, and precision, and reducing labor costs. By implementing this technology, agricultural
production can achieve a higher level of mechanization and precision agriculture, significantly improving
the utilization of agricultural resources and promoting sustainable agricultural development. Furthermore,
the application of this technology aligns with the development requirements and promising future of
modern agriculture. We envision that this technology will play an increasingly significant role in future
agricultural production, contributing positively to the modernization and sustainability of agriculture.

After reviewing the literature, it is evident that previous methods for inter-row extraction faced
challenges such as low robustness and limited adaptability in machine vision navigation. Huang et al.
addressed these issues by proposing a convolutional neural network-based algorithm for field path
navigation [6]. They modified the mainstream semantic segmentation model FCNVGG16 to obtain an
improved segmentation network, FCNVGG14, which served as a preprocessing step for crop row
segmentation in the field. Following segmentation, an enhanced Hough transform (PKPHT) was
employed to fit the navigation line, achieving a detection accuracy of no less than 92%. Peng et al.
introduced an improved orchard navigation line detection method based on the YOLOv7 model. They
integrated an attention mechanism module (CBAM) into the detection head network of the original
YOLOv7 model to enhance fruit tree target features and mitigate background interference [7]. Han et al.
proposed a visual navigation path recognition method for orchards based on the U-Net network,
addressing issues like complex image backgrounds and numerous interfering factors in orchard
environments [8]. The semantic segmentation model achieved a segmentation intersection-over-union
ratio of 86.45%. Yang et al. introduced a navigation line detection method for potato machines. By
replacing the backbone feature extraction structure of U-Net with VGG16, they improved image
segmentation, particularly in handling shape variations of potato crops at different growth stages and field
noise. Additionally, by introducing a feature midpoint-adaptive fitting method, the method could
adaptively adjust the position of the visual navigation line based on potato growth shapes [9].
Experimental results demonstrated that this method accurately detected the navigation line throughout
various potato growth stages, exhibiting higher crop row segmentation accuracy and smaller average
deviations in fitted navigation lines compared to the original U-Net model. Gao et al. introduced a novel
navigation line detection algorithm, YOLOv4-HR, which incorporates enhanced Haar-like features for
image enhancement [10]. This augmentation enriches the semantic information of training images and
enhances the network’s generalization ability. Experimental results indicate that compared to the original
YOLOv4 network, YOLOv4-HR significantly improves both AP value and recall rate, thereby reducing
the impact of environmental factors on navigation line detection performance. Gong et al. achieved real-
time and high-precision detection of corn crop rows using an improved MobileNetv3 and YOLOv5s
network model (YOLOv5-M3) combined with CBAM and DIoU-NMS algorithms. This method not only
achieves fast speed (39 FPS) but also high accuracy (mAP 92.2%), enabling real-time determination of
the relative position of corn seedlings and weeders, effectively preventing damage to seedlings [11].
Cheng et al. presented a visual navigation line extraction method based on the DeepLabV3+ architecture.
Combining the MobileNetV2 module, the sensitivity of DeepLabV3+ to illumination in the deep
convolutional neural network part was improved. Experimental results show that this method can quickly
and accurately identify navigation lines under different sunlight conditions, outperforming traditional
methods and the improved U-Net network [12]. Gong et al. proposed an improved YOLOv7-tiny
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network model for target detection of crop seedlings in infrared images. This model combines ShuffleNet
v1 to reduce computational complexity, enhance feature extraction, and integrate the coordinate attention
(CA) mechanism to improve detection performance. An Expected Intersection over Union loss (EIOU)
function is used to accelerate model convergence and improve positioning accuracy. Experiments show
that the model achieves 94.21% detection accuracy and 32.4 frames per second at night, accurately
identifying corn seedlings with positioning reference point errors that meet navigation requirements,
providing an effective solution for mobile device deployment [13]. Cao et al. introduced an improved
ENet semantic segmentation network model for visual navigation line extraction in farmland
environments using unmanned aerial vehicles (UAVs). Based on a residual network design, this model
effectively extracts low-dimensional boundary information through a shunting process, improving the
accuracy of crop boundary positions and inter-row segmentation in farmland. An improved random
sample consensus algorithm and least squares method are used to extract and fit navigation lines,
achieving accurate and efficient farmland navigation line extraction [14]. Liang et al. introduced a
navigation line detection algorithm that integrates edge detection and Nobuyuki Otsu thresholding
method (OTSU), specifically tailored to address the issue of navigating line extraction in seedlings grown
in wide and narrow rows. Experimental results demonstrate the algorithm’s high accuracy in cotton, corn,
and soybean seedlings, coupled with its fast processing speed, satisfying the requirements for real-time
navigation [15].

Previous studies have achieved promising results in identifying and extracting crop row lines using
various neural networks, yet the YOLO and VGG models are deemed unsuitable for soybean seedlings.
The basic YOLO model has limitations in precisely recognizing and segmenting fine features and
textures, making it unsuitable for dense soybean seedlings. The VGG network [16,17], on the other hand,
has fewer layers, limited feature extraction ability, and large Number of parameters, which is not
conducive to the subsequent application in the actual soybean path navigation system design. The
traditional U-Net architecture employs a simplified backbone network, lacking effective communication
between different channels in feature maps and the efficient utilization of spatial information [18,19], thus
exhibiting limitations in feature extraction. To address these challenges, we propose an enhanced U-Net-
based method. Given the challenges posed by factors such as light and shadow variations, broken rows,
and weeds in soybean planting environments [20], where traditional machine vision algorithms often fail
to extract navigation lines effectively, and if these effects are not properly differentiated, the segmented
images will become larger or smaller, and this result will be biased for the extraction of the later
navigation paths, so in order to address these effects, we introduce a navigation line extraction approach
based on an improved U-Net network. This approach leverages image segmentation results and employs
the CenterNet algorithm to segment and extract centroids from the binary images. Subsequently, the
navigation line is obtained by fitting the extracted feature points, employing the tangent principle of
included angles.

The key contributions of this study are as follows:

1. We present the MA-Res U-Net model, a novel architecture tailored specifically for soybean
navigation path segmentation.

2. The ResNet network is integrated to facilitate deeper extraction of soybean feature and detail
information.

3. A Multi-scale High-performance Attention Mechanism (MHA) is introduced, enabling efficient
extraction of target semantic and feature information with minimal computational overhead.

4. The Atrous Spatial Pyramid Pooling (ASPP) module is employed to prevent information loss after
convolution, achieving multi-scale feature extraction and enhancing the model’s edge
segmentation accuracy.
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5. The practical application of the proposed MA-Res U-Net model, coupled with hardware integration,
demonstrates its superior performance and efficiency.

2 Based on the Improved U-Net Network

2.1 U-Net Network
U-Net is a specialized convolutional neural network (CNN) architecture designed for image

segmentation tasks [21]. Initially proposed by Ronneberger and colleagues in 2015, this network was
primarily developed to address the challenge of segmenting cells in biomedical images. A distinctive
feature of U-Net is its encoder-decoder structure, complemented by skip connections that link
corresponding layers between the encoder and decoder stages. The encoder of U-Net performs a series of
convolutions and downsampling operations to reduce the spatial dimensions of the input while increasing
the number of feature channels, thereby learning higher-level abstract features. Conversely, the decoder
stage upsampling to gradually restore the resolution of the feature maps while reducing the number of
feature channels, culminating in a segmentation output that matches the size of the input image [22,23].
To fully leverage information across different scales and preserve fine details, U-Net incorporates skip
connections. These connections enable the decoder to not only access high-level semantic information but
also directly utilize low-level features from earlier stages of the encoder. This mechanism is critical for
maintaining edge and texture details, which are essential for accurate segmentation. This design enables
U-Net to handle objects at various scales and achieve good segmentation performance even with limited
training data. The robustness and versatility of U-Net have led to its widespread adoption not only in
biomedical image analysis but also in diverse applications such as remote sensing [24], perception
systems for autonomous vehicles [25], and environmental monitoring [26]. As a result, U-Net has
become a seminal model in the field of image segmentation. The success of U-Net can be attributed to its
effective combination of feature extraction and restoration, along with its ability to handle small datasets
through the utilization of skip connections and a symmetrical architecture. These attributes have made it a
benchmark for segmentation tasks across multiple domains.

The U-Net network employs a U-shaped architecture, consisting of four encoder modules for
downsampling [27,28]. Each encoder module is composed of two 3 × 3 convolutional layers followed by
a 2 × 2 max pooling layer, progressively reducing the feature map size. Conversely, the decoder section
comprises four upsampling modules, each containing a 2 × 2 deconvolutional layer, a skip connection,
and two 3 × 3 convolutional layers, gradually increasing the feature map size. The network utilizes the
ReLU function for activation. Fig. 1 depicts the overall framework of the network’s architecture.

Figure 1: U-Net structure diagram
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2.2 Improve the U-Net Network

2.2.1 Residual Network Structure Module
The traditional U-Net network exhibits certain limitations in feature extraction for soybean path

segmentation. To enhance its performance, the encoder section of the U-Net network is improved by
employing ResNet as the feature extractor. ResNet, a convolutional neural network with deep residual
connections, is effective in capturing both detailed and semantic information from images, while
effectively preventing gradient vanishing and explosion [29]. This allows the network to better capture
the fine-grained and semantic details in soybean images, thereby improving segmentation accuracy.
Additionally, the deep network structure and residual connections of ResNet enhance the network’s
expressive power and gradient propagation, further boosting the performance of the U-Net network.
Fig. 2 illustrates the architecture of the ResNet module.

Choosing an appropriate backbone network depth is crucial. There are two types of ResNet module
variants. As shown in Fig. 2a,b, when the input channels differ from the output channels, a 1 ×
1 convolution is employed for adjustment. Each residual module consists of three convolutional layers:
1 × 1, 3 × 3, and 1 × 1, stacked sequentially. The residual block introduces the input data x directly into
the output part of the subsequent layer by skipping F(X), thus preserving the feature information from the
previous layer in the final feature map H(X). This process safeguards information integrity and reduces
the loss of soybean seedling strip feature information caused by traditional convolution and
downsampling operations. Consequently, ResNet is adopted as the backbone extraction network in the
encoding region to enhance the accuracy of soybean seedling strip segmentation.

2.2.2 Multi-Scale High-Performance Attention Mechanism
The traditional U-Net approach encounters a semantic gap in feature fusion, where low-level features

extracted by the encoder are fused with high-level features via skip connections. This fusion can lead to
discrepancies due to the disparity in detail and abstraction levels of the integrated features. Additionally,
the current attention mechanisms for soybean path segmentation tend to be complex and heavily nested,
resulting in high computational loads and resource-intensive models. To address these issues, we
introduce a multi-scale high-performance attention mechanism (MHA), as illustrated in Fig. 3. First,
MHA focuses on highlighting specific areas in soybean images by assigning different weights to each
location through the spatial attention mechanism, then focuses on the importance difference between
soybeans and weeds in the feature map through the channel attention mechanism, and finally, the channel
prior spatial attention (CPSA) module dynamically assigns attention weights in channel and spatial
dimensions. By introducing a multi-scale depthwise convolution module, it effectively captures spatial

Figure 2: ResNet module diagram
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relationships. Specifically, it performs max pooling and average pooling on the input feature maps to generate
spatial feature information at two different scales. These are then fed into a shared multi-layer perceptron and
summed to obtain a channel attention map that incorporates contextual information. The design of MHA
aims to preserve critical information throughout the processing pipeline and bridge the semantic gap
between low-level and high-level features, especially after pooling operations. This ensures that no
information is lost during upsampling and fusion. By incorporating the multi-scale depthwise convolution
module, MHA maintains channel prior information while effectively capturing spatial relationships and
dynamically allocating attention in both spatial and channel dimensions, resulting in reduced
computational complexity and improved focus on soybean features.

2.2.3 Atrous Spatial Pyramid Pooling
To enhance the accuracy of soybean path segmentation, we introduce the ASPP into the U-Net decoder

to prevent information loss after convolution, enabling multi-scale feature extraction and improving the
precision of model edge segmentation [30]. ASPP utilizes Dilated Convolutions with varying dilation
rates to extract multi-resolution feature responses from a single-resolution branch. Dilated Convolutions is
a special convolution operation that enlarges the receptive field by inserting cavities into the filter while
keeping the number of parameters constant. This means that the model’s receptive field can be
significantly increased without adding additional parameters, which in turn captures a greater range of
context. This multi-resolution analysis-based feature extraction enhances the network’s multi-scale
descriptive capability, broadening its receptive field and focusing on contextual information surrounding
the soybean path. ASPP comprises multiple parallel dilated convolutional layers that perform convolution
and pooling operations on the input feature maps at four sampling rates of 1, 6, 12, and 18. The results
are then concatenated to fuse multi-scale semantic information and expand the number of channels to
form a comprehensive feature representation. Subsequently, a 1 × 1 convolution is applied to alter the
number of output channels, extending the perceptual range of the feature maps while maintaining high
resolution and allowing each convolutional output to incorporate a wide range of feature information.
This complements the information missed after convolving the soybean path edges, enhancing the
accuracy and completeness of edge segmentation (Fig. 4).

Figure 3: MHA structural diagram
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2.2.4 Improved U-Net
Given its numerous advantages, the U-Net semantic segmentation model often achieves superior image

segmentation results. However, soybean path segmentation poses greater challenges compared to the
phenotypic segmentation of pedestrians or animals, as soybeans are prone to confusion with weeds and
are affected by light and shadow, resulting in suboptimal segmentation of soybean paths or missed
detections of small-sized soybeans. To address these issues, the U-Net network requires further
enhancement to bolster its phenotypic feature extraction capabilities and improve detection accuracy. The
refined network, named MA-Res U-Net, is illustrated in Fig. 5. The specific improvements are as follows:

Figure 4: ASPP structural diagram

Figure 5: Improved U-Net model
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The adoption of ResNet50 as the backbone feature extraction network deepens the network and
enhances its ability to extract fine-grained information for more precise soybean path segmentation.
Additionally, the output layers of each ResNet module are concatenated with the corresponding levels of
the decoder through skip connections, ensuring the integration of shallow and deep network information,
and thereby improving segmentation accuracy.

To ensure robust initial feature extraction from the backbone network, the MHA module is utilized to
effectively bridge the semantic gap between different feature scales.

After each upsampling stage, the ASPP module is introduced in the latter half of the U-Net, enabling
atrous convolution with four distinct sampling rates of 1, 6, 12, and 18. The features extracted from each
sampling rate are processed in separate branches and fused to maintain the feature map’s resolution while
capturing different scale perceptual fields. This approach facilitates the localization of small-sized
phenotypes and edge recognition of large-sized phenotypes, thereby addressing issues such as inaccurate
boundary predictions caused by weeds, light, and shadow in soybean path segmentation and enhancing
the model’s edge segmentation precision.

2.2.5 Loss Function
In MA-Res U-Net, its loss function uses the sum loss of binary cross entropy loss and Dice loss. In this

way, the U-Net model can optimize both the accuracy of the segmentation contour and the overall quality of
the segmentation during training, resulting in better segmentation results. The total loss is defined below:

Ltotal ¼ LDice þ LBCE (1)

where LBCE represents the binary cross entropy loss and LDice represents the Dice loss.

The Dice loss function is a variant based on the Dice similarity coefficient (DSC) that is used to measure
the similarity between two sets. In image segmentation, the Dice loss function can help the model learn better
to predict the overlapping parts between predicted and true contours. The Dice loss function can be defined
as:

LDice ¼ 1� 2
P

i; j PijGijP
i; j P

2
ij þ

P
i; j G

2
ij

(2)

where Pij represents the value of the predicted segmentation result at the position of column j in row I, Gij

represents the value of the true split result at the position of column j in row i, ∑i, jPijGij represents the sum of
the product of the elements that represent the intersection of the predicted result and the true result,

P
i;j P

2
ij

and
P

i;j G
2
ij represent the sum of the squares of the elements in the predicted and true results, respectively.

The Binary Cross Entropy (BCE) loss function is primarily used for binary classification problems, and
it is particularly useful when dealing with imbalanced datasets. It ensures that the model not only focuses on
the correct prediction of the foreground class but also on the prediction of the background class. For each
pixel i, j, the binary cross entropy loss function can be defined as:

LBCE ¼ � Gij log Pij

� �þ 1� Gij

� �
log 1� Pij

� �� �
(3)

where Pij represents the predicted probability, Gij represents the actual label (0 or 1).

2.3 Evaluation Indicators
The mean Intersection over Union (mIoU) and mean Pixel Accuracy (mPA) were utilized as objective

evaluation metrics to assess the segmentation performance of various semantic segmentation models.
Specifically, mIoU represents the averaged intersection ratio (IoU) between the actual and predicted
values for each category, while mPA denotes the sum of correctly classified pixels’ proportions relative to
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the total pixels for each category, and the Dice coefficient is used to calculate the similarity between two
samples. By calculating and averaging these mean values, the accuracy of classification for each category
is precisely determined [31].

mIoU ¼ 1

k þ 1

Xk

i¼0

piiPk
j¼0 pij þ

Pk
j¼0 pji � pii

(4)

mPA ¼ 1

k þ 1

Xk

i¼0

piiPk
j¼0 pij

(5)

where k + 1 denotes the predicted category plus a background, and pij denotes the number of pixels in
category i that are predicted to be in category j. Therefore, pii is a positive sample, pij is a false negative
sample, and pji is a false positive sample.

Dice ¼ 2� TP

ðTP þ FNÞ þ ðTP þ FPÞ (6)

where TP (true positives) represents the number of correctly identified pixels as being part of an object, FN
(false negatives) represents the number of incorrectly identified pixels as being not part of an object, TN (true
negative) represents the number of correctly identified pixels as being not part of an object, and FP (false
positives) represents the number of incorrectly identified pixels as being part of an object.

3 Data Set Production and System Design

3.1 Dataset Production
This paper’s data sets were collected at the Agricultural Science and Technology Park of Anda City,

Heilongjiang Province. In the middle of the soybean growing season, we took 500 images of the soybean
growing environment under different weed densities and light conditions. The captured image is in JPG
format with an initial size of 3024 × 2048 pixels, subsequently adjusted to 256 × 256 pixels. The photos
are divided into training and test sets with a ratio of 5:1. We selected several pictures with representative
values, such as line breaks, light and shadow changes, weeds, etc. The data set is shown in Fig. 6.

Because there are many similar targets in crop and non-crop row areas, the segmentation results of a
single target cannot accurately reflect the overall trend of the soybean seedling zone. In addition, tagging
individual objects is challenging. Therefore, this paper focuses on the labeling and segmenting of
soybean seedling belts. We used LabelMe software to annotate the soybean images collected. The labeled
samples are classified into a separate category, labeled “LINE.” The tagging tool uses a rectangular box
to mark the soybean seedling belt, covering the entire visible area within the camera’s field of view,
ensuring that the rectangular box completely covers the soybean seedling belt. By manual labeling, the

Figure 6: Part of the dataset picture
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soybean seedling zone was marked as a positive example and the soil zone as a negative example. Fig. 7
shows an example of labeling soybean images using LabelMe software.

3.2 Experimental Configuration and Experimental Results
Our system configuration includes 16 GB RAM, an i5-7300 processor, and a GTX-1050 graphics card.

We use Python 3.9 as the programming language and TensorFlow 2.1 as the deep learning framework.

We used the original dataset of 450 labeled images as the training dataset and 50 images as the test
dataset. Before training, we will apply data enhancement techniques such as rotation, translation, scaling,
and other methods to the training data set. The enhanced data set is then input into the MA-Res U-Net
model for training. In the training model phase, we select the Adam optimizer as the optimization
function, set the learning rate to 0.001, and run 200 training epochs. To ensure the integrity of the model
training process, we save the model training parameters every 10 epochs.

To validate the effectiveness of the proposed modules in enhancing the segmentation performance of U-
Net, we conduct ablation experiments to test the efficacy of the ResNet network, MHA module, and ASPP
module. We conducted five sets of experiments to validate the individual contributions of each module, and
the experimental results are presented in Table 1.

Figure 7: Labeling process
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Compared to the classical U-Net model, the modified U-Net model achieved improved values in both
mean Intersection over Union (mIoU) and mean Pixel Accuracy (mPA), as indicated in Table 1. Overall,
the modified model exhibits significant advantages over the original model in soybean segmentation. By
replacing the encoder, the mIoU increased by 1%, and the mPA improved by 0.8%. The addition of the
Multi-Head Attention (MHA) module enhanced the mIoU by 1.6% and the mPA by 1.6%. Furthermore,
incorporating the Atrous Spatial Pyramid Pooling (ASPP) module resulted in a 1.1% increase in mIoU
and a 1% rise in mPA. Through ablation experiments, it is evident that all three proposed modifications,
including the replacement and additions, have contributed to notable improvements. Fig. 8 depicts the
segmentation prediction results of our proposed MA-Res U-Net model. It can be seen from the
segmentation results that the improved U-Net neural network has achieved satisfactory results in soybean
path navigation segmentation, effectively dealing with discontinuity and missing problems, and ensuring
the continuity of soybean seedling belt. This plays a very important role in the subsequent navigation line
extraction.

3.3 Performance Comparison of Different Segmentation Methods
This paper compares MA-Res U-Net with traditional PSPNet, SegNet and Deeplab. The comparison

results of different segmentation algorithms are shown in Table 2 and Fig. 9, and the changes of mIoU in
the training process are shown in Fig. 10. This paper compares MA-ResU-Net with traditional PSPNet,
SegNet, and Deeplab. The comparison results of different segmentation algorithms are shown in Table 2.
As shown in the table, the mIoU of the improved method in this paper is 82.9%, which is 3.4%, 5.3%,
and 2.7% higher than the traditional PSPNet algorithm, SegNet algorithm, and Deeplab algorithm,
respectively. For mPA, the improved method obtained a value of 92.1%. In terms of mPA, it is 6.5%,
8.9%, and 3.8% higher than the traditional PSPNet algorithm, SegNet algorithm and Deeplab algorithm,
respectively. In terms of Dice evaluation indexes, Dice was 6.1%, 6.9% and 2.2% higher than the
traditional PSPNet algorithm, SegNet algorithm and Deeplab algorithm, respectively. The experimental
results show that the improved U-Net algorithm proposed in this paper not only captures fine granularity
and semantic details in soybean images better, but also improves the accuracy and integrity of edge

Table 1: Experimental results

Method mIoU/% mPA/%

U-Net 80.3 88.6

U-Net + ResNet 81.3 89.4

U-Net + MHA 81.9 90.2

U-Net + ASPP 81.4 89.6

Improved U-Net 82.9 92.1

Figure 8: Segmentation results for selected datasets
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segmentation, and significantly improves the accuracy of grape semantic segmentation. The visualization of
the segmentation result is shown in Fig. 9. In Fig. 11, the first column shows the segmentation results of the
PSPNet model, the second column shows the segmentation results of the SegNet model, the third column
shows the segmentation results of the Deeplab model, and finally, the fourth column shows the
segmentation results from the MA-Res U-Net model proposed in this paper. It can be seen from the
visualization results that the segmentation accuracy of the PSPNet model is poor, and weeds and
soybeans are misdetected. The SegNet model is not accurate enough to detect the edge of the soybean
path. The Deeplab model is poor in processing soybean path details, while the MA-Res U-Net model can
segment soybean path edge details more accurately and obtain better precision results.

Table 2: Results of different models

Method mIoU/% mPA/% Dice/%

PSPNet 79.5 85.6 86.2

SegNet 77.6 83.2 85.4

Deeplab 80.2 88.3 90.1

MA-Res U-Net 82.9 92.1 92.3

Figure 9: Results of different models
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3.4 System Design
For soybean navigation line extraction, the initial step involves the extraction of soybean seedling belt

lines. In this process, we utilize the RANSAC algorithm to extract the soybean seedling belt lines [32,33].
Firstly, the feature points of the seedling belt are extracted. Secondly, the image is segmented into strip-
shaped regions for further feature point extraction. Then, the Canny algorithm is applied to detect the
edges of the soybean seedling belt. Finally, the CenterNet algorithm is used to identify centroid points,
and these centroids are obtained after edge detection. After the edge detection of the soybean seedling
belt, the contour vector size is calculated, and a threshold is set to filter out small noises in the image.
Subsequently, the moments of the contour are computed to determine the centroid, which serves as the
characteristic point of the soybean seedling belt. We selected several pictures from different angles in the
data set, and Fig. 11 shows the extraction process of these feature points.

The RANSAC algorithm, through random sampling and consistency checking, can effectively remove
outliers, resulting in more accurate seedling belt lines. In determining the seedling belt lines of soybeans, the
parameters of the straight lines can be calculated based on the coordinates of the centroid points. Then, the
RANSAC algorithm is applied to filter out the centroid points that best fit the seedling belt lines [34]. By
selecting the most suitable centroid points as the initial sample set and fitting a straight line through these
characteristic points, the lines can be represented by their slopes (k) and intercepts (b), i.e., y = kx + b.
This ultimately yields the parameters of the seedling belt lines. The obtained seedling belt lines are
depicted in Fig. 12.

Figure 11: Feature point extraction

Figure 10: Changes of different models during mIoU training
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Based on the two seedling belt lines as references, the navigation line is calculated using the tangent
principle between the angles of the two lines. Here, k represents the slope of the navigation line, while k1
and k2 are the slopes of the seedling belt lines [35].

k� k1
1þ kk1

¼ k2 � k

1þ kk2
(7)

Utilizing the tangent principle equation of the included angle, the soybean navigation line is derived. As
depicted in Fig. 13, in different experimental scenarios and angles, navigation lines are obtained and used as
guides for farming machines. Based on the extracted navigation line information, the cultivating machine can
automatically adjust its heading and position, achieving precise cultivation operations. This approach
enhances the efficiency and accuracy of the cultivation process [36].

Figure 12: Linear extraction of soybean seedlings

Figure 13: Navigation line extraction
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4 System Application

Our primary focus is on conducting operations in soybean fields during the cultivation period. Based on
the soybean cultivation practices in Northeast China, we have designed a hydraulic control system for
tractors. This system facilitates row-following control by controlling the steering of the tractor’s front
wheels. The soybean navigation line control system can be broadly divided into three components: image
acquisition, navigation line extraction, and tractor steering control.

The steering system comprises an upper computer system, a single-chip microcomputer, a communication
system, and a steering system. The upper computer processes the crop row image information captured by the
vision sensor, while the communication system facilitates communication between the upper computer and the
STM32F103RCT6 microcontroller. The microcontroller analyzes the navigation line angle information and
controls the electromagnetic directional control valve accordingly. The microcontroller outputs signals
through GPIO pins to control the relay, which further manipulates the electromagnetic directional control
valve [37]. The tractor’s steering angle is obtained using an angle sensor, the ATK-IMU901. The
experimental setup is depicted in Fig. 14. The navigation communication system’s program is written in
MDK5, with a serial port baud rate set at 9600. Fig. 15 illustrates a communication simulation test.

We have developed a tractor visual navigation system software using the QT development environment
and the OpenCV image processing library. This software primarily achieves real-time detection of soybean
navigation lines, acquires navigation line heading deviations and offsets, and enables communication
between the upper computer and the STM32 microcontroller. It also incorporates the ability to switch
between automatic and manual tractor steering. We carry out practical operations in different angles and
scenarios, and the software interface is shown in Fig. 16.

Control execution errors are inevitable in tractor visual autonomous navigation, necessitating correction
through the navigation system. Determining whether the navigation deviation angle and the actual tractor
deviation angle meet the error requirements is crucial. Real-time data acquisition of the navigation line
deviation angle is performed through software, and the actual tractor steering angle is tested. The
experimental data is presented in Table 3.

Figure 14: Test verification
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Figure 15: Communication verification

Figure 16: Software interface
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As evident from Table 3, the error between the navigation line deviation angle and the actual deviation
angle is within 3 degrees. Therefore, in the subsequent field test, the calculated navigation parameters will be
used to represent the steering angle of the current tractor to achieve accurate path navigation.

5 Conclusions

This paper investigates and implements a soybean crop row navigation line system design based on an
improved U-Net neural network. The enhancement involves replacing the backbone feature extraction
network to optimize the extraction of soybean feature points. Additionally, an MHA mechanism is
introduced to preserve crucial information throughout the entire processing pipeline and bridge the
semantic gap between low-level and high-level features. The ASPP module is also incorporated to
prevent information loss after convolution, enabling multi-scale feature extraction and enhancing the
precision of model edge segmentation.

(1) The utilization of the enhanced U-Net neural network for soybean image segmentation achieves an
accuracy of 92.1%, enabling effective extraction of navigation lines while mitigating the impacts of factors
such as weeds and sunlight.

(2) Navigation line extraction is performed using neural network-based image segmentation, followed
by the RANSAC algorithm, resulting in high-accuracy navigation lines.

(3) The upper computer transmits the image recognition results to the lower computer, which then
conveys the angle information to the microcontroller via a communication system. The microcontroller
promptly controls the electromagnetic valve to execute the corresponding actions.

This research employs deep learning and image algorithms to address soybean visual navigation
challenges. By applying these technologies in the agricultural domain, we can enhance agricultural
production efficiency and quality, while reducing reliance on manual labor. This holds significant
importance for achieving sustainable agricultural development and fine-grained management.
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Table 3: Experimental data of offset angle

Order number Navigation line deflection angle/° Actual deflection angle/° Fractional error/°
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5 7.3 5.9 2.6

6 4.3 3.2 1.1

7 7.9 6.7 1.3
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