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ABSTRACT

The estuary tides affect groundwater dynamics; these areas are susceptible to waterlogging and salinity issues. A
study was conducted on two fields with a total area of 60 hectares under a center pivot irrigation system that
works with solar energy and belong to a commercial farm located in Northern Sudan. To monitor soil salinity
and calcium carbonate in the area and stop future degradation of soil resources, easy, non-intrusive, and practical
procedures are required. The objective of this study was to use remote sensing-determined Sentinel-2 satellite
imagery using various soil indices to develop prediction models for the estimation of soil electrical conductivity
(EC) and soil calcium carbonate (CaCO3). Geo-referenced soil samples were collected from 72 locations and ana-
lyzed in the laboratory for soil EC and CaCO3. The electrical conductivity of the soil saturation paste extract was
represented by average values in soil dataset samples from two fields collected from the topsoil layer (0 to 15 cm)
characteristic of the local salinity gradient. The various soil indices, used in this study, were calculated from the
Sentinel-2 satellite imagery. The prediction was determined using the root mean square error (RMSE) and cross
validation was done using coefficient of determination. The results of regression analysis showed linear relation-
ships with significant correlation between the EC analyzed in laboratory and the salinity index-2 “SI2” (Model-1:
R2 = 0.59, p = 0.00019 and root mean square error (RMSE = 1.32%) and the bare soil index “BSI” (Model-2:
R2 = 0.63, p = 0.00012 and RMSE = 6.42%). Model-1 demonstrated the best model for predicting soil EC, and
validation R2 and RMSE values of 0.48% and 1.32%, respectively. The regression analysis results for soil CaCO3

determination showed linear relationships with data obtained in laboratory and the bare soil index “BSI” (Model-
3: R2 = 0. 45, p = 0.00021 and RMSE = 1.29%) and the bare soil index “BSI” & Normalized difference salinity
index “NDSI” (Model-4: R2 = 0.53, p = 0.00015 and RMSE = 1.55%). The validation confirmed the Model-3 results
for prediction of soil CaCO3 with R2 and RMSE values of 0.478% and 1.29%, respectively. Future soil monitoring
programs might consider the use of remote sensing data for assessing soil salinity and CaCO3 using soil indices
results generated from satellite image (i.e., Sentinel-2).
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1 Introduction

Soil salinity is one of the limiting factors of soil, that can be leads to soil degradation and some negative
effects on crop yield in arid and semiarid areas [1] and has serious negative impacts on several aspects of
agriculture and environmental sustainability [2]. Due to the high evaporative demand in these areas with
limited water resources, salts tend to build up in the soil profile. This increases osmotic stress, which affects
soil water availability and root water uptake while also possibly fostering the development of ion toxicities
and disparities in plants. When soil salinity exceeds a predetermined tolerance threshold, crop development,
transpiration rates, and yields are therefore lowered, and greater levels ultimately result in crop failure [3].
High sodium saturation of the soil exchange complex may also have additional effects on the stability of
the soil’s structure and its ability to retain water. This will cause soil colloids to disperse, which will change
how water and air move through the soil, reducing soil infiltration, favoring water stagnation, and possibly
resulting in anoxic rootzone conditions [4]. According to the most accurate estimates, either natural
processes (rock weathering, sea water infiltration into marine sediments, and atmospheric deposition) or
human-induced processes (poor irrigation water management and overuse of saline groundwater resources)
are responsible for the 412 million ha affected by salinity and the 618 million ha affected by sodicity [5].
These estimations, however, are known to be dependent on expert opinion from certain nations or locations
rather than on precise measurements of the level of soil salinity and sodicity [6]. In order to quickly, non-
invasively, and economically assess the spatial and temporal distribution of salt impacted areas on a broad
scale, the scientific community has spent a lot of time and money on this over the past few decades [7]. To
avoid the degradation process of agricultural land, it is important to monitor and manage the land resources,
i.e., mapping of soil salt plays an important role for sustainable agricultural planning [8]. However, the
accurate monitoring of soil salinity on a large-scale area is considered as one of the important factors that
could avoid these problems [9]. Early efforts on the development of remote sensing technologies
concentrated on assessing salinity at or near the soil surface based on the differing reflectance characteristics
of salt crusts when compared with non-salt impacted soils [10].

Soil calcium carbonate (CaCO3) is considered as one of the soil properties associated with plant growth,
such as soil water holding capacity and the availability of nutrients for plants [11]. Most carbonate minerals
found in soils of arid regions of Sudan are calcite (CaCO3) and dolomite (Ca, Mg, CO3) minerals and exist
mainly in the soils of the northern Sudan [12]. Conventional methods used for the estimation of soil
properties (collection and analysis of soil samples) are laborious, time-consuming, and expensive, and
may not reflect its accurate estimates [13]. For example, in terms of assessing soil salinity and CaCO3,
the conventional methods show its weakness and difficulties to be implemented on large areas; this could
lead to some limitation in soil management [8]. Nowadays, remote sensing methods have been
demonstrated to serve as promising means to significantly increase the number of sites offering
quantitative estimations of topsoil properties (e.g., soil organic carbon, pH, cation exchange capacity,
texture class, EC and calcium carbonate) [14,15]. Recently remote sensing technology has become one of
the varied soil monitoring methods that has become increasingly used, providing an efficient cost-
effective mean to assess soil properties [9]. Diek et al. [16] reported that several methods for generating
bare soil images from historical collections of satellite images from one satellite have been developed,
such as the barest pixel composite. Currently a free and permanent supply of remote sensing images from
Landsat-8 and Sentinel-2 (S2A) have great potential for generating high resolution information for
various purposes, such as agriculture fields [17]. However, remote sensing data have been an instrumental
powerful tool over conventional techniques in providing long-term timespan data images for
environmental and natural resources monitoring and management at different spatial scales [9].

Many researches have been conducted to study the relationship between multiple satellite data and soil
salinity and soil calcium carbonate. Lobell et al. [18] used Moderate Resolution Imaging Spectroradiometer
(MODIS) data for regional-scale soil salinity assessment and reduced the effect of temporally dynamic
factors using the mean of the enhanced vegetation index (EVI). Guo et al. [19] used Landsat 8 data to
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construct vegetation indices-salinity indices feature spaces based on the information of bare soil and
vegetation; results showed that these indices can greatly improve the periodical monitoring of soil
salinity. Safanelli et al. [20] estimated soil CaCO3 from two bare soil composites of 30 m resolution
Landsat images with an R2 value of 0.44. Sentinel-2 has high temporal and spatial resolution, which
enable more detailed and higher-frequency monitoring for practical applications [9].

Linear and quadratic regression models explain the robustness of regression approach after streamlining
the outliers. The evaluation of the estimated regression equations based on the R2 metric indicates that they
constitute a useful, reliable, and valuable tool for managing, describing, and predicting the soil parameters
[21]. Davis et al. [22] discovered that Sentinel-2 had great potential for estimating soil properties. However,
Sentinel-2 used in this study for prediction soil EC and CaCO3. As the prediction accuracy of models
depends on local conditions, the present study was aimed to characterize the soil electrical conductivity
(EC) and soil calcium carbonate (CaCO3) using “free-of-cost” remotely sensed images (Sentinel-2).
Commonly used linear regression models were employed to link the spectral data of the topsoil (i.e.,
15 cm). The specific objectives were: (i) to assess the relationship between laboratory estimated soil EC
& soil CaCO3 and remotely sensed data acquired from by Sentinel-2 satellite, (ii) to develop linear
regression models for the prediction of soil EC & soil CaCO3 contents in agricultural soils.

2 Materials and Methods

2.1 Study Area
The study was conducted in selected agricultural fields in in Al-Kafaa commercial farm of Al-Rajhi

International Investment Company, located in the Northern region of Sudan between the latitudes of
18°10′8.503″ and 18°11′37.837″ N and the longitudes of 34°0′26.021″ and 34°11′18.415″ E (Fig. 1). Two
agricultural fields (ID: S1-1, S1-2) have been selected for the study, with a total area of each field was
30 hectares and irrigated through center pivot system. The topography of the study fields was almost flat
with slight undulations where the elevation ranged from 283 to 409 m. The soil in the experimental farm
is mainly characterized between sandy loam to loamy sand. The major crops cultivated on the farm were
wheat, alfalfa, Rhodes grass and corn. Weather in the farm was very hot in the summer (44°C ± 2°C) and
cold to moderate in the spring (16°C ± 2°C) with an annual rainfall of about 37 mm.

Figure 1: Location of the study area
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2.2 Soil Sampling
A field survey was carried out on 25 April 2018 for a total of 72 combined soil samples from two fields

were collected from the topsoil layer (0 to 15 cm). A hand-held Garmin GPS (3.8 m accuracy) was used to
locate the pre-defined sampling points. The soil samples were collected using a systematic grid sampling
approach with grids of 100 m × 100 m following the sampling strategy described by [23]. Subsequently,
the collected soil samples were air-dried and sieved (<2 mm) to remove plant debris and large root
matter. Thereafter, analyzed in the laboratory for soil pH, electrical conductivity (EC), organic matter
(OM), calcium carbonate (CaCO3), as defined by Soil Survey Staff 1999. The vegetation indices
generated from the satellite images were utilized to develop correlation mathematical models for
prediction soil properties.

2.3 Satellite Data and Image Analysis
A total of two cloud-free images of Sentinel-2 (10 m × 10 m pixel size) were downloaded from the

USGS portal (https://earthexplorer.usgs.gov/) corresponding to the field inventory of soil sample
collection, images acquired on 28 April 2018, which was basically synchronous with the sampling time
and there was no cloud in the study area. Whereas, Loiseau et al. [24] indicated that Sentinel-2 has
advantages for soil monitoring because of its high spatial resolution, multispectral bands, and short revisit
time. Five indices out widely used spectral indices [9] have been selected, including bare soil index
(BSI), salinity index (SI1, SI2, SI3), in addition to the normalized difference salinity index (NDSI)
proposed by [25], and used for the prediction of soil properties, GNDVI (Green normalized difference
vegetation index), NDVI (Normalized difference vegetation index), SAVI (Soil adjusted vegetation index)
As, Allbed et al. [26] reported that Normalized Differential Salinity Index (NDSI) and Salinity Index (SI)
provided optimum results compared to the other indices investigated for estimating soil salinity.
Description and relevant formula of the spectral indices used in the study is provided in Table 1.

Table 1: Description and formula of the spectral indices used in the study

Spectral indices Equations Reference

Bare soil index
BSI ¼ B11þ B4ð Þ � B8þ B2ð Þ

B11þ B4ð Þ þ B8þ B2ð Þ
[27] Jamalabad et al.
(2004)

Salinity index-1
SI1 ¼ B2

B4
[28] Douaoui et al.
(2006)

Salinity index-2
SI2 ¼ B2� B4

B2þ B4
[29] Abbas and
Khan (2007)

Salinity index-3
SI3 ¼ B3 � B4

B2
[29] Abbas and
Khan (2007)

Normalized difference salinity index
NDSI ¼ B4� B8A

B4þ B8A
[30] Khan et al.
(2001)

Green normalized differenc vegetation
index

GNDVI ¼ B8� B3

B8þ B3
[31] Gitelson et al.
(1996)

Normalized differenc vegetation index
NDVI ¼ B8� B4

B8þ B4
[31] Gitelson et al.
(1996)

Soil adjusted vegetation index
SAVI ¼ B8� B4

B8þ B4þ 0:5ð Þ � 1þ 0:5ð Þ
[32] Qi et al. (1994)
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2.4 Modelling and Prediction of Soil Properties
To predicted soil properties of the study fields, a regression analysis based empirical equation was

generated with the Sentinel-2 against the soil properties. During the process, the relationship between the
spectral reflectance of the Sentinel-2 dataset and the soil properties was assessed using the SPSS (Ver. 20)
statistics software program (IBM, New York, USA). Of the collected samples, approximately 60% of
observations was used to produce the regression model (i.e., calibration data) and 40% of observations
was used to cross-validate the model (i.e., validation data).

2.5 Validation of Analysis
The prediction accuracy was evaluated employing the analysis of variance (ANOVA) statistics to test the

strength of the developed models through the coefficient of determination (R2), mean square, the histograms
of the residuals and the normal probability plots, the root mean square error (RMSE), as shown in Eq. (1), R2

validation, as shown in Eq. (2) and the standard error of the estimate (std. Error). The model with the lowest
RMSE, std. Error and highest R2 values were considered to be the most applicable or ideal model [33].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 yi�ŷið Þ2
n

s
(1)

R2 validation ¼ 1�
Xn

i¼1

yi
� ŷi

� �2Xn

i¼1
yi�y�ð Þ2 (2)

where, yi is the measured values, ŷi is the predicted values, y¯ is overall mean values and n is the amount of
soil samples.

3 Results

3.1 Soil Samples Properties
The descriptive statistics of the physicochemical parameters measured in soil samples is shown in

Table 2. The soil textures classes of the studied area were mainly of loamy sand (38%), sandy loam
(35%), silt loam (15%) and loamy (12%). The soil of the studied area had an EC ranging between
0.24 and 0.74 dS/cm, and pH values ranging between 7.02 and 8.55. Organic matter was very low
(ranging between 0.14% 0.70%), this due to the climate is hot, however the soil contains low organic
carbon. While soil CaCO3 ranging between 4.35% and 23.35% and most of the high CaCO3 values were
observed at the border of field.

Table 2: Summary of soil properties

Data analysis Soil properties

pH EC (dS/cm) OM (%) CaCO3 (%)

Minimum 7.02 0.24 0.14 4.35

Maximum 8.55 0.74 0.70 23.35

Mean 7.77 0.40 0.34 9.75

Standard Deviation (SD) 0.36 0.12 0.15 5.44

Standard Error (SE) 0.04 0.01 0.02 0.48
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3.2 Performance of Soil EC Prediction Models
The performance of the generated soil EC models was statistically assessed. Out of studied five soil

indices generated from Sentinel-2 image (Table 3), two soil indices (SI2 & BSI) showed a significant
correlation with the soil EC, however, the SI2 and the BSI were found to be more suitable for predicting
soil EC. The results of the soil EC and the soil indices (SI2 & BSI) were subjected to a linear regression
modeling performed using the IBM SPSS statistics software program. Linear regression results (Table 4)
showed two models with a significant correlation between the measured soil EC and predicted soil EC by
soil indices (R2 values ranging between 0.59 and 0.63, respectively).

The ANOVA results (Table 5) also confirmed the significant relationship between the soil indices and
soil EC for the two models. The accuracy of the models was performed, as shown in Table 6 and Fig. 2.
The validation R2 value of Model-1 (SI2) was 0.48, which was slightly higher than the validation R2

value (0.47) of Model-2 (SI2 & BSI) and confirmed by the RMSE value of 1.32% for Model-1, which
was lower than the RMSE value of 6.42% for Model-2. The regression strength of the two prediction
models of soil EC was performed through the histogram analysis, the normal probability plot and the
residual analysis as shown in Fig. 3. The scatter plot (Fig. 4) illustrates the validation EC data points
against the corresponding measured values with an RMSE value of 1.34%.

Table 3: All regression models of predicting soil EC

X factor Model R2

SI2 y = (−10.953 × SI2) − 2.106 0.59

SI2, BSI y = (−10.797 × SI2) + (−3.512 × BSI) − 1.591 0.63

GNDVI, NDVI, SAVI y = (1.264 × GNDVI – (2.074 × NDVI) + (2.282 × SAVI) + 0.150 0.06

GNDVI, NDVI y = (1.529 × GNDVI) – (1.321× NDVI) + 0.168 0.15

NDVI, SAVI y = (−1.706 × NDVI) + (2.728 × SAVI) +0.306 0.13

Table 4: Summary of selected regression models for predicting soil EC

X factor Model R R2 Adjusted R2 Std. error of
the estimate

SI2 (x1) 1) y = (−10.953 × x1) − 2.106 0.77 a 0.59 0.58 0.77

SI2 (x1),
BSI (x2)

2) y = (−10.797 × x1) + (−3.512 × x2) − 1.591 0.79 b 0.63 0.61 0.74

Note: a. Predictors: SI2. b. Predictors: SI2, BSI.

Table 5: ANOVA results of soil EC models

Model Sum of squares df Mean square F p-value

1 Regression 0.39 1 0.39 66.97 <0.001

Residual 0.27 46 0.006

Total 0.66 47

2 Regression 0.42 2 0.21 37.84 <0.001

Residual 0.25 45 0.006

Total 0.665 47
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Based on the coefficients analysis including a Tolerance (T) value of 1.000 and a Variance Inflation
Factor (VIF) of 1.000 (Table 7). However, Model-1 showed the most valid correlation between the
measured and predicted soil EC.

3.3 Performance of Soil CaCO3 Prediction Models
The performance of the generated soil CaCO3 models was statistically assessed. Out of studied five soil

indices generated from Sentinel-2 image (Table 8), wo soil indices (BSI & NDSI) showed a significant
correlation between the soil indices and the soil CaCO3, however, the BSI and NDSI were found to be
more suitable for predicting soil CaCO3.

The results of the soil CaCO3 and the soil indices generated from satellite image (BSI & NDSI) were
subjected to a linear regression modeling performed using the IBM SPSS statistics software program.
Linear regression results (Table 9) showed two models with a significant correlation between the
measured and predicted soil CaCO3 by soil indices (R

2 values ranging between 0.45 and 0.53, respectively).

Table 6: Accuracy of the soil EC models

Model R2 model R2 validation RMSE (%)

1 0.59 0.48 1.32

2 0.63 0.47 6.42

Figure 2: Relationship between the measured and predicted soil EC
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The ANOVA results (Table 10) also confirmed the significant relationship between the soil indices and
soil CaCO3 for the two models. The accuracy of the models was performed, as shown in Table 11 and Fig. 5.
The validation R2 value of Model-3 was 0.47 (BSI), which was higher than the validation R2 value (0.35) of
Model-4 (BSI & NDSI) and confirmed by the RMSE value of 1.29% for Model-3 which was lower than the
RMSE value of 1.55% for Model-4. The regression strength of the two prediction models of soil CaCO3 was
performed through the histogram analysis, the normal probability plot and the residual analysis as shown in
Fig. 6. The scatter plot (Fig. 7) illustrates the validation CaCO3 data points against the corresponding
measured values with an RMSE value of 1.93%.

Figure 3: Histogram, cumulative probability, and residual analysis for the prediction models of soil EC
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Based on the coefficients analysis including a Tolerance (T) value of 1.000 and a Variance Inflation
Factor (VIF) of 1.00 (Table 12). However, Model-3 showed the most valid correlation between the
measured and predicted soil CaCO3.

y = 0.7176x + 0.1078
R² = 0.48

p-value = 0.00017
RMSE = 1.34 %

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

M
ea

su
re

d 
so

il 
E

C
 (

dS
/c

m
)

Data points of the verification EC (dS/cm)

Figure 4: The validation EC data points vs. corresponding measured values

Table 7: Coefficients of soil EC models

Model Correlations

Partial Part T VIF

1 −0.77 −0.77 1.00 1.000

2 −0.78 −0.76 0.99 1.003

−0.29 −0.19 0.99 1.003

Table 8: All regression models of predicting soil CaCO3

X factor Model R2

BSI y = (−419.406 × x1) + 67.013 0.45

BSI, NDSI y = (−429.249 × x1) + (106.411 × x2) + 81.898 0.53

GNDVI, NDVI,
SAVI

y = (−195.813 × GNDVI) + (256.978 × NDVI) + (39.857 × SAVI) + 28.768 0.22

GNDVI, NDVI y = (−191.200 × GNDVI) + (270.1338 × NDVI) + 29.077 0. 26

NDVI, SAVI y = (199.932 × NDVI) − (29.267 × SAVI) − 6.804 0.14

Table 9: Summary of selected regression model for predicting soil CaCO3

X factor Model R R2 Adjusted
R2

Std. Error of the
estimate

BSI (x1) 3) y = (−419.406 × x1) + 67.013 0.67 a 0.45 0.44 2.92

BSI (x1), NDSI
(x2)

4) y = (−429.249 × x1) + (106.411 × x2)
+ 81.898

0.73 b 0.53 0.51 2.75
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The Fig. 8 represents the strong positive correlation among the studied model using the different
parameters to figure out the CaCO3 prediction from other characteristics linked with these parameters
using the BSI and NDSI indices taken by Sentinel-2 satellite imagery.

As shown in Figs. 9 and 10, predicted soil data points were interpolated and mapped by using
geostatistical procedures (i.e., kriging) available in ArcGIS software program (Ver. 10.7.1). predicted
maps of soil EC from Model-1 & Model-2 and soil CaCO3 from Model-3 & Model-4 were generated to
clarify the spatial distribution of predicted values.

Table 10: ANOVA results of soil CaCO3 models

Model Sum of squares df Mean square F p-value

3 Regression 326.09 1 326.09 38.29 <0.001

Residual 391.759 46 8.52

Total 717.849 47

4 Regression 378.45 2 189.22 25.09 <0.001

Residual 339.39 45 7.54

Total 717.84 47

Table 11: Accuracy of the soil CaCO3 models

Model R2 model R2 validation RMSE (%)

3 0.45 0.47 1.29

4 0.53 0.35 1.55

Figure 5: Relationship between the measured and predicted soil CaCO3

1612 Phyton, 2023, vol.92, no.5



Figure 6: Histogram, cumulative probability, and residual analysis for the for the prediction models of soil
CaCO3
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4 Discussion

Particularly in arid and semi-arid locations, soil salinity is a major contributor to desertification, land
degradation, and other environmental hazards. By mapping the electrical conductivity (EC) of the soil, it
is possible to determine the severity and scope of the salt spread in the afflicted areas, which is the first
step in coming up with a remedy. A possible way to map salinity is by combining the capability of high-
resolution satellite images with remote sensing methods, as this enables large-scale monitoring and offers
great accuracy and efficiency. The similar results were reported using S2A satellite and landset-8 data to
evaluate the salt characteristics and relate with the EC of the data with different regression analysis. The

y = 1.4592x - 4.5292
R² = 0.46

p-value = 0.0003
RMSE = 1.93 %
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Figure 7: The validation CaCO3 data points vs. corresponding measured values

Table 12: Coefficients of soil CaCO3 models

Model Correlations

Partial Part Tolerance VIF

3 −0.67 −0.67 1.00 1.000

4 −0.71 −0.69 0.99 1.003

0.36 0.27 0.99 1.003

Figure 8: Correlation matrix among the satellite image crop Model-1 and Model-2. The red color represents
the strong negative correlation to light green (strong positive correlation)
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study concludes that the suggested strategy for modeling salinity and mapping soil EC can be regarded as an
efficient tool for soil salinity monitoring [34]. Similar regression analysis techniques were also suggested by
other researchers to evaluate the soil salinity characteristics and compare it with EC for stimulating soil
salinity. The study area and the used regression algorithms affect how well these methods perform [35,36].

To correlate satellite-derived salinity indices with 28 field samples and produce salinity maps for years of
research, Gorji et al. [37] used linear and exponential regression analysis techniques for data validation study.
Similarly, partially least squares regression (PLSR), technique developed by Qu et al. [38], has been proven
to be effective in retrieving soil salinity from hyperspectral data. The outcomes showed that the calibrated
PLSR model could be utilized as a method to accurately recover soil salinity. The current study also used
the S2A spectral indices and correlate the indices using different regression analysis techniques. The
study results suggested that ANOVA results (Table 5) confirmed the significant relationship between the
soil indices and soil EC for the two models. The accuracy of the models was performed, as shown in
Table 6 and Fig. 2. The validation R2 value of Model-1 (SI2) was 0.48, which was slightly higher than
the validation R2 value (0.47) of Model-2 (SI2 & BSI) and confirmed by the RMSE value of 1.32% for

Figure 9: Predicted soil EC map from Model-1 (SI2) and Model-2 (SI2 & BSI)

Figure 10: Predicted soil CaCO3 map from Model-3 (BSI) and Model-4 (BSI & NDSI)
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Model-1, which was lower than the RMSE value of 6.42% for Model-2. The results of Model-1 (SI2) agree
with that of [39], which confirmed the capability of salinity index-2 in predicting the soil EC. The regression
strength of the two prediction models of soil EC was performed through the histogram analysis, the normal
probability plot and the residual analysis as shown in Fig. 3.

However, better management scales are also an important subject to address. In this regard, remote
sensing technologies can make significant contributions to agriculture monitoring [40] and advance our
knowledge of the effects of environmental changes [41] within the context of precision agriculture. With
the launches of Sentinel-2 A + B, many of the restrictions in the use of remote sensing techniques for
precision agriculture in earlier years [42] have been removed. The Sentinel-2 constellation was created
primarily to address the demands of the agricultural community, including farmers and academic
researchers with a focus on global agricultural development. It has better spatial, spectral, and temporal
resolution. Based on the facts and farmers friendly characteristics, the current study used Sentinel-
2 system for the prediction of different biotic and abiotic stresses evaluation at early stage would be
foremost to overcome the soil related issues for crop productivity [43].

Since there are currently numerous models or indicators that represent these functions, many scientific
works have focused on understanding and simulating the physical, chemical, and biological processes that
underlie these various functions [44]. These models and indicators require the use of exact geographically
referenced soil information as inputs in order to be fully operational in aiding decisions made at local,
national, and global levels [45]. Similar results reported by Vandour et al. [45] evaluate the soil
ecosystem functions using spatial levels model using S2A multispectral satellite images. The results
partial least squares regression models based on 72 and 143 S2A spectra, respectively. They also evaluate
the pH, sand, silt clay, calcium carbonate, iron, and soil organic carbon. Furthermore, the predictive
RMSE analysis, cross coefficient and ratio of performance to deviation was also conducted. The results
suggested that performance outcomes were recorded more than or equal to 1.40 and 0.50 was recorded,
respectively, however, near intermediate performance outcomes were recorded 1.30, 1.40, 0.39 and
0.50, respectively.

The study’s findings demonstrate what can be anticipated in terms of Sentinel-2 pictures’ regional-scale
forecasting abilities. The current study demonstrates the two models with a significant correlation between
the measured and predicted soil CaCO3 by soil indices (R2 values ranging between 0.45 and 0.53,
respectively) using the S2A spectra. Another study recorded the contrasting results suggested that the
RMSECV and cross validation using (R2cv) from the residual prediction deviation reported that values
between 1.40 and 1.80 indicate models with a moderate level of predictive capability; values between
1 and 1.40 indicate models with a bad level of predictive capability; and values below 1 indicate very
subpar models that should not be employed [46,47]. Similarly, the Model-3 showed the most valid
correlation between the measured and predicted soil CaCO3. The results of Model-3 (BSI) were similar to
the findings of [20], which estimated soil CaCO3 from two bare soil composites of 30 m resolution
Landsat image with R2 value of 0.44.

5 Conclusion

The current study was based on the modeling of the relationship between the soil indices calculated from
Sentinel-2 satellite image and the concentrations of laboratory-estimated soil properties. The linear
regression models were applied to the soil indices on the on the topsoil of agricultural fields in Sudan for
the prediction soil EC and CaCO3. The specific conclusions of this study could be summarized as
follows: The linear regression results of soil EC showed two models with the most significant correlation
between the soil EC estimated in laboratory and the soil indices: SI2 (Model-1) and the BSI (Model-2).
The validation confirmed the validity of Model-1 with high R2 (0.48) and less RMSE value of 1.32%.
Also, the linear regression results of soil CaCO3 showed two models with the most significant correlation
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between the soil CaCO3 estimated in laboratory and the soil indices: BSI (Model-3) and BSI & NDSI
(Model-4). The validation confirmed the validity of Model-3 with high R2 (0.48) and less RMSE value of
1.29%.
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Appendix

Abbreviations

Sentinel-2 imagery data bands (Navarro et al. [48])

Band Description Wavelength (nm)

B2 Blue 490

B3 Green 560

B4 Red 665

B5 Red edge 705

B6 Red edge 749

B7 Red edge 783

B8 Near infrared (NIR) 842

B8A Near infrared (NIR) 865

B9 Water vapor 945

B11 Short-wavelength infrared (SWIR-1) 1610

B12 Short-wavelength infrared (SWIR-2) 2190
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