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ABSTRACT

Plant growth-promoting bacteria (PGPB) play an important role in improving agricultural production under sev-
eral abiotic stress factors. PGPB can be used to increase crop growth and development through hormonal balance
and increase nutrient uptake. The positive effect of PGPB may be due to its pivotal role in morphophysiological
and biochemical characteristics like leaf number, leaf area, and stem length. Furthermore, relative water content,
chlorophyll content, carotenoids, antioxidant enzymes, and plant hormones were improved with PGPB treatment.
Crop yield and yield components were also increased with PGPB treatment in numerous crops. The anatomical
structure of plant organs was increased such as lamina thickness, stem diameter, xylem vessel diameter, and num-
ber of xylem vessels as well as phloem thickness under treatment with PGPB. Additionally, PGPB can alleviate the
negative effects of several abiotic stresses by regulating the antioxidant defense system to scavenge the reactive
oxygen species resulting in an improvement of yield production in the stressed plants. Additionally, gene expres-
sions were controlled by calcium ion modulation during secondary messengers that act upon calcium-dependent
protein kinase and protein phosphatases. This includes many transcription factors such as MYB, AP2/ERF, bZIP,
and NAC which regulate genes related to salinity stress signals. PGPB can demonstrate induction genes of signal-
ing under abiotic stress conditions. This review gives an outline of the PGPB role in alleviating the harmful effects
of abiotic factors such as salinity, drought, and heat associated with the improvement of the morpho-physiological
and biochemical features especially, leaves and branches number, leaf area, antioxidant compounds, plant hor-
mones, and relative water content.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.
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1 Introduction

Under field or greenhouse conditions, plants are exposed to biotic and abiotic stress factors. Biotic stress
factors are caused by living organisms such as fungi [1–3], bacteria [4,5], viruses [6], insects [7–10] and
weeds [11–13]. Abiotic stress factors include many stress factors, among them; drought [14–16], heat
[17], and salinity [18–20] are the main abiotic stress factors. Drought stress is one of the most harmful
abiotic stresses that hinders the growth of stressed plants, especially in arid regions. Under drought
conditions, plant height, leaf number, and leaf area were significantly decreased in wheat [16]. Also,
physiological characteristics such as chlorophyll a and b concentrations, carotenoids, and relative water
content were decreased under drought conditions in several economic plants such as pea plants [21],
barley [22], and sugar beet [23]. Under heat stress, the reduction in chlorophyll concentrations, decrease
in fatty acids, and increase in cell membrane permeability were recorded [24]. The plants have different
mechanisms to cope with these conditions such as the reduction in photosystem II efficiency. Farooq
et al. [25] found that the growth and physiological characteristics of chickpea plants such as relative
water content, photosynthesis, and activity of antioxidant enzymes were negatively affected under
chilling stress. Additionally, salinity is one of the main abiotic stress factors, it is a detrimental stress for
many plants all over the world. Salinity stress led to a decrease in the morphological characters in the
stressed plants like, faba bean [26] and sweet pepper plants [27]. Under salinity conditions, reactive
oxygen species are important signs, superoxide and hydrogen peroxide were significantly augmented in
the salt-stressed plants [28,29], furthermore, lipid peroxidation significantly increased in pea plants under
salinity conditions. These characteristics were related to oxidative stress in the stressed plants under
various stresses.

The use of plant growth-promoting bacteria has become one of the most important strategies to
overcome oxidative stress. PGPB naturally exists in various media, the most known genera in the
agricultural improvement are Pseudomonas, Paenibacillus, Rhizobium, Azospirillum, Bacillus, and
Azotobacter, they can enhance plant growth and yield via amino acids production, nitrogen fixation, and
plant hormones production [25]. The positive effects of PGPB may be due to its role in the production of
phytohormones, siderophores, phosphate solubilization, and antibiotics [30]. PGPB acts as biofertilizers
by increasing the accessibility of water and nutrients [31] under stressful conditions [27]. Inoculation of
PGPB led to an increase in the root yield of sugar beet plants [32] and the growth characteristics as well
as the yield of sorghum [33]. Abdelaal [32] reported that the inoculation with plant growth-promoting
bacteria led to an increase in the growth characteristics of sugar beet consequently improving the
anatomical structure such as the thickness of lamina and mesophyll tissue. PGPB may take up the
tryptophan exuded by roots and convert it to IAA, which may be taken up by the plant, consequently,
facilitate plant growth. Application of Azospirillum brasilense and Pseudomonas fluorescens led to
increased shoot biomass of Urochloa spp. [34]. The active role of A. brasilense was also recorded on
shoot dry mass production of rangeland plants, dry biomass was increased in both years [35]. Several
studies were carried out regarding the effect of PGPB, but the information about this effect on drought,
heat, and salinity is still insufficient, therefore, this review aimed to study the pivotal role of PGPB as a
promising strategy to alleviate the negative impacts of abiotic stresses in several crops and increase the
yield production.
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2 Alleviating Drought Stress Effects on Growth and Yield Characters Using PGPB

Drought has become a major problem threatening agricultural production and sustainability, the harmful
effects on the growth and yield of drought or water deficit stress were recorded in various plants. Oxidative
stress components such as superoxide (O2•−), peroxyl radical (ROO•), singlet oxygen (1O,2), and hydrogen
peroxide (H2O2) were produced in mitochondria, chloroplasts, and peroxisomes as a result to stress
conditions such as drought. Furthermore, plants have another defense system to deal with oxidative
stress, this defense system is antioxidant components which include enzymatic antioxidants and non-
enzymatic antioxidants. The main enzymatic antioxidants are glutathione reductase, peroxidase, catalase,
superoxide dismutase, ascorbate peroxidase, and dehydroascorbate reductase [36,37]. However, non-
enzymatic antioxidants include α-Tocopherols (Vitamin E), ascorbic acid, proline, carotenoids, and
glutathione [38,39]. Additionally, under stress conditions, plants have important adaptive mechanisms like
reducing the growth of the shoot system, improving solute content, and osmotic adjustment also, stomatal
closing is a very significant response to reduce water loss under drought stress [40]. There are some
signaling pathways regulated by phytohormones such as JA, auxins, ABA, and cytokinin that control in
closure mechanism’s response [41]. Another adaptive mechanism depends on the drought periods; under
a short drought period, plants regulate water loss to avoid significant damage to their water-transport
system. Nevertheless, under a long drought period, the evaporation was significantly increased, however,
soil water decreased, resulting in a significant reduction in soil water content, consequently, decreasing
cell differentiation and seedling growth [21].

Under drought conditions, plant growth-promoting bacteria can be used to improve plant growth by
different mechanisms, these mechanisms include phosphorus solubilization, nitrogen uptake, and
availability of essential nutrients as well as regulation of phytohormones that, maintain root structure to
increase water and nutrient uptake [42,43]. Many studies showed the promotional effects of PGPB via
improving water uptake and nutrient availability in soil, resulting in improving soil characters,
consequently, increasing crop yield (Table 1). Application of PGPB led to improved morpho-physiological
characters and yield production of various plants, through nitrogen fixation, and phosphate solubilization
such as Azoarcus sp. [44], Serratia spp. [45] and Rhizobium spp. [46]. Additionally, the phosphorus
availability was increased in the soil after treatment with phosphorus-solubilizing bacteria such as
Rhizobium spp, Bacillus spp., and Pseudomonas spp, however, some genera of PGPB like Bacillus
mucilaginosus, Ferrooxidans spp, Paenibacillus spp. and Pseudomonas sp. can solubilize potassium for
plant uptake. Under drought conditions, the application of some genera of rhizobacteria led to an increase
the growth characteristics and grain yield of wheat plants, this positive effect of rhizobacteria may be due
to its role in increasing the production of phytohormones [47]. Moreover, García et al. [47] found that the
application of Azospirillum led to an increase in the tolerance of maize plants to drought stress and
enhanced its growth. In the experiment of Shirmohammadi et al. [48], they reported that the application of
Pseudomonas (phosphate-solubilizing bacteria) led to increased phosphorus uptake and improved the
yield of wheat plants. Previous studies showed that phosphate and phosphorus-solubilizing bacteria such
as Bacillus edaphicus, Bacillus mucilaginosus, Acidithiobacillus sp, Ferrooxidans sp, Paenibacillus spp,
and Pseudomonas sp. play a significant role as biofertilizer especially, under stress conditions to improve
the growth and yield in the stressed plants via increasing the accessibility of free phosphorus, phosphate,
increasing the efficiency of nitrogen fixation and improve the availability of essential nutrients for plant
absorption [49,50].

The positive role of PGPB in enhancing plant growth under drought conditions was recorded with
Azospirillum brasilense and Herbaspirillum seropedicae in maize plants [51] and Bacillus in pea plants
[26]. This positive role could be due to the improvement of water availability and antioxidant
components as well as accumulation of ABA and osmoprotectants which, improve the plant growth
under drought conditions. Inoculation with Azospirillum led to improved growth of wheat roots and an
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increase in the formation of lateral roots due to indole acetic acid production under drought conditions
[52,53]. Similarly, the application of Pseudomonas caused an increase in fresh weight and stem height as
well as chlorophyll content and salicylic acid under drought conditions [54]. Inoculation with
Azospirillum brasilense and Bacillus thuringiensis led to increased nutrient concentrations, enhanced
metabolic activity, relative water contents, and improved membrane stability, consequently increasing the
tolerance of wheat plants and Platycladus orientalis plants to drought stress conditions [55]. Meenakshi
et al. [56] reported that the application of Bacillus subtilis, Bacillus thuringiensis, and Bacillus
megaterium led to a significant increase in metabolic activities and chlorophyll concentration in the
drought-stressed Cicer arietinum. The beneficial effects of PGPB under stress conditions are mediated by
the formation of proline and osmolytes as well as improving the activity of the antioxidant system.

Table 1: Effect of PGPB in improving the growth and yield of plants under drought conditions

PGPB Effect of PGPB on growth
and yield

Plant
species

References

Bacillus
thuringiensis

Enhance physiological characters and increase seed yield Pea [23]

Bacillus
amyloliquefaciens

Improve growth characters via IAA production wheat [54]

Azospirillum Improve growth characters with osmoprotectant
formation

Maize [55]

Bacillus spp. Increase metabolic activities and chlorophyll
concentration

Cicer
arietinum t

[56]

Azospirillum
brasilense

Improve growth characters and increase grain yield wheat [57]

Arthrobacter
protophormiae

Increase IAA and 1-aminocyclopropane-1-carboxylate
(ACC)

wheat [58]

Pseudomonas and
Bacillus

Improve physiological characters and increase
marketable yield

Tomato [59]

Pseudomonas spp. Increase compatible solutes, and improve antioxidant
status

Maize [60]

Pseudomonas
helmanticensis

P solubilization, indole-3-acetic acid production, and
growth improvement

wheat [61]

Bacillus spp. Exopolysaccharide production, phosphate (P)-
solubilizing activity and production of organic acids

wheat [62]

Bacillus cereus induced a significant increase in IAA, gibberellins, and
zeatin

walnut [63]

Pseudomonas spp. Decreased osmotic stress, enhanced dry weight, and plant
water content

Arabidopsis [64]

Pseudomonas spp. Improving root elongation and NPK [65]

Rhizobium spp Improving growth and yielding characters soybean [66]

Bacillus spp and
Pseudomonas spp

Increased fruit yield pepper [67]

Azotobacter and
Pseudomonas

Improve seed germination and seedlings’ radical Spinacia
oleracea

[68]
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3 Mitigating the Effects of Salinity Stress on Growth and Yield Characters Using PGPB

Salinity is a main abiotic factor that detrimentally affects the growth and yield of many plants like
strawberry [17], cucumber [19], faba bean [26], pea plants [28], and mung bean [69]. The negative
effects of salt stress were observed on vegetative and reproductive stages particularly, physiological
characteristics such as relative water content, chlorophyll content, the activity of antioxidant enzymes,
and yield of several plants [16,34]. The reduction in chlorophyll content under salt stress might be due to
the photooxidation process for chlorophyll [69,70]. Also, salinity stress is usually accompanied by
oxidative stress due to the excessive production of ROS such as hydrogen peroxide and superoxide,
which, cause lipid peroxidation in plant cells such as pepper plants [27] and pea plants [28]. The
oxidative stress markers such as ROS, MDA, and EL% are the main indicators in the stressed plants and
were significantly increased due to the oxidative damage to mitochondria and chloroplasts as well as
other organelles under salt stress [71]. Under salinity conditions the plants can produce antioxidant
components to scavenge the excessive formation of ROS, these components include enzymatic and
nonenzymatic antioxidants. The production of enzymatic antioxidants for example SOD, CAT, and POX
were recorded in stressed plants under salt stress to scavenge the ROS [16,34]. Also, nonenzymatic
antioxidants like proline, carotenoids, and total phenolic compounds were observed under salinity stress.
These antioxidants play a key role as osmo-regulators to protect the plant cells against oxidative damage.
The adverse effects of salinity may be due to the inhibition of carbon fixation and the accumulation of
hydrogen peroxide and superoxide, consequently reducing chlorophyll concentration [72].

Plant growth-promoting bacteria (PGPB) can improve physiological processes such as water uptake,
nutrient absorption, and photosynthesis processes that enhance plant growth and development [73].
Application of plant growth-promoting bacteria was used to improve plant growth and increase yield
production under salt stress (Table 2). Inoculation with PGPB led to an increase in relative water content
and improved the structure of the root system and growth characters under salinity conditions, this
increased because of the phytohormones production like IAA which increases the length and weight of
roots [74]. The beneficial impact of PGPB might be attributed to the production of exopolysaccharides
(EPSs) and an increase in the concentration of ABA, which decreases the negative effects on stomatal
conductance and photosynthesis [75]. Azotobacter vinelandii, Enterobacter cloacae, and Rhizobium sp.
were recorded to produce exopolysaccharides and enhance soil structure and fertility, improve water
potential, and increase the plant tolerance to abiotic stress factors such as drought, and salinity to improve
crop production [76]. Moreover, PGPB can produce important organic compounds such as ACC-
deaminase and siderophores which enhance Fe concentrations and increase its availability in the soil. The
activity ACC deaminase was reported for Enterobacter might alleviate salinity stress by reducing ethylene
concentration [77]. The application of Bradyrhizobium japonicum + Enterobacter Delta PSK significantly
improved the growth characteristics of soybean, while malondialdehyde, electrolyte leakage, and
hydrogen peroxide were significantly decreased under salt stress conditions. Also, chlorophyll
concentrations were increased with the application of Bradyrhizobium japonicum + Enterobacter Delta
PSK and Pseudomonas 42P4 under salinity stress, this effect may be due to alleviatingalleviating the
oxidative damages of salinity in soybean [78] and in tomato plants [79]. Ali et al. [80] reported that
inoculation with Enterobacter cloacae PM23 led to improved growth characteristics and increase relative
water content, proteins, and flavonoid content in maize plants under salinity conditions. Under salt stress,
Mahmood et al. [81] found that Enterobacter cloacae and Bacillus drentensis treatment caused an
improvement in the growth of mung beans by increasing the water uptake and nutrient accessibility in the
stressed plants. Mukherjee et al. [82] studied the role of Halomonas sp. in promoting the growth
characteristics and productivity of rice plants growing under salt conditions via siderophores production.
Also, Sen et al. [83] found that the application of Pseudomonas species under salinity conditions
increased root colonization of rice plants by secreting exopolysaccharides. Secretion of phytohormones,
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increased nutrient uptake, and nitrogen fixation are some of the various mechanisms that plant growth-
promoting microbes use to promote plant growth and reduce the adverse effects of salt stress [83].
Several studies indicated that PGPB was effective in alleviating the harmful effects of stress factors
improving the growth characteristics of many plant species that belong to cereals legumes, and
vegetables, and enhancing stress tolerance [84]. Application with PGPB led to an increase in nutrient
uptake such as N, K, and P due to the solubilizing power of P-solubilizing PGPB and K-solubilizing
PGPB [85,86]. Under salt stress, Streptomyces sp. and Achromobacter sp. displayed the highest activity
of ACC deaminase, however, Bacillus sp. gave the highest activity of siderophore compounds. These
isolates also produced antioxidant enzyme activities such as superoxide dismutase, glutathione oxidase,
and catalase in rice plants [87]. Also, Klebsiella variicola SURYA6 produced many compounds under
salt stress conditions such as organic acid, high phosphorous solubilization index and siderophore, indole
acetic acid, 1 aminocyclopropane-1-carboxylate deaminase, and exopolysaccharides as well higher
activities of antioxidant enzymes like catalase, superoxide dismutase and glutathione oxidase [88].
Moreover, Bisht et al. [89] and AlKahtani et al. [90] reported that the application of plant growth-
promoting bacteria markedly improved photosynthetic rate, stomatal conductance, carotenoids and
chlorophylls concentration in Trigonella foenumgraecum and lettuce under salinity conditions.

Salinity stress is associated with oxidative damage to cell structures in the plant cells. Under salt stress
conditions, the presence of PGPB can activate the antioxidant defense system to scavenge the reactive
oxygen species that are produced under salt stress. Antioxidant enzymes such as CAT, SOD, and GSH
were recorded to protect plants from oxidative stress. In this regard Klebsiella sp. IG 3 produced IAA,
antioxidant enzymes, and proline, under salinity conditions, and increased growth characters in A. sativa
[91]. Previous studies on wheat plants showed that the application of PGPB such as Pseudomonas sp.
and Serratia sp. led to improved growth characteristics in the salt-stressed wheat plants (Table 2) via
increasing ACC-deaminase production [92]. Also, Abdelaal [32] reported that the anatomical
characteristics of sugar beet stems and leaves were improved with biofertilizer treatment which are clean
and inexpensive sources of fertilizers, and act as alternative sources for chemical fertilizers.

Table 2: Mitigation of salinity effects on the plant growth and yield with PGPB application

PGPB Effect of PGPB on growth and yield Plant species References

Rhizobium spp. Improve physiological and yield
characters

Faba bean [26]

Paenibacillus yonginensis Activating the defense system and
increasing salinity tolerance

Panax ginseng [78]

Enterobacter cloacae Production of ACC deaminase Wheat [85]

Bradyrhizobium japonicum +
Enterobacter Delta PSK

Reducing malondialdehyde, electrolyte
leakage, and hydrogen peroxide

Soybean [86]

Pseudomonas 42P4 Alleviate the oxidative damages Tomato [87]

Enterobacter cloacae PM23 Regulating antioxidant defense, and
solute accumulation

Maize [88]

Azotobacter chroococcum and
Enterobacter asburiae

Improved photosynthesis process Trigonella
foenumgraecum

[89]

Klebsiella sp. Production of IAA, antioxidant enzymes,
and proline

Avena sativa [91]

(Continued)
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4 Justifying the Effects of Heat Stress Using PGPB

Heat stress is one of the most common abiotic stresses that negatively affects morphophysiological and
biochemical functions in many plants, like stem height, branch number, membrane permeability, relative
water content, and photosynthetic rate. Photosynthesis is an important physiological process and is highly
sensitive to temperature changes, so, the photosynthetic rate in leaves was decreased under high
temperatures. Chlorophyll fluorescence parameters were decreased under heat stress conditions, this
negative effect of heat stress may be due to heat-induced inhibition of light energy absorption and energy
distribution. Ahammed et al. [99] reported that heat stress negatively affected the electron transport
efficiency in tomato plants, also, enzyme activity, cell division, reactive oxygen species, and other
oxidative stress markers have been linked to heat-stressed plants [100]. Exposure to heat stress negatively
affects growth characteristics, metabolic processes, chlorophyll concentrations, and the efficiency of
photosynthetic apparatus [101].

The effect of plant growth-promoting bacteria was studied to protect the plants from heat stress, in this
concern, Mukhtar et al. [102] reported that the application of Bacillus safensis (SCAL1) caused an increase in
growth characteristics of tomato plants under various heat stress regimes via increasing ACC deaminase and
exopolysaccharide. Shaffique et al. [103] stated the increase of various heat stress regulators such as IAA,
gibberellin, cytokinin, and organic acids in stressed plants under heat stress conditions. Previous studies
have proved that PGPB plays a significant role in the justification of heat stress. Inoculated wheat plants
with Bacillus amyloliquefaciens UCMB5113 reduced heat stress parameters such as ascorbate peroxidase,
glutathione reductase, and heat-shock protein (HSP17) expression [104]. In another study, inoculated
soybean plants with Bacillus cereus improved chlorophyll a, b concentrations, carotenoids, and proteins
[104]. Application of Pseudomonas aeruginosa strain 2CpS1 led to ameliorating heat stress effects in
wheat plants [105]. Another report stated that Rhizobia increases thermotolerance by activating the heat
shock proteins [106]. Application of Bacillus licheniformis strain BE-L60 can ameliorate the harmful
effects of heat stress via secreting IAA and dissolving phosphorus, increasing proline content, and soluble
protein, and improving the activity of antioxidant enzymes such as superoxide dismutase, peroxidase, and
catalase in heat-stressed spinach plants [107]. Duarte et al. [108] studied the role of plant growth-
promoting bacteria on Salicornia ramosissima plants under heat stress, they found that physiological

Table 2 (continued)

PGPB Effect of PGPB on growth and yield Plant species References

Pseudomonas sp. and Serratia
sp

ACC-deaminase production Wheat [92]

Acinetobacter bereziniae Enhanced osmolytes such as proline and
soluble sugar

Pea [93]

Pseudomonas azotoformans
FAP5

Improved morphological and
physiological attributes

Wheat [94]

Gluconacetobacter
diazotrophicus

Improved chlorophyll content Maize [95]

Bacillus sp. Improved antioxidant enzymes and AAC Pea [96]

Azospirillum sp. Improved phosphate solubilization Chickpea [97]

Pseudomonas
pseudoalcaligenes

Improved antioxidant enzyme acivity Soybean [98]
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stress levels were decreased such as excessive fluidity and several antioxidant enzymes as well as lipid
peroxidation products, however, membrane stability was improved in the stressed plants.

5 Gene Expression and Signaling Mechanisms under Salinity Stress and PGPB Application

Plants have genetic traits and developed mechanisms to cope with abiotic stress factors such as salinity
stress. Plant growth-promoting bacteria become one of the most important methods to improve the salt
tolerance mechanism in stressed plants [108]. The signaling mechanisms start with surface receptors that
perceive the signals, then, secondary messengers are produced such as ROS that start the plant signal
transduction. During the stress period, gene expressions are managed by calcium ion regulation brought
about by the secondary messengers that act upon calcium-dependent protein kinase and protein
phosphatases [109,110]. Cotton plants treated with Bacillus pumilus markedly expressed ascorbate
metabolism and glyoxylate pathways as well as dicarboxylate metabolism pathways. However, cotton
plants treated with Bacillus subtilis caused expressed pentose and glucuronate pathway genes [111].

Under environmental stresses, plants have two important pathways (MAPK and CDPK) to overcome the
adverse effects of various stresses. Under stress conditions, MAPK is activated by many signals and the
response to environmental stress occurs quickly by the presence of proteins sensing calcium (CDPK and
calmodulins) and via modifying cytoplasmic calcium ions. CDPK plays a significant role in ROS
production and ABA in plants under abiotic stresses. Additionally, plant-promoting growth-promoting
bacteria can produce various phytohormones such as gibberellin, cytokinin, IAA, ABA, and ethylene
which act as important signals in the plant tolerance to cope with stress factors [112]. Also, the
application of PGPB led to an increase in the production of organic compounds that help in plant-bacteria
communication [113]. Under salt stress, PGPB plays an important role in salinity tolerance by regulating
ion homeostasis and uptake. The results of Ilangumaran et al. [114] proved that numerous genes such as
MAPK, DREB, and CIPK12 of PGPB are involved in modulating phytohormones which play a
significant role in the plant defense and adaptation against salinity stress (Table 3).

Table 3: Effect of plant growth-promoting bacteria on the regulation of gene expressions under salinity stress
conditions

PGPB Expressed gene Role of gene expression under
abiotic stresses

Plant
species

Reference

Arthrobacter
protophormiae and B.
subtilis

TaDREB2 Enhanced salt stress tolerance Wheat [63]

Bacillus
amyloliquefacisens

RBCS, RBCL, HKT1,
NHX2, and NHX3

Improved enzyme activity and
decreased salinity toxicity

Maize [115]

Bacillus megaterium
ZmPIP

ZmPIP Increased root hydraulic
conductivity

Maize [116]

Enterobacter sp. RD29B, RAB18, P5CS2,
and MPK

Increased
proline biosynthesis

Tomato [117]

Enterobacter sp. APX and CAT Increased antioxidant enzyme Okra [118]

Dietzia natronolimnaea APX, MnSOD, CAT,
POD, GR, and TaWRKY

Increased antioxidant enzymes
and proline content

Wheat [119]

Bacillus
amyloliquefacisens

EREBP, SOS1, BADH,
and SERK1

Increased growth characters Rice [120]
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6 Conclusions and Future Perspectives

This review displays the significant role of plant growth-promoting bacteria in improving growth and
yield under various environmental conditions such as salinity, drought, and heat. Generally, the
application of plant growth-promoting bacteria in alleviating the adverse effects of abiotic stress factors
such as salinity, drought, and heat in the agricultural system is a promising, safe, and effective strategy,
they can improve growth characteristics of plants under abnormal conditions such as drought, salinity,
and heat via production of growth hormone, fixation of atmospheric nitrogen, solubilizing of inorganic
phosphate and exopolysaccharides production. Furthermore, PGPB helps in the accumulation of
osmoprotectants, activating the antioxidant enzymes, organic compounds production, and the production
of the ACC deaminase enzyme as well as scavenging the reactive oxygen species. It can be concluded
that PGPB is an important alternative method to control abiotic stress in plants, improve plant growth
characteristics, and increase yield production under stress conditions. Additional studies are still required
to find the best strain of plant growth-promoting bacteria for plant species to improve the growth and
yield under several stress factors as well as improve agricultural sustainability.
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