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ABSTRACT

Upland cotton (Gossypium hirsutum) is the most important plant producing natural fibers for the textile industry.
In this study, we first investigated the phenotypic variation of seven agronomic traits of 273 diverse cotton acces-
sions in the years 2017 and 2018, which were from 18 geographical regions. We found large variations among the
traits in different geographical regions and only half of the traits in either years 2017 or 2018 followed a normal
distribution. We then genotyped the collection with 81,612 high quality SNPs. Phylogenetic tree and population
structure revealed a diverse genetic structure of the core collection, and geographical diversification was an impor-
tant factor, but account for part of the variances of genetic diversification. We then performed genome-wide asso-
ciation study for the seven traits in the years 2017 and 2018, and the average values of each trait in the two years,
respectively. We identified a total of 19 significant marker-trait associations and found that Pollen Ole e 1 allergen/
extension could be the candidate gene associated with the fall-off cotton bolls from the last three branches. In
addition, large variations were observed for the heritability of traits in the years 2017 and 2018. These results pro-
vide new potential candidate genes for further functional validation, which could be useful for genetic improve-
ment and breeding of new cotton cultivars with better agronomic performances.
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1 Introduction

Upland cotton (Gossypium hirsutum), a member of the Gossypium genus [1], is a vital source of natural
fibers for the global textile industry [2]. Improving the yield and fiber quality with resistance to numerous
adversities remains as the top breeding priorities [3]. However, our understanding of the genetic basis of
the important agronomic traits is still limited [2,3].

Genetic diversity is crucial for conservation, breeding and biodiversity. Over the years, the genetic
diversity of cotton has been studied using various approaches, including morphological traits [4],
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pedigree information [5] and different molecular markers [6–10]. Next-generation sequencing technology
makes it possible to generate thousands to millions of SNPs for hundreds of cotton germplasm accessions
[2,3]. However, this approach can be expensive. Alternatively, sequencing accessions at a lower sequence
depth [11] or using SNP arrays [11–17] and SLAF-seq [18] can be used to infer the genetic diversity and
structure of large cotton germplasm resource.

Genome-wide association study (GWAS) has proven to be an effective and efficient way to identify
genetic loci associated with important agronomic traits in cotton, including yield, fiber quality, growth
period, and plant type [1,11,13,14,16–26]. More natural accessions harness more genetic diversity and
possible recombination events, breaking down the linkage disequilibrium (LD) and identifying causal
variants that cannot be detected in linkage populations [27,28]. However, the associated loci identified in
different GWASs can be inconsistent, which can be technically referred and evaluated by heterogeneity
(the genetic variations observed across different GWASs) and can be caused by various factors, such as
Genotype × Environment interactions, genetic background, genetic structure, and linkage disequilibrium
[19,29–31]. In this study, we investigated a core cotton collection and performed GWAS on seven
important agronomic traits. Our aims were to identify new significantly associated loci to breed new
varieties with higher cotton quality.

2 Materials and Methods

2.1 Materials
In this study, a total of 273 diverse cotton accessions were selected from 18 geographical regions

(Supplementary Table 1). The field experiment was performed at No. sixteenth regiment experiment field
during 2017 and 2018 at Alaer, Xinjiang Province, China, and each accession has three replicates.

2.2 Phenotypes
A total of seven important morphological traits were measured across two years, including pollen

vitality (PV), leaf area (LA), chlorophyll content (CC), the number of dry cotton bolls (DBs), the number
of the fall-off cotton bolls from the last three branches (FB3), the number of the cotton bolls from the last
three branches (CB3), and drop ratio (DR). Pollen viability was assessed using 2,3,5-triphenyl tetrazolium
chloride (TTC) solution. Briefly, flowers were sampled and immersed in TTC and were then stored at
room temperature for 1 h. Then 2% sulfuric acid was added to stop the staining process. Pollen was then
photographed under microscope and the pollen viability was measured as the percentage of normally
stained pollens compared to total number of pollens. The chlorophyll content was measured near the leaf
main veins and both sides of the functional leaves using the SPAD-502 chlorophyll meter, with three
replicates. Leaf area was measured on the top, middle and bottom leaves using the LA-S leaf area
measuring instrument. The number of the fall-off cotton bolls from the last three branches, the number of
the cotton bolls from the last three branches were manually cross-checked. The boxplot of the phenotypic
variation was generated using ggplot2 package in R. The normality of the phenotypes was tested using
the Shapiro-Wilk test in R function.

2.3 Genotyping and SNP Calling
Adaptors and low quality sequences were removed using Trimmomatic [32] (v0.39) with parameters

“TruSeq3-PE-2.fa:2:30:10:1:TRUE SLIDINGWINDOW:4:20 LEADING:3 TRAILING:3 MINLEN:40”.
The clean sequencing data obtained by specific-locus amplified fragment sequencing (SLAF-seq) was
realigned to the reference genome of cotton released by Using Zhejiang University Cotton v2.1 (https://
www.cottongen.org/species/Gossypiumhirsutum/ZJU-AD1v2.1) using BWA v0.7.15 software [33] with
default parameters. Then haplotypeCaller of GATK v4.0 [34] and SAMtools v1.9 [35] were used to
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detect variation calling separately, and the overlapped SNP markers were identified to create a final reliable
SNP dataset. Raw SNPs from GATK were filtered with default hard filtering with parameters ‘QD < 2.0 || FS
> 60.0 || MQ < 40.0 || SOR >3.0 || MQRankSum < −12.5 || ReadPosRankSum < −8.0’. SnpEff v4.0 [36] was
used to obtain the locations and the functions of the variable sites (intergenic zones, gene zones, or CDS
zones; synonymous mutations, nonsynonymous mutations, etc.).

2.4 SNP Quality Control
In order to obtain a final set of high-quality SNPs, the minimal minor allele frequency (MAF) was set to

0.05, with a maximum percentage of missing at 0.3, generating a total of 81,612 high quality SNPs. All these
SNPs were used for further population genetic analyses, including phylogenetic tree, population structure,
kinship and genome-wide association study.

2.5 Phylogeny
The optimal ML phylogenetic tree model for the 273 cotton core collection was built using IQ-TREE

v1.6.12 [37]. In order to reduce the overall computing time and load, we first thinned the 81,612 SNPs to
11,589 SNPs using vcftools with –thin 100000. The optimal fitted model was PMB+F+R7, which was
determined based on the lowest BIC value using ModelFinder [38].

2.6 Population Structure
The population structure was calculated using all the 81,612 high quality SNPs from fastSTRUCTURE

v1.0 [39]. The optimal number of sub-populations was determined at 7.

2.7 Genome-Wide Association Study
Genome-wide association study was tested using EMMAX [40]. The PCA and the Balding-Nichols

(BN) kinship were added as cofactors. Genome-wide significant threshold (2.81E-6) was determined in
GEC1 [41]. The candidate region was determined by calculating the LD for the peak SNPs and its nearby
SNPs using PLINK [42] with parameters ‘–ld-window 1000000 –ld-window-r2 0.2’.

3 Results

3.1 Morphological Variations
Geographical diversity can result in diverse phenotypic variations. In this study, we mainly focused on

seven important quantitative agronomic traits, namely pollen vitality (PV), leaf area (LA), chlorophyll
content (CC), the number of dry cotton bolls (DBs), the number of the fall-off cotton bolls from the last
three branches (FB3), the number of the cotton bolls from the last three branches (CB3) and drop ratio
(DR). We observed significant phenotypic variations among the defined geographical locations, and the
overall variation patterns across different geographical locations in 2017 and 2018 were similar (Fig. 1).
These findings suggest that geographical locations play a vital role in shaping the diversification and
variation of the analyzed phenotypes.

All the analyzed traits were considered as quantitative traits and should theoretically follow a normal
distribution. However, we found that only the chlorophyll content (CC) showed a normal distribution in
both the measurement of years 2017 and 2018. On the other hand, the remaining six traits were either
only normally distributed in one year or non-normally distributed in both years. Pollen vitality (PV) and
the number of dry cotton balls (DBs) even showed a high significant difference compared to normal
distribution (Fig. 2). These findings indicate that the analyzed traits not only exhibit high diversity but
also deviate from normal distribution.

Phyton, 2023, vol.92, no.12 3347



We also measured the correlations among the seven traits across both years (Supplementary Fig. 1). In
the year 2017, we observed a strong positive correlation (0.82) between DR (cotton bolls drop ratio) and FB3
(the number of fall-off cotton bolls from the last three branches), while DR and CB3 (the number of cotton

Figure 1: Boxplot of the measured phenotypes for the 273-core cotton collection in 2017 and 2018. PV17,
pollen vitality in 2017; PV18, pollen vitality in 2018; LA17, leaf area in 2017; LA18, leaf area in 2018;
CC17, chlorophyll content in 2017; CC18, chlorophyll content in 2018; DBs17, the number of dry cotton
bolls in 2017; DBs18, the number of dry cotton bolls in 2018; FB317, the number of the fall-off cotton
bolls from the last three branches in 2017; FB318, the number of the fall-off cotton bolls from the last
three branches in 2018; CB317, the number of the cotton bolls from the last three branches in 2017;
DR17, drop ratio in 2017; DR18, drop ratio in 2018. Only geographical background with no less than
five accessions were used in this comparison
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bolls from the last three branches) had a strong negative correlation. However, we did not find any strong
correlations among the traits in year 2018. Moreover, we found that only PV (pollen vitality) exhibited a
high positive correlation (0.94) between the year 2017 and 2018.

3.2 Genetic Structure
Although the core cotton collection represents a diverse phenotypic and geographical diversity, a

comprehensive genetic structure analysis is largely missed. In this study, we first calculated the
maximum-likelihood phylogenetic tree (IQ-Tree) (Fig. 3A). We found that this core collection could be
mainly subdivided into six subgroups, and then calculated the population structure and found that the
optimal number of subpopulation structure was seven. When further cross-checked the population
structure ranged from five to eight and found that, although not very highly consistent, the population
structure still provided supplementary information to the phylogenetic structure (Fig. 3B). Interpreting the
possible causes of the genetic structure would provide explanations of the genetic differentiation and

Figure 2: Distributions of the measured phenotypes for the 273-core cotton collection in 2017 and 2018.
The normality was tested using the Shapiro-Wilk test in R function shapiro.test(). PV, pollen vitality; LA,
leaf area; CC, chlorophyll content; DBs, the number of dry cotton bolls; FB3, the number of the fall-off
cotton bolls from the last three branches; CB3, the number of the cotton bolls from the last three
branches; DR, drop ratio. p value < 0.05 indicated that the distribution was significantly different from
normal distribution
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make the structure much more reasonable. However, though some of the accessions, especially from
Xinjiang Province, clustered more closely than others, geographical information could explain some of
the phylogenetic tree as well as the population structure (Supplementary Table 1). These findings
demonstrated a highly complex genetic structure of this core collection.

Figure 3: Phylogenetic and population structure of 273 cotton accessions. (A) Phylogenetic structure of the
273 cotton accessions. (B) Population structure of the 273 cotton accessions with the number of
subpopulations ranged from five to eight
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3.3 Genome-Wide Association Study
In order to account for the weaker correlations between the phenotypes across 2017 and 2018, we

performed the GWAS both on the year-specific and average values. Additionally, we also normalized the
phenotypes using the ln() transformation. Our analyses successfully identified 19 significant associations
(Table 1), but no significant associations for chlorophyll content. Notably, we identified up to seven
significant associations for the number of fall-off cotton balls from the last three branches (FB3), an
important parameter related to total yield. These accessions were discovered either in 2018 or in the
average value of 2017 and 2018 with five being identified in 2018 (Table 1, Fig. 4A). However, no
significant associations were detected in 2017. The quantile-quantile (Q-Q) plot showed proper correction
and positive associations (Fig. 4B). The linkage disequilibrium revealed that SNPs near the peak SNP
(D10:25394605) decayed quickly to a short distance (Fig. 4C). The nearest candidate gene to
D10:25394605 was annotated as a Pollen Ole e 1 allergen/extension (CotAD_63822), which may regulate
the number of cotton balls via the regulation of pollens.

Table 1: Summary of candidate genes for important agronomic traits in cotton

Trait Year SNP Chr Position p value Gene ID Candidate gene

DBs 2017 A08:25425924 A08 25,425,924 2.27E-06 CotAD_68259 Unknown

DBs 2017 A08:34978642 A08 34,978,642 2.27E-06 CotAD_58950 Unknown

DBs 2017–2018 A08:34978642 A08 34,978,642 2.21E-07 CotAD_58950 Unknown

DBs 2017–2018 A08:35008170 A08 35,008,170 2.21E-07 CotAD_58948 Unknown

DR 2018 A01:109714851 A01 109,714,851 2.12E-06 CotAD_14653 Ketol-acid
reductoisomerase

FB3 2018 A07:95508530 A07 95,508,530 2.15E-07 – –

FB3 2018 A08:33803052 A08 33,803,052 1.58E-06 CotAD_46370 UDP-glucuronosyl/UDP-
glucosyltransferase

FB3 2018 A08:60550980 A08 60,550,980 6.43E-08 CotAD_75561 CDK-activating kinase
assembly factor MAT1

FB3 2017–2018 A11:15924884 A11 15,924,884 1.01E-06 CotAD_48763 Drug transmembrane
transport

FB3 2018 D05:61454304 D05 61,454,304 4.11E-09 CotAD_42374 Protein kinase

FB3 2017–2018 D05:61454304 D05 61,454,304 6.88E-07 CotAD_42374 Protein kinase

FB3 2018 D10:25394605 D10 25,394,605 4.63E-07 CotAD_63822 Pollen Ole e 1 allergen/
extensin

LA 2017 D07:41658338 D07 41,658,338 6.24E-07 CotAD_42374 Protein kinase

PV 2017 A10:7700905 A10 7,700,905 9.78E-07 CotAD_67155 Glycoside hydrolase

PV 2018 A13:56647161 A13 56,647,161 1.63E-06 CotAD_75948 Unknown

PV 2017–2018 A13:56647161 A13 56,647,161 1.07E-06 CotAD_75948 Unknown

PV 2017 D03:50495443 D03 50,495,443 1.77E-08 – –

PV 2018 D03:50495443 D03 50,495,443 2.70E-07 – –

PV 2017–2018 D03:50495443 D03 50,495,443 2.79E-08 – –

Note: PV, pollen vitality; LA, leaf area; CC, chlorophyll content; DBs, the number of dry cotton bolls; FB3, the number of the fall-off cotton bolls from
the last three branches; CB3, the number of the cotton bolls from the last three branches; DR, drop ratio.
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Figure 4: Genome-wide association of FB3 in 2018 identified a candidate gene Pollen Ole e 1 allergen/
extension (CotAD_63822). (A) Manhattan plot of SNP-trait associations. (B) Quantile-quantile (Q-Q) plot
of the associations. (C) Linkage disequilibrium between D10:25394605 (the peak SNP) and its close
SNPs. (D) Candidate genes near the peak association. The candidate genes of interests were highlighted
in red rectangular
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3.4 Trait Heritability
In addition to the analysis of genetic structure and GWAS, we also examined the heritability of the

measured traits. Our results showed that all the measured traits had quite low heritability and a large
variation between years (Fig. 5). Among these, the heritability of CB3, CC, DR and FB3 were extremely
low, and the heritability of DBs and LA were moderate, with an average value of 0.204 and 0.241,
respectively. However, the heritability of DBs and LA in 2017 was much larger than that in 2018.

4 Discussion

Improving yield is one of the primary goals in cotton breeding, and it involves several important
components, such as boll number, boll weight, drop ratio, all of which are controlled by various QTLs
with major and minor genetic effects [13,19,22,26]. Identifying new QTLs associated with cotton yield is
crucial to dissect the genetic control of yield-related components and to develop new high-yield cultivars.
While GWASs have been identified many yield-related QTLs, our understandings of the genetic control
remain limited [2,11–13,17,19,20,22,24,26,43]. In this study, we presented a new cotton collection from
the main cultivation area in Xinjiang, China, which complements the publicly available cotton genetic
and genomic resources.

Understanding the causes of genetic structure and subgrouping in the phylogenetic tree is important for
deepening our understandings of genetic diversity history. Geographical diversification has been shown to be
one important factor causing genetic structure in wheat [44], tomato [45], pepper [46], lettuce [47], soybean
[48] and others. We found that geographical diversification was an important factor causing population
structure, but it could not explain all the diversification, indicating that the genetic structure of this cotton
collection was complex.

GWAS has great potentials for identifying causal variants of complex quantitative traits in plants [30,49–
55], and its applications in cotton has identified dozens of associated loci for different yield and fiber-related
traits [2,11–13,17,19,20,22,24,26,43]. GWAS has also been applied to identify associations for resistances
[56–59]. Among the associations detected in this study, we identified Pollen Ole e 1 allergen/extension as
a candidate gene associated with the fall-off cotton balls from the last three branches. While this gene is
primary responsible for the pollen allergy [60], it also played an important role in regulating pollen
germination and fertilization [60,61]. Pollen allergens are derived from large gene families and have
diversified during long-term evolution. For example, up to 145 and 107 pollen allergens were predicted in

Figure 5: Heritability estimated from the EMMAX for all the traits in 2017 and 2018. PV, pollen vitality;
LA, leaf area; CC, chlorophyll content; DBs, the number of dry cotton bolls; FB3, the number of the fall-off
cotton bolls from the last three branches; CB3, the number of the cotton bolls from the last three branches;
DR, drop ratio
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the genome of Arabidopsis and rice, respectively, which could play diverse roles in metabolic processes and
stress responses during pollen development [62]. Our study provides new candidate genes for quality
breeding of cotton, and further functional validation of these candidate genes will be necessary and
helpful for deepening our understanding of the genetic control of these important agronomic traits.

5 Conclusion

In this study, we assessed the phenotypic variation of seven agronomic traits of 273 cotton accessions
from 18 geographical regions across two years (2017–2018). We observed significant variations in different
geographical regions and only some traits were normally distributed across the collection. Phylogenetic tree
and population structure analysis revealed a diverse genetic structure of the core collection, with
geographical location accounting for some of the genetic structure. Our genome-wide association study
identified 19 significant associated loci, with the Pollen Ole e 1 allergen/extension gene being a candidate
gene associated with the fall-off cotton bolls from the last three branches. This study provides deeper
insights into the phenotypic and genetic diversity of a new cotton collection and sheds light on new
candidate genes associated with important agronomic traits of cotton, which could facilitate the breeding
of new cotton varieties.
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