
The Function of GABA in Plant Cell Growth, Development and Stress Response

Yue Jin1, Lulu Zhi1, Xin Tang1, Yilin Chen1, John T. Hancock2 and Xiangyang Hu1,*

1Shanghai Key Laboratory of Bio-Energy Crops, Research Center for Natural Products, Plant Science Center, School of Life Sciences,
Shanghai University, Shanghai, 200444, China
2School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, UK
*Corresponding Author: Xiangyang Hu. Email: huxiangyang@shu.edu.cn

Received: 14 September 2022 Accepted: 24 April 2023 Published: 28 June 2023

ABSTRACT

Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon non-protein amino acid that is involved in var-
ious physiological processes of plant growth and development, such as root architecture, stem elongation, leaf
senescence, pollen tube growth, fruit ripening, and seed germination. GABA is also related to plant stress
responses, such as drought, salt, cold, and heat stresses. Regulation of GABA in plant stress responses is complex
and involves multiple signaling pathways, including calcium and hormone signaling. This paper systematically
reviews the synthesis, metabolic pathways and regulatory role of GABA in plants, which will provide new insights
into the understanding of plant growth and stress responses and offer novel strategies for improving crop pro-
ductivity and stress.
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1 Introduction

Gamma-aminobutyric acid (GABA) is a non-proteinogenic amino acid, that is widespread in
vertebrates, plants and microorganisms. In 1950, it was discovered that GABA functions as a
neurotransmitter and an inhibitory signal in the central nervous system, regulating neuronal excitability in
mammals, insects, and some parasitic worms [1–8]. In plants, GABA was first identified in the tuber of
potato (Solanum Tuberosum) over 70 years ago [9–13]. GABA metabolism in plants involves a short
pathway that bypasses two steps of the tricarboxylic acid cycle (TCA). The first step involves the
calcium-calmodulin (CaM) complex-regulated enzyme glutamate decarboxylase (GAD), which catalyzes
the irreversible decarboxylation of glutamate to produce GABA. GABA is then transported to the
mitochondria, where it is converted to succinate semialdehyde by GABA transaminase, using alpha-
ketoglutarate (by GABA-TK) or pyruvate (by GABA-TP) as amino acid receptors. Succinate
semialdehyde is subsequently reduced to succinate by succinate semialdehyde dehydrogenase (SSADH),
and gets into the TCA cycle. This metabolic pathway, called the GABA shunt, is controlled by GAD,
pyruvate and 2-oxoglutarate-dependent GABA transaminase (GABA-T) and SSA dehydrogenase
(SSADH). GAD is considered the rate-limiting enzyme of GABA synthesis in plants, requiring pyridoxal
phosphate (PLP) as a co-factor. GAD in plants contains a calmodulin (CaM) binding domain, and GAD
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activity is regulated by the concentration of Ca2+ and H+. Recent research indicates that the GABA branch is
the main pathway for GABA synthesis in plants [3,4,6,14].

Another pathway for GABA synthesis is through the polyamine metabolic pathway, where arginine is
converted into putrescine through a multi-step process. Putrescine is then converted to
4-aminobutyraldehyde by oxygen-dependent polyamine oxidase, or spermidine, which is subsequently
degraded to 4-aminobutyraldehyde. The resulting 4-aminobutyraldehyde is then converted to NAD+-
dependent 4-aminobutyraldehyde, which is further oxidized to GABA by aldehyde dehydrogenase.
GABA then enters the TCA cycle and is degraded by GABA-T and SSADH [3,15]. The detailed pathway
is illustrated in Fig. 1.

2 GABA as an Important Signaling Regulator in Plants

The adaptation of plants to unstable environments depends on their capacity to sense and respond to
their surroundings, generating and transmitting corresponding signals to different parts of the plant,
thereby triggering the changes necessary to optimize growth and defense responses. In animals, GABA
has been studied for over 60 years as a signaling molecule. In mammals, GABA activates GABAA or
GABAB receptors to open channels. GABAA receptors are chloride channels, while GABAB receptors
regulate cation transport such as potassium (K+) and calcium (Ca2+) through G protein-coupled receptors.
GABA also has an important role in the proliferation, differentiation, and migration of different types of
cells in animals. In plants, GABA is primarily identified as a carbon and nitrogen metabolite. However,

Figure 1: The metabolic pathway of GABA in plants. Left panel: the pathway of TCA circle for GABA
biosynthesis; Right panel: the polyamine pathway for GABA biosynthesis. SSA: succinate semialdehyde;
α-KG: α-ketoglutarate; SSADH: succinate semialdehyde dehydrogenase; PAO: polyamine oxidase
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since the 1990s, numerous studies have demonstrated that GABA can act as a signaling molecule in plants. A
breakthrough discovery was the identification of ALMTs (Aluminum-activated malate transporters) as a real
GABA target protein. ALMTs encode an anion channel responsible for the Al-activated malate extrusion
from root tips. ALMTs constitute a multi-gene protein family expressed differentially in plant tissues.
Although plant action potential mainly relies on the activation of voltage-dependent anion channels, the
anion concentrations are required to activate ALMTs. Inhibition of ALMTs by GABA results in
hyperpolarization of the membrane potential and reduced excitability, similar to the effect of GABA on
animal neurons [16,17]. It has been indicated that TaALMTs may act as both GABA and anion
transporters in wheat. GABA and malate simultaneously interact with TaALMTs in a complicated pattern.
Physiological and inhibitory experiments show that GABA can be imported by TaALMT1, which can be
blocked by external malate and aluminon ions. However, GABA can also be expelled by
TaALMT1 under acid environment, a process activated by aluminon ions, or presence of anions (such as
malate or sulfate ions) on the outside of high alkali environments. This ensures the balance of malic acid
outflow and intracellular GABA levels, sustaining the homeostasis of these molecules [7,17,18].

Besides ALMT-dependent ion transport, GABA is also believed to affect the flux of other ions. For
instance, GABA treatment in tobacco is thought to increase the influx of Ca2+ through the pollen tube
channel, which may play a role in guiding the pollen tube to the ovaries [19]. At present, although the
application of exogenous GABA to plants significantly affects the plant transcriptome, the GABA-related
signaling pathway that directly affects gene expression remains unidentified [20,21]. Interestingly, in
bacteria such as Bacillus subtilis, the transcriptional activity of GabR protein is directly regulated by
GABA. GabR is a chimeric protein containing a HTH DNA-binding domain and a long
aminotransferase-like PLP-binding domain, which alone acts as a negative transcriptional factor to repress
its own expression. However, in the presence of GABA, GabR specifically activates transcription of the
gabTD operon, encoding enzymes of GABA catabolism that convert GABA to succinic-semialdehyde
and then to succinate [22]. It is an interesting topic to explore whether similar protein motifs may exist in
plant transcription factors that transduce GABA signaling.

3 Function of GABA during Plant Growth and Development

GABA has been demonstrated to play a role in the growth and development of various plant tissues and
organs. However, most existing research focuses on GABA’s regulation of plant stress responses, with
relatively few studies addressing its role in plant growth and development under normal conditions.
According to the available literature, GABA influences the growth and development of plant stems,
pollen tubes, and root architecture. Additionally, GABA plays a crucial role in regulating fruit ripening
and responding to leaf senescence [6].

3.1 Stem
Glutamate decarboxylase (GAD) is an enzyme that catalyzes the decarboxylation of glutamic acid into

carbon dioxide (CO2) and gamma-aminobutyric acid (GABA). GAD is present in both prokaryotes and
eukaryotes, but only plant GAD has evolved to bind specifically to calmodulin (CaM). The binding of
CaM to GAD is essential for the enzyme’s activity [23]. For instance, transgenic tobacco plants
overexpressing a truncated version of GAD, which lacks the CaM binding region, exhibit abnormal
growth patterns. These plants demonstrate significantly elevated GABA levels and reduced glutamate
content compared to non-transgenic counterparts. In contrast, transgenic tobacco overexpressing normal
GAD exhibits indistinguishable growth and development from the wild-type line. Additional calcium
chelator EGTA, or the CaM antagonist trifluoperazine can dramatically suppress the activity of GAD and
the accumulation of GABA [14,23]. These findings suggest that the CaM/GAD complex regulates the
dynamic level of GABA by sensing intracellular calcium signals for plant growth and development.
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It is well established that ethylene induces a reduction in stem elongation, swelling of the hypocotyl, and
a change in the direction of growth, referred to as the triple response [21]. Exogenous GABA treatment also
strongly induces the release of ethylene in sunflower tissue. Ethylene synthesis in higher plants requires the
catalysis of two enzymes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase [24].
In most plant tissues, ACC synthase is considered the rate-limiting step in ethylene biosynthesis. GABA-
induced ethylene production in sunflower is primarily achieved by upregulating the transcriptional
abundance of ACC synthase. Conversely, GABA-induced production of ethylene can be repressed by
additional ACC inhibitors, such as AVG or AIBA, confirming that ACC is mainly responsible for
ethylene biosynthesis after GABA stimulation [25].

3.2 Pollen Tube
Recent studies have provided compelling evidence indicating that GABA gradients play a key role in the

normal growth and guidance of pollen tubes in female tissues, enabling precise targeting of pollen tubes for
the delivery of sperm cells [26]. It has been observed that the Arabidopsis gene pop2 mediates the guidance
of pollen tubes and is essential for self-fertilization of diploid germ cells [26]. Through the study of wild-type
Arabidopsis and pop2 mutants, we found that the pop2 mutation resulted in an elevation in endogenous
GABA content of Arabidopsis thaliana, leading to physiological defects such as pollen tube elongation,
directional induction, and fertilization. Upon exogenous application of GABA, the pop2 mutant showed a
similar response to that of the wild-type, but the response was more sensitive. When the pollen of the
pop2 mutant was transplanted on the pistil of the wild type plant with a low GABA concentration, the
pollen grew normally, but the length of the pollen tube was inhibited in the presence of high GABA
concentrations in the pistil of the pop2 mutant. Meanwhile, a substantial amount of GABA accumulated
in the pistils of pop2 mutants, inhibiting the extension of some pollen tubes, indicating that the
endogenous concentration of GABA affects the normal growth and extension of pollen tubes, with low
concentrations of GABA promoting the growth and induction of pollen tubes, while high concentrations
of GABA inhibit them [15,27].

3.3 Root System
Adventitious roots are critical for plant growth and adaptation to various environmental conditions. The

formation of adventitious roots is regulated by both exogenous and endogenous factors, including hormones
as well as carbon/nitrogen metabolism, which is also associated with gamma-aminobutyric acid (GABA)
shunting [28–30]. Previous studies have demonstrated that inhibition of GABA-T activity by a specific
inhibitor (vigabatrin; VGB) resulted in increased endogenous GABA content and decreased primary root
growth in Brassica napus [31]. Moreover, the transgenic poplar overexpressing PagGAD2 to elevate
endogenous GABA level, direct application of exogenous GABA, or inhibition of GABA degradation
also negatively regulate adventitious root formation and growth, which is closely related to changes in
carbon/nitrogen metabolism and hormonal signaling. These findings further confirm the critical role of
GABA in adventitious root formation [32]. Another study found that exogenous GABA can significantly
increase the content of endogenous GABA in Arabidopsis thaliana, leading to the inhibition of hypocotyl
and primary root growth, as well as leaf chlorosis [33,34]. Through microarray data analysis, the authors
showed that the expression of genes encoding cell wall secretion-related proteins decreased in response to
GABA in plant tissues, and the types of genes whose expression was reduced in pop2 mutants [35],
similar to those in wild-type plants treated with exogenous GABA [32]. Furthermore, GABA can
promote the formation of plant mycorrhiza. GABA is involved in ectomycorrhizal symbiosis by
increasing synthesis and inhibiting mycorrhizal degradation [36], suggesting a significant impact on the
growth and development of plant roots.
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3.4 Fruit Ripening
Fruit ripening is often accompanied by a series of complex physiological and biochemical processes, and

ethylene is produced in large amounts during ripening. It is then sensed by a series of receptors such as ERS
and ETR, and the downstream ethylene-related genes are regulated through signal cascades, leading to
physiological and biochemical changes, such as the conversion of starch into sugar and the degradation
of polyphenols [37–39]. The biosynthesis of ethylene is regulated by enzymes such as ACS and ACO,
and GABA has been shown to induce the ACC synthase gene expression, a precursor of ethylene
synthesis, which promotes ethylene synthesis. Studies have also found that GABA can induce banana
fruit ripening by upregulating the MaGAD1 gene and positively regulating ethylene biosynthesis [40].
These findings suggest that GABA accumulation during fruit ripening could accelerate the ripening
process without affecting fruit quality.

3.5 Senescence
Senescence is the final step in leaf development, leading to organ death through degradation and

recycling of organic matter. During senescence, nutrients such as proteins, lipids, and nucleic acids
synthesized in leaves are degraded and redistributed to growth parts and reproductive organs for fruit and
seed development [41]. GABA has been shown to play a role in enhancing leaf viability under stress
conditions, as evidenced by the GABA transaminase knock out mutants pop2–1 and pop2–3, which
showed precocious leaf senescence, decreased leaf photosynthesis capabilities, reduced chlorophyll
content in leaves and lowered GABA levels under stress. Conversely, ion leakage and malondialdehyde
(MDA) level in stress-induced leaves of the wild type were reduced. This evidence illustrates the function
of GABA in enhancing leaf viability under stress conditions [42].

About 70% of plant nitrogen is stored in chloroplasts, and nitrogen is a vital metabolic nutrient in
senescent leaves. The main forms of inorganic nitrogen available to plants are NO3

− and NH4
+, which are

crucial for the glutamine synthase/glutamate synthase (GS/GOGAT) cycle in nitrogen assimilation. C
abiotic stress during leaf senescence can inhibit the GS/GOGAT cycle. Thereby limiting chlorophyll
synthesis [43]. Non-protein amino acids, such as proline (an antioxidant) and gamma-aminobutyric acid
(GABA), accumulate under various abiotic stresses and enhance stress tolerance, including during high
temperatures [44,45]. GABA, proline, and nitrogen have been found to regulate and inhibit heat-induced
leaf senescence by preventing chlorophyll degradation through the inhibition of chlorophyllase activity
[46]. Plant peptide hormone phytosulfokine alpha (PSKα) delays leaf senescence by reinforcing SUMO1/
SUMO E3 ligase SIZ1 signaling pathways in cut rose flowers. This process is accompanied by the
accumulation of endogenous GABA, which enhances the activities of intracellular molecular chaperones
and protein repair systems while suppressing ethylene biosynthesis and chlorophyll degradation [47,48].
Overall, GABA plays an essential role in plant senescence by improving leaf viability under stress
conditions, preventing chlorophyll degradation, and enhancing stress tolerance.

4 Abiotic and Biotic Stress

Several recent studies have indicated that plant growth regulators (PGRs) may induce physiological
tolerance in plants subjected to adverse environmental conditions, including drought. Abiotic stress
factors, such as the drought, extreme temperature, nutrient deficiency, salinity, and heavy metal, as well
as biotic stress factors, such as diseases, pests, and weeds, pose significant threats to food security and
plant production. Consequently, investigating plant growth regulators is of considerable importance.
Among the PGRs that have been tested on various plant species, GABA has emerged as a promising
multifaceted protector, swiftly inducing plant responses to multiple abiotic stresses, such as wounding
tolerance or irritation, hormonal toxicity, flooding, extreme temperatures, heat shock, salt, and/or drought
stress [21,30,49–51].
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4.1 Drought and Flooding
Water availability is a crucial factor influencing plant productivity; consequently, when water is

insufficient in the soil and atmospheric conditions cause a continuous loss of water, drought stress occurs.
Water shortage is one of the most pressing issues in plant biology, as it affects plant growth and
development, and productivity. Climate change and human activities exacerbate drought disasters, directly
limiting crop growth, grain yield, and significantly impacting economic development and food security
[49]. The stomatal pore aperture regulation is a key determinant of plant productivity and drought
resilience, and profoundly impacts global carbon and water cycling [52]. GABA has been found to inhibit
stomatal opening under light by negatively regulating the aluminum activated malate transporter,
ALMT9. Additionally, GABA can reduce the anion flowing into the vacuole mediated by ALMT9, thus
inhibiting the stomatal opening, enhancing water use efficiency, and increase drought resistance in plant.
When a mutation is present in the GAD2 gene, the activity of ALMT9 increases, which leads to the
increase of stomatal conductance and water loss, thus making the plant more sensitive to drought. Under
drought conditions, increased GABA content reduces ALMT9 activity, which helps decrease stomatal
conductance, improve water use efficiency, and enhance drought resistance in plants [53]. As a result,
GABA synthesis and accumulation in leaves contribute to plant drought resistance by inhibiting stomatal
opening through the inhibition of ALMT9 [38,52]. It is known that peroxidase (POD) and catalase (CAT)
enzymes play a role in scavenging hydrogen peroxide (H2O2), while superoxide dismutase (SOD) is
involved in the dismutation of superoxide radicals (O2

−) to H2O2 and molecular oxygen (O2) in plant
cells. In carrot, exogenous GABA spraying may be an effective production strategy to scavenge
overproduced H2O2 under water-deficient conditions by increasing CAT activity [54].

Flooding or oxygen deprivation is a prevalent environmental stress that reduces crop yields. Global
warming helps to an increase in flooding events [55]. Short-term exposure to flooding causes
physiological changes in plants, such as decreased oxidative phosphorylation, a shift to anaerobic
respiration, reduced nucleoside triphosphates, and increased NADH to NAD+ ratios. Furthermore,
hypoxia disrupts the normal physiological metabolism of plants by reducing available energy [56].
Studies have established that GABA may regulate cytoplasmic pH, maintain nitrogen/carbon flux, the
tricarboxylic acid cycle, or increase antioxidant capacity to enhance flood stress tolerance in tobacco [57].
In Arabidopsis, the GAD gene family composes of five members. It has been found that tobacco GAD is
also the main enzyme responsible for GABA biosynthesis under flood stress because inhibition of GAD
activity by methylparaben (MPA) or dithiobis nitrobenzoic acid (DTNB) also significantly reduced
GABA accumulation under flood stress [58] (Fig. 2).

4.2 Chilling and High Temperature
Heat stress is emerging as a major determinant of the production potential of various cool-season and

summer crops due to gradual global and local temperature increases. Heat stress impairs plant growth and
development, leading to significant changes in phenology, morphology, physiology, biochemistry, and
gene expression, ultimately inhibiting the productive potential of affected crops [50,59].

Mung bean (Vigna radiata L.) is a nutrient-rich summer legume that often faces heat stress during its
reproductive phase, resulting in significantly reduced flowers, poor pod setting, reduced pod size, pod and
seed numbers, and seed yield. Studies have shown that treating heat-stressed mung bean plants with
GABA can increase carbon fixation and assimilation, enhance sucrose synthesis in leaves, and possibly
transport sucrose into flowers to maintain reproductive function, thereby increasing flower and pod
retention [60]. Thus, this shows the effectiveness of GABA as a thermal protectant. Furthermore,
application of GABA to heat-stressed plants improved leaf water status, potentially due to the
upregulation of enzymes that synthesize osmotic substances like proline and trehalose. Additionally,
GABA also helps decrease oxidative damage to reproductive components in heat-stressed plants [49,61].
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The temperature of the earth’s surface is highly variable, changing with the seasons, and during the day
and night, and being influenced by weather. Plants must adapt to these fluctuations to survive and thrive. In
plants, low-temperature (usually ranging from 0°C to 15°C) during germination and early seedling growth
can have a significant impact on plant productivity, causing membrane damage, reactive oxygen species
(ROS) production, protein denaturation, and accumulation of toxic compounds at the cellular level
[50,62]. Low temperatures at an early stage may result in reduced germination, poor seedling
establishment, stunted seedlings, yellowing, or withering [62]. In response to low temperatures, several
plants have evolved acclimation mechanisms to increase their antioxidant capacity. One such mechanism
involves GABA, which has been shown to alleviate low-temperature stress in plants such as tomato
seedlings. Exogenous application of GABA helps maintain membrane stability by reducing the
accumulation of malondialdehyde (MDA), a byproduct of lipid peroxidation and an indicator of plant
oxidative stress, suggesting that exogenous GABA can help alleviate low-temperature stress in tomato
seedlings by maintaining membrane stability [63]. At the same time, the experiment also suggested that
the supplementation of exogenous GABA reduced the accumulation of H2O2, thereby reducing lipid
peroxidation in cold-stressed seedlings [64].

4.3 Oxidative Stress
In extreme environments, excessive accumulation of reactive oxygen species (ROS) (such as superoxide

anions, hydroxyl radicals, singlet oxygen, and hydrogen peroxide) can cause cellular damage, programmed

Figure 2: GABA as the central hub enhance plant tolerance to biotic stress and various environmental stress,
including chilling, saline, heat, flooding and drought stress. We also propose the possible mechanism for
GABA in enhancing plant tolerance to different environment and biotic stress in the bright blue box
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cell death (PCD), and reduced plant productivity [65]. ROS are produced in various plant cell compartments,
including the chloroplast, mitochondria, peroxisomes, and plasma membrane. Optimal levels of ROS are
normally maintained by antioxidant defenses, so signals are transmitted to the nucleus through redox
reactions, for example, using mitogen-activated protein kinase (MAPK) pathways in various cellular
mechanisms to increase tolerance to various abiotic stresses [49,65]. Exogenous GABA application has
been shown to increase the activity of catalase (CAT), superoxide dismutase (SOD), and ascorbate
peroxidase (APX) enzymes, thereby reducing H2O2 accumulation in plants [66]. For example, hypoxia
and respiratory inhibitors trigger the production of H2O2 in grape buds, while GABA can increase the
H2O2 level by upregulating the expression of VvCAT2 or stimulating the TCA cycle, while upregulating
the expression of VvAOX53 [67]. Similarly, it has been reported that exogenous application of GABA to
barley seedlings also alleviates stress caused by Al3+ oxidative damage, increases antioxidant enzyme
activity, and reduces ROS levels [68]. Concerning the physiological mechanism underlying hypoxia-
induced increases in GABA content, research suggests that hypoxia stress initially reduces the availability
of O2, impairing mitochondria ATP production. This can reduce the pumping activity of H+-ATPase,
leading to membrane depolarization and activation of the GORK channel, resulting in K+ loss from the
cytosol. Hypoxia stress also induces the accumulation of H2O2 in cells, activating ROS-inducible Ca2+

uptake channels and triggering a self-amplifying ROS-Ca2+ hub. This process leads to a rapid increase in
H2O2 levels and the activation of K+-permeable NSCCs, causing a further decline in the cellular K+ pool.
Ultimately resulting in the loss of cell vitality and programmed cell death (PCD). Hypoxia-induced
increases in GABA levels can restore membrane potential (MP) through pH-dependent regulation of H+-
ATPase and/or by activating the GABA shunt pathway and TCA cycle to generate more energy. Elevated
GABA levels can also better regulate the ROS-Ca2+ center through the transcription control of RBOH
gene, thereby preventing excessive H2O2 accumulation. Finally, GABA can function as a ligand to
directly modulate the opening probability and conductance of the K+ efflux GORK channel [66].

GABA can serve both as a metabolite and a signaling molecule. When functioning as a metabolite,
GABA is converted into succinate through the action of enzymes γ-aminotransferase and succinyl
semialdehyde dehydrogenase (SSADH) [69]. Four T-DNA insertion mutants of SSADH (ssadh mutants)
exhibit dwarf phenotypes, characterized by necrotic lesions, blanched leaves, reduced leaf area, lower
chlorophyll content, shorter hypocotyls, and smaller flowers. GHB (γ-hydroxybutyrate, a by-product of
SSA) has been reported to be five times higher in ssadh mutants than in wild-type Arabidopsis.
Treatment with γ-vinyl-γ-aminobutyric acid, a specific inhibitor of GABA-T/POP2, or a mutation in the
POP2 gene prevented ROS accumulation, inhibited cell death, and promoted growth in ssadh mutants [70].

4.4 Salt
Soil salinity, caused by elevated levels of sodium chloride (NaCl), significantly impacts crop yields

worldwide [71,72]. In fact, salt stress is regarded as the most severe factor affecting crops yields,
negatively influencing growth rate, strength and health. Saline conditions are particularly prevalent in
irrigated areas, mainly due to the use of brackish irrigation. Globally, over 45 million hectares of irrigated
land (about 20% of total irrigated areas) have been affected by saline conditions, with an estimated
1.5 million hectares being lost from cultivation annually [49,72]. Soil salinity causes plant salinity stress
characterized by reduced photosynthesis and growth [73]. Impaired photosynthesis is partly due to the
toxic effects of high salt concentrations on the photosynthetic machinery, which limits carbon assimilation
and ultimately hinders plant growth [73]. To cope with salt stress, plants can employ different
physiological strategies, such as ion exclusion, osmotic tolerance, and tissue tolerance [74]. These
strategies are mediated by various respiration mechanisms, leading to a wide range of respiratory
responses observed in salt-treated plants [75]. Ultimately, the nature of the respiration substrate will have
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a huge impact on the overall metabolic homeostasis of the plant, especially in regulating the balance between
growth, compatible solute biosynthesis, and energy production.

Both glutamate dehydrogenase (GDH) and succinic semialdehyde dehydrogenase (SSADH) are a part
of the gamma-aminobutyric acid (GABA) shunt pathway, providing alternative carbon sources for the
tricarboxylic acid (TCA) cycle. Research has shown that GABA shunting plays a more significant role in
respiratory metabolism under salt stress [76]. Increased GABA shunt activity provides an alternative
carbon supply to the TCA cycle through succinate production, bypassing the mitochondrial pyruvate
dehydrogenase complex (mtPDC) and mitochondrial 2-oxoglutarate dehydrogenase complex (mtOGDC)
steps of the TCA cycle [77]. This alternate pathway can help plants maintain metabolic homeostasis and
better adapt to salt stress conditions.

4.5 Carbon and Nitrogen Balance
The efficient assimilation of carbon (C) and nitrogen (N) is critical to optimal plant growth, productivity,

and yield. GABA is considered central to carbon and nitrogen metabolism, with a strong functional link
between the GABA shunt and the TCA cycle. Studies have shown that when the activities of succinyl-
CoA ligase (SCOAL) in transgenic tomato and α-ketoglutarate dehydrogenase (AKGDH) in potatoes are
inhibited, the TCA cycle activity decreases, but the GABA shunt activity increases to compensate for this
decrease to a certain extent [78]. Another extent study found that GABP is a transporter that transports
GABA in plants and exists on the mitochondrial membrane. When this protein is mutated, the content of
GABA in mitochondria is reduced, and the activity of the tricarboxylic acid TCA cycle is significantly
increased [28]. The balance and coordination between carbon metabolism and nitrogen metabolism is an
important support for the normal growth and development of plants, and is achieved through a cyclic
mechanism [79]. Exogenous GABA application has been demonstrated to increase nonstructural
carbohydrates and TCA intermediates in poplar seedling stems under low nitrogen conditions.
Additionally, GABA significantly attenuates the low-nitrogen-induced increase in leaf antioxidant
enzymes, suggesting that GABA affects the C:N ratio of poplar growth by reducing energy costs under
nitrogen-deficient conditions [80]. Understanding the role of GABA in carbon and nitrogen metabolism
can contribute to the development of strategies for enhancing plant growth, especially under stress
conditions, ultimately improving crop productivity.

4.6 Biotic Stress
Plants encounter various pathogens and pests during their growth and development. GABA levels in

plants have been demonstrated to increase with biotic stress, playing a positive role in resisting pathogen
invasion [79]. In the incompatible combination of Xanthomonas campestris (Xanthomonas campestris pv.
vesicatoria, Xcv) and pepper (Capsicum annuum), the expression of arginine decarboxylase (ADC) was
induced and GABA content was increased. Silencing CaADC1 in pepper leaves drastically compromised
the accumulation of NO and H2O2, leading to enhanced avirulent Xcv growth during infection [81].
Applying exogenous GABA can inhibit the growth of pathogenic bacteria on ADC-silenced plants. It is
known that ADC is responsible for catalyzing the conversion of arginine to agmatine and is the rate-
limiting enzyme of putrescine synthesis pathway, which can be converted to GABA. Thus, ADC is
suggested to regulate pepper’s resistance to Xanthomonas campestris by modulating GABA accumulation
[81]. However, increased GABA content has not always been beneficial for plants in resisting pathogens.
Studies have shown that R. solanacearum, the cause of bacterial wilt, secretes the effector protein RipI,
which interacts with plant glutamate decarboxylase (GADs). GADs are activated and catalyze the
biosynthesis of GABA by calmodulin γ-Biosynthesis of aminobutyric acid (GABA). R. solanacearum
can effectively replicate with GABA as nutrient and ultimately lead to plant withering and death [82].
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GABA accumulations also play a crucial role in plant resistance to insect feeding. When aphids
(Heliothis virescens) climbed on tobacco leaves, leaf GABA rapidly increased five-fold, while rose-
colored moth (Choristoneura rosaceana) larvae caused an increase in soybean leaf GABA content by
eleven-fold [83]. In transgenic tobacco plants overexpressing the GAD gene of Petunia hybrida, the
GABA content increases, and resistance to the root-knot nematode (Meloidogyne hapla) is 50% higher
than that of wild-type tobacco plants [84]. These results suggest a positive correlation between GABA
accumulation and plant resistance to insect feeding. The increase of GABA may disturb insect physiology
by inhibiting the Cl-channels targeted by GABA in insect nerve, thereby inhibiting insect growth [9].

5 Conclusions and Future Perspectives

Since GABAwas first discovered in potato tubers in 1949, it has gained increasing attention for its role
in plant growth, development, and stress response. GABA accumulates in response to various biotic and
abiotic stresses and has been shown to regulate adventitious root growth, primary root growth, and seed
germination (as seen in Fig. 2). However, it is not yet clear how plants balance high GABA levels and
growth under stress conditions, how plant hormones interact with GABA, and how GABA signaling
operates in plants. Researchers need to identify the components that perceive GABA levels, the
downstream components of GABA signal transduction pathways, and the interactions between GABA
and other signaling molecules, such as nitric oxide (NO) and hydrogen (H2).

It has been reported that hydrogen-rich water (HRW) treatment may significantly improve the
germination rate and growth rate of black barley (Hordeum distichum), as well as enriching its nutrients,
phytochemicals, and secondary metabolites, such as GABA [85]. This perhaps indicates that H2 might
have an interaction with GABA.

Future research directions for GABA in plants should focus on understanding its complex roles,
signaling pathways, and interactions with other molecules. As GABA affects both abiotic and biotic
stress responses, studying GABA in various plant species, including crop plants, is a valuable pursuit.
Ongoing and future research in this area will likely provide answers to these questions and further our
understanding of GABA’s roles in plants.
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