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ABSTRACT: Objectives: The tumorigenic progression of Lung adenocarcinoma (LUAD), the predominant NSCLC
subtype, is predominantly driven by co-occurring mutations in KRAS proto-oncogene (KRAS)/Tumor protein p53
(TP53). However, their impact on tumor microenvironment (TME) heterogeneity, particularly neutrophil dynamics,
remains poorly understood. This present study aims to elucidate how KRAS/TP53 mutations reprogram the TME and
develop a neutrophil-centric prognostic signature for LUAD. Methods: Leveraging single-cell RNA sequencing data and
transcriptome data, neutrophil subpopulations were identified using Seurat and CellChat R packages, with trajectory
analysis via Monocle2 R package. High-dimensional weighted gene co-expression network analysis (hdWGCNA), uni-
variate Cox regression, and least absolute shrinkage and selection operator (LASSO) regression analyses were employed
to generate a prognostic signature. Functional validation included Ras homolog family member V (RHOV) knockdown
in A549/H1299 cells using siRNA, were assessed by cell counting kit 8 (CCK8) assay, wound healing assay, and
transwell assay. Results: KRAS/TP53-mutated LUAD exhibited increased neutrophil infiltration, particularly IS MUT
subtypes with enhanced OSM/CALCR/IL-1 signaling. A five-gene prognostic signature (MS4A1, ANLN, FAM83A,
RHOV, KRT6A) stratified patients into high- and low-risk groups with divergent overall survival in the TCGA-LUAD
cohort (p < 0.0001). AUCs achieved 0.73, 0.70, and 0.66 at 1-, 3-, and 5-year, respectively. External validation in
immunotherapy cohorts (IMvigor210, GSE78220) confirmed the fine predictive capability of the prognostic signature
in predicting treatment response. An integrated prognostic nomogram combining clinicopathological features and
risk score further improved its clinical utility. Pseudotime analysis found that RHOV was essential for the growth of
lung epithelial cells. RHOV knockdown significantly reduced the proliferation, migration, and invasion capabilities
of A549/H1299 cells in vitro. Conclusion: KRAS/TP53 mutations may drive neutrophil heterogeneity in the TME of
LUAD, addressing prognostic and therapeutic value. The five-gene signature and RHOV targeting offer translational
relevance for risk stratification and therapy. These findings bridge genomic alterations with TME remodeling, advancing
precision oncology in LUAD.
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1 Introduction
As revealed by global cancer statistics in 2022, the incidence and mortality rates of lung cancer remain

alarmingly high [1]. Lung adenocarcinoma (LUAD) represents the most common category of non-small cell
lung cancer (NSCLC), comprising around 50% of all lung cancer instances [2]. Consequently, the overall
disease burden of LUAD is concerning, particularly in light of the escalating severity of drug resistance,
thus significant breakthroughs are essential to improve the overall prognosis [3]. The KRAS proto-oncogene
(KRAS) and the Tumor protein p53 (TP53) are well-established tumor suppressor genes, and their mutations
act as crucial drivers in the emergence and progression of various cancer types [4,5]. KRAS plays a pivotal
role in signaling pathways downstream of the receptor tyrosine kinase family. In most cells, KRAS exists
in an inactive state, but once activated, it can trigger multiple downstream signaling cascades, including
the Mitogen-activated protein kinase (MAPK) pathway, the Phosphatidylinositol-4,5-bisphosphate 3 kinase
(PI3K) pathway, and the Ral guanine nucleotide exchange factor (RalGEF) pathway [6]. These signaling
pathways are integral to promoting cell survival, proliferation, and cytokine release. Conversely, TP53 is
crucial for DNA damage repair, enabling cells with genetic errors during replication to undergo apoptosis,
hence preventing these cells from continuing to divide and inhibiting the accrual of erroneous DNA
information. However, in lung cancer treatment, further exploration is warranted due to the intrinsic
challenges posed by targeting these two genes.

The tumor microenvironment (TME) is a comprehensive concept that denotes a dynamic and evolving
complex composed of tumor cells, immune cells, fibroblasts, stromal cells, and extracellular matrix com-
ponents [7]. These elements collectively influence the biological behavior of tumors through intricate and
diverse signaling pathways [8,9]. Resistance to radiochemotherapy may also be associated with abnormal
signaling interactions among these components [10]. Recently, substantial advances in omics analyses
have significantly facilitated the dissection of TME composition and heterogeneity, providing multifaceted
insights into TME and its relevant networks. Diverse pivotal regulators affecting TME heterogeneity
and tumor-stroma interactions have been delineated from the perspectives of metabolic and senescence
characteristics [11,12], the novel phenomena of disulfidptosis or cuproptosis [13,14], immunomodulatory
features [15,16], and inflammatory characteristics [17]. However, the influence of gene mutations, particularly
KRAS/TP53 mutations, on alterations in cellular composition within the downstream TME remains unclear.
Therefore, we systematically dissected the TME traits of LUAD with KRAS/TP53 mutations and explore
the related prognostic signature based on single-cell RNA sequencing (scRNA-seq) and transcriptome
data, attempting to uncover actionable vulnerabilities for implementing precision oncology strategies and
delineate therapeutic prioritization for mutation-specific LUAD.

2 Materials and Methods

2.1 Data Collection
GSE136246, GSE68465, GSE3141, GSE31210, GSE37745, GSE50081, and GSE78220 datasets were

accessed from the Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo (accessed on
1 January 2025)). Bulk data for LUAD were acquired from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov (accessed on 1 January 2025)). Additionally, transcriptome data for LUAD
patients receiving immunotherapy were obtained from the IMvigor210 cohort. Samples that were duplicated
or lacked complete survival and clinicopathological information were excluded from further analysis.

https://www.ncbi.nlm.nih.gov/geo
https://portal.gdc.cancer.gov
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2.2 Single-Cell Analysis and Intercellular Communication Analysis
We utilized the Seurat R package to integrate the single-cell RNA sequencing data, applying the

following filter criteria: nCount RNA ≥ 1000; nFeature RNA ≥ 200 & nFeature RNA ≤10,000; percent.mt
(mitochondrial count) ≤20; percent.ribo (ribosomal count) ≤20. To normalize the data, we employed the
LogNormalize method. Marker genes and hypervariable genes for each cell cluster were identified using the
FindAllMarkers and FindVariableFeatures functions, respectively. Cell types were delineated according to
classical molecule markers, and the UMAP method was utilized for visualization. Using CellChat R package’s
programming tools, we measured both the quantity of cell signaling pairs and how actively different cell
types interact through these molecular messages.

2.3 Single-Cell Trajectory Analysis
To uncover potential neutrophil subtypes arising from KRAS/TP53 mutations, we aimed to delineate

their developmental pathways and gene expression dynamics through single-cell trajectory analysis. Concur-
rently, we sought to chart the evolution of epithelial cells within the LUAD microenvironment characterized
by these mutations to identify early therapeutic targets. The Monocle2 R package was applied to analyze
the evolutionary trajectory of neutrophils and epithelial cells in LUAD patients. Pseudo-time analysis was
applied to explore the dynamics of gene expression patterns during the evolution of these cell types.

2.4 High-Dimensional Weighted Gene Co-Expression Network Analysis
High-dimensional weighted gene co-expression network analysis (hdWGCNA) enhances the dissection

of scRNA-seq data, specializing in the management of high-dimensional datasets. Superseding traditional
WGCNA, it effectively navigates vast gene expression data, yielding in-depth insights into cellular hetero-
geneity and enriching our understanding of gene expression through rigorous gene network construction.
It excels at detecting subtle expression differences in single-cell data, demonstrating superior sensitivity and
precision. Thus, we looked into the key features of genetic pattern of neutrophils using the hdWGCNA R
package, which facilitated the identification of genes highly associated with neutrophils.

2.5 Consensus Clustering Analysis and Differential Analysis
Consensus clustering of the TCGA-LUAD cohort based on genes identified through hdWGCNA was

analyzed by the ConsensusClusterPlus R package. The vaviable k represented cluster numbers, and the
optimum k value was identified by cumulative distribution function (CDF). limma R package, a functional
programmed tool for recognization of differentially expressed genes (DEGs), were applied between different
clusters. Genes with p < 0.05 and ∣Log2FoldChange∣ > 0.5 were labeled DEGs. All identified DEGs underwent
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment
analyses using the clusterProfiler and org.Hs.eg.db R packages.

2.6 Immune Microenvironment Dissection
Based on the TCGA-LUAD cohort, we quantified and compared immune infiltration levels between

clusters using single-sample Gene Set Enrichment Analysis (ssGSEA). The StromalScore, ImmuneScore,
and ESTIMATEScore were quantified and compared across clusters using the ESTIMATE algorithm.
Additionally, the differential expression patterns of immune checkpoints were analyzed. The potential for
tumor immune escape was quantified and compared among clusters using the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm.
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2.7 Establishment and Verification of the Prognostic Signature
Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was utilized to construct

the prognostic signature based on DEGs identified in the TCGA-LUAD cohort. A risk score for each patient
was calculated, and patients were subsequently divided into high-risk and low-risk groups according to
the median risk score. Kaplan-Meier analysis was performed using the survminer R package to compare
overall survival (OS) between the high-risk and low-risk groups. Additionally, time-dependent receiver
operating characteristic (ROC) analysis was conducted using the timeROC R package, with the area under
the curve (AUC) employed to evaluate predictive efficacy. Internal validation cohorts included the GSE37745,
GSE3141, GSE50081, GSE68465, and GSE31210 datasets. The efficacy of the prognostic signature in predicting
responsiveness to anti-Programmed cell death 1 (PD-1) therapy was externally verified in GSE78220 and
IMvigor210 datasets. Atezolizumab was administered in the IMvigor210 dataset, while pembrolizumab and
nivolumab were utilized in the GSE78220 dataset.

2.8 Exploration of Associations between Risk Score and Clinicopathological Features
Risk score across several clinical characteristics were compared. Univariate and multivariate Cox

regression analyses were conducted to find prognostic effector. Furthermore, a predictive nomogram was
developed using the ggpubr R package. Calibration curves, decision curve analysis, and AUC were employed
to systematically assess the performance of the nomogram.

2.9 Identification of the Crucial Gene for Lung Epithelial Cell Survival
Scoring algorithms (AUCell, UCell, sing score, ssGSEA, and Add) were utilized to quantify the

prognostic gene set. The scale function in R was employed to normalize the calculated gene set scores (from
zero to one). This normalization involved centering the mean of each feature to zero by subtracting the
mean value from every data point, followed by dividing the centered data by its standard deviation to scale
the standard deviation of each feature to unity. This technique ensured the comparability of gene set scores
derived from different algorithms during subsequent comparative analyses. The sum of corresponding scores
was calculated, referred to as the “Scoring”. HighRisk and LowRisk subtypes of epithelial cells were classified
according to the median score. Besides, Monocle R package was applied to fit evolutionary trajectory of lung
epithelial cells and to indicate expression patterns of the five prognostic genes in pseudo-time.

2.10 Cell Source and Culture
Two human NSCLC cell lines, A549 (Procell, CL-0016, Wuhan, China) and H1299 (Procell, CL-

0165), were selected for further experiments. Both cell lines were cultured in Roswell Park Memorial
Institute-1640 (RPMI-1640) medium (Procell, PM150110B) supplemented with 10% fetal bovine serum
(FBS) and 1% antibiotic solution. To ensure the integrity of our experimental data, all cell lines used in
this study were rigorously tested for mycoplasma contamination. Mycoplasma tests were conducted using
the PCR-based Mycoplasma Detection Kit (MedChemExpress, HY-K0552, Shanghai, China) prior to the
initiation of experiments and periodically thereafter, following the manufacturer’s instructions. The absence
of mycoplasma contamination in all cultured cells was confirmed before conducting any experiments.

2.11 siRNA Transfection
Small interfering RNA (siRNA) were transfected to cells. The siRNA sequences targeting Ras homolog

family member V (RHOV) are as follows: siRNA1: Sense (SS) sequence: GGACGAUGUCAACGUACUAAU,
Antisense (AS) sequence: UAGUACGUUGACAUCGUCCCU; siRNA2: SS sequence: GGCUGGAGAA-
GAAACUGAAUG, AS sequence: UUCAGUUUCUUCUCCAGCCGG. The sequence of the negative
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control siRNA (si-NC) is as follows: SS sequence: UUCUCCGAACG, AS sequence: UGUCACGUTT.
Transfection was performed using Lipofectamine 3000 (Invitrogen, L3000015, Shanghai, China) according
to the manufacturer’s instructions.

2.12 Western Blot Assay
Cells were subjected to lysis using a lysis buffer (Beyotime, R0046, Shanghai, China), and protein con-

centration was assessed utilizing the bicinchoninic acid (BCA) assay. The supernatant containing extracted
proteins was separated by denaturing 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and subsequently transferred to polyvinylidene fluoride (PVDF) membranes (Beyotime, P0965).
Following a blocking step with 5% bovine serum albumin (BSA) (Beyotime, ST2249) for 2 h at room
temperature, the membrane was incubated overnight at 4○C with the primary antibodies (RHOV: Abcam,
ab54558, 1:200; β-actin: Abcam, ab8227, 1:1000, Shanghai, China). After this incubation, membranes were
washed three times and then treated with goat anti-rabbit secondary antibody (Abcam, ab205718, 1:10,000).
The images were captured using an Odyssey infrared imaging scanner (LI-COR, Tucson, AZ, USA).

2.13 Cell Counting Kit 8 (CCK8) Assay
Cell was plated in a 96-well plate with 100 μL of culture medium at a density of 5 × 104 cells/well. Cell

proliferative capability was evaluated at 0, 1, 2, 3, 4, and 5 days post-transfection. 10 μL of CCK8 solution
(Beyotime, C0042) was added to each well, and the plate was incubated for 2 h at 37○C. Absorbance at 450 nm
was then measured using a microplate reader (Molecular Devices, SpectraMax Plus 384, Shanghai, China).

2.14 Wound Healing Assay
Cells were grown in a 6-well plate (Beyotime, FCP060) until reaching 100% confluence. A linear scratch

was created in the cell monolayer using a 200 μL pipette tip. The wells were then rinsed with serum-free
medium to eliminate any detached cells and debris, followed by the addition of fresh medium. Images of the
scratched region were captured using an inverted microscope (×100) (Fisher Scientific, LMI3PH2, Waltham,
MA, USA) at 0, 12, and 24 h.

2.15 Transwell Assay
The transwell chamber (Corning, CLS3412, Shanghai, China) was coated with Matrigel (Corning,

356234). Cells were seeded in the upper chambers with FBS-free medium, while the lower chamber contained
medium supplemented with 10% FBS. After a 24-h incubation at 37○C, non-invading cells were removed
with a cotton swab. Cells that migrated to the bottom of the chamber were fixed with 4% methanol at 37○C
for 10 min and stained with 0.1% crystal violet for 15 min. An inverted microscope (×200) (Fisher Scientific,
LMI3PH2) was employed to count the invading cells in three randomly selected fields.

2.16 Statistical Analysis
All experiments were conducted with a minimum of three repetitions. Statistical analyses of in vitro

experimental data and bioinformatic data were analyzed using R 4.0.3. Survival curves were compared using
Cox regression analysis. The Wilcoxon rank sum test was employed to evaluate differences in expression
levels between groups. Correlation analysis was conducted using the Pearson correlation coefficient, where
∣r∣ > 0.1 was considered relevant and p < 0.05 was considered statistically significant. Throughout the study,
* indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and **** indicates p < 0.0001.
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3 Results

3.1 Neutrophils Were More Abundant in the TME of MUT LUAD
We obtained 17 distinct clusters of cells through UMAP analysis (Fig. 1A). These 17 clusters of cells

were subsequently categorized into nine cell types based on classical gene markers (Fig. 1B,C). Notably, we
observed a pronounced abundance of neutrophils in the TME of LUAD with KRAS/TP53 mutations (MUT
LUAD) (Fig. 1D).

Figure 1: Cell type analysis and classification in KRAS/TP53 mutation. (A) UMAP diagram illustrating the results
of dimensionality reduction analysis. (B) UMAP diagram depicting nine identified cell types: T cells, Epithelial cells,
Neutrophils, Macrophages, Monocytes, Tissue stem cells, Endothelial cells, NK cells, and B cells. (C) Dot plot displaying
the average expression of marker genes across 17 cell clusters. (D) Proportions of the nine cell types in the KRAS/TP53
MUT group compared to the WT group

3.2 IS MUT Neutrophil Was Identified as a Novel Neutrophil Subpopulation in LUAD
We identified eight neutrophil subpopulations (Fig. 2A). Compared with the wild-type (WT) group,

subpopulations 3, 6, and 7 exhibited a higher proportion in the KRAS/TP53 MUT group (Fig. 2B). Thereafter,
we defined subpopulations 3, 6, and 7 as IS MUT neutrophils, while the remaining subpopulations were
designated as WT neutrophils. The term “IS MUT” specifically refers to the collective of these three subpop-
ulations (3, 6, and 7) rather than a broader characteristic driven by KRAS/TP53 mutations. Furthermore, the
communication among B cells, neutrophils, endothelial cells, macrophages, and epithelial cells was notably
robust during carcinogenesis (Fig. 2C,D). Analysis of intercellular signaling revealed that the interaction
strength of IS MUT neutrophils was greater than that of WT neutrophils, particularly for signals such as
Oncostatin M (OSM), Calcitonin receptor (CALCR), and Interleukin 1 (IL-1) (Fig. 2E). Additionally, three
states of IS MUT neutrophils were delineated as pseudo-time progressed (Fig. 3A–C). A heat map illustrated
the gene expression patterns during the evolution of neutrophils as pseudo-time changed (Fig. 3D).
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Figure 2: Neutrophil subpopulations and interactions in KRAS/TP53 mutation context. (A) UMAP diagram showing
the distribution of eight neutrophil subpopulations in the KRAS/TP53 MUT and WT groups. (B) Proportions of the
eight neutrophil subpopulations in the KRAS/TP53 MUT group vs. the WT group. (C,D) Number of interactions and
interaction weights/strength for each cell type. (E) Heatmap illustrating the outgoing and incoming signal patterns of
each cell type
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Figure 3: Pseudotime analysis of gene evolution in IS MUT cells within the KRAS/TP53 MUT group. (A–C)
Trajectories depicting pseudo-time-dependent cellular states of IS MUT in the KRAS/TP53 MUT group. (D) The
heatmap showing the evolution of 50 genes over pseudotime

3.3 Genes Related to IS MUT Neutrophils Were Indicated via hdWGCNA
A hierarchical hdWGCNA dendrogram was constructed, revealing three gene modules (Fig. 4A). At

an optimum soft threshold of 4, the co-expression network was generated (Fig. 4B). Correlations within
three identified gene modules were analyzed (Fig. 4C). Hub genes from the three gene modules were also
determined (Fig. 4D), with the distribution of these modules observed in neutrophils (Fig. 4E). Notably,
the blue and brown modules predominantly encompassed neutrophil subpopulations 3, 6, and 7 (Figs. 2A
and 4E). Hence, our focus was directed towards the blue and brown gene modules.
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Figure 4: Gene module analysis and correlation in neutrophils with KRAS/TP53 mutation. (A) Hierarchical den-
drogram from the hdWGCNA. (B) Optimal soft thresholds selected, displaying maximum, median, and average
connectivity. (C) Heatmap demonstrating the correlation analysis between the three gene modules. (D) Three gene
modules were identified according to standard processes, with the top 10 hub genes presented. (E) Distribution of the
three gene modules in neutrophils within the KRAS/TP53 MUT group

3.4 Patients in C1 Harbored Better Prognosis Due to Active TME
We identified 70 candidate genes from 773 genes in the blue and brown modules via univariate

analysis (Fig. 5A). Two clusters, C1 and C2, were divided in the TCGA-LUAD cohort (Fig. 5B,D). Patients in
cluster C1 exhibited prolonged survival probabilities compared to counterparts in cluster C2 (Fig. 5E). More
abundant infiltration of immune cells were observed in the TME of C1 (Supplementary Fig. S1A). Utilizing
the ESTIMATE algorithm, we found that the stromal and immune components of C1 were significantly
higher than C2 (Supplementary Fig. S1B). Furthermore, compared to C2, the expression levels of immune
checkpoints were significantly elevated in C1 (Supplementary Fig. S1C). TIDE, exclusion, and MDSC scores
of C1 were significantly lower than those of C2 (Supplementary Fig. S1D,G,I), indicating that C2 exhibited
a stronger immune escape capability. Additionally, dysfunction and IFNG scores of C1 were significantly
higher than those of C2, potentially related to T cell exhaustion (Supplementary Fig. S1E,F). In summary,
the heterogeneity of the immune microenvironment may serve as a driving factor contributing to the poorer
prognosis observed in C2.
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Figure 5: Univariate regression analysis and survival outcomes in LUAD patient clusters. (A) Volcano plot presenting
the results of univariate regression analysis, with red indicating risky genes, blue indicating protective genes, and gray
indicating genes with no significant difference. (B) Matrix heatmap showing LUAD patients divided into two clusters
(k = 2). (C,D) The cumulative distribution function (CDF) is displayed in the delta plot and cumulative distribution
curve plot. (E) Kaplan-Meier curve illustrating OS for two LUAD clusters

3.5 A Five-Gene Prognostic Signature Was Constructed and Well-Validated
494 DEGs were found between cluster C1 and C2 (Supplementary Fig. S2A). The DEGs were sig-

nificantly enriched in pathways related to immune cell regulation and cell adhesion. Additionally, the
DEGs primarily consisted of cell membrane components, such as endoplasmic reticulum and Major
histocompatibility complex (MHC) proteins. They were also involved in molecular functions, including
chemokine activation and immune receptor-ligand binding (Supplementary Fig. S2B,C). Results from
functional enrichment analyses indicated that the identified DEGs related to immune responses and the
invasion or metastasis of tumor cells.

From univariate Cox regression analysis, we identified 140 protective genes and 73 risky genes (Fig. 6A).
A five-gene prognostic signature was successfully formulated through LASSO regression analysis, with the
optimal λ identified as 0.0653 via ten-fold cross-validation (Fig. 6B,D). Risk score = 0.171 ∗ ANLN + 0.092
∗ FAM83A + 0.094 ∗ RHOV + 0.059 ∗ KRT6A − 0.169 ∗ MS4A1. Worse prognosis of patients with high
risk score were observed compared to counterparts with low risk score (p < 0.0001, Fig. 6E). The AUCs
for 1-, 3-, and 5-year survival were 0.73, 0.70, and 0.66, respectively (Fig. 6F). Survival probabilities were
well stratified across all five internal validation cohorts (p < 0.0047, p = 0.0001, p = 0.018, p = 0.0066, and
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p = 0.0001, Supplementary Fig. S3A–E). The AUCs for 1-, 3-, and 5-year survival further validated the
robustness of the prognostic signature across all five internal validation cohorts (Supplementary Fig. S3A–E).

Figure 6: Prognostic gene identification and risk assessment. (A) Volcano plot depicting the results of univariate Cox
regression analysis, with red representing risky genes, blue representing protective genes, and gray representing genes
with no significant difference. (B,C) Coefficient distribution diagram of each gene and optimal λ for constructing
LASSO model. (D) Cox coefficient of the five prognostic genes. (E) Kaplan-Meier analysis results of high- and low-risk
groups based on the TCGA-LUAD cohort. (F) ROC analysis based on the TCGA-LUAD cohort

3.6 A Predictive Nomogram Was Established Based on Risk Score and Clinicopathological Features
We observed significant differences in risk scores among patients characterized by various clinicopatho-

logical features (Supplementary Fig. S4A–F). Both N stage (p = 0.013, HR = 1.686 [1.116–2.548]) and risk score
(p < 0.001, HR = 2.57 [1.822–3.624]) were identified as independent prognostic factors for LUAD through
univariate and multivariate Cox regression analyses (Fig. 7A,B). Risk score and other clinicopathological
features were further integrated to construct a predictive nomogram for predicting survival outcomes
(Fig. 7C). The calibration curve demonstrated that the predicted survival probabilities at 1-, 3-, and 5-year
intervals closely aligned with the ideal line (Fig. 7D). Furthermore, the decision curve analysis indicated
that the nomogram exhibited optimal clinical benefit across varying threshold probabilities (Fig. 7E). ROC
analyses further confirmed the predictive efficacy of the nomogram (Fig. 7F).
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Figure 7: Comprehensive evaluation and validation of prognostic nomogram. (A,B) Univariate and multivariate Cox
analyses assessing the independence of the predictive risk models. (C) Prognostic nomogram combining risk score
and clinical characteristics. (D) Calibration curves demonstrating the predictable capability of the nomogram at 1-, 3-,
and 5-year. (E) Standardized net benefit decision curves. (F) AUCs of the nomogram, risk score, and other clinical
characteristics

3.7 Functional Associations of the Five Genes in the Prognostic Signature
Functional characterization revealed that the five prognostic genes were strongly correlated with

immune response pathways. Specifically, Membrane spanning 4 domains A1 (MS4A1) and RHOV showed
significant positive correlations with immune-related pathways (Supplementary Fig. S5A). The functional
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annotation was quantified for each TCGA-LUAD sample and represented as a distribution heat map
(Supplementary Fig. S5B).

3.8 Immunological Dissection between Different Risk Groups
Analysis revealed that in the TME of high-risk group, stromal and immune components were more

lower, while tumor component was more higher (Fig. 8A–D). The complex heatmap illustrated the differ-
ential infiltration of multiple immune cells across risk groups (Fig. 8E). Nearly all immune cells exhibited
differential enrichment in the TME of the risk groups. Additionally, a majority of immune checkpoints were
significantly elevated in the low-risk group (Fig. 8F).

Figure 8: Correlation of prognostic genes with immune and stromal components. (A–D) Comparison of ESTIMATE
scores, tumor purity, immune scores, and stromal scores between different risk groups. (E) Differences in the abundance
of immune infiltrating cells between high and low-risk groups. (F) Comparison of immune checkpoint scores between
high and low-risk groups (*p < 0.05, **p < 0.01, ***p < 0.001, ns indicates non-significant)

3.9 The Prognostic Signature Was Capable of Predicting the Immunotherapy Response
We divided patients from the IMvigor210 and GSE78220 cohorts into high- and low-risk groups.

Patients in high-risk group exhibited worse prognosis (IMvigor210: p < 0.0001; GSE78220: p =
0.036, Fig. 9A,F). In the IMvigor210 cohort, the overall risk scores of patients with complete response (CR)
or partial response (PR) were significantly lower compared to those with progressive disease (PD) and
stable disease (SD) (Fig. 9B). The percentage of patients with PD/SD was also higher in the high-risk group
compared to the low-risk group (85% vs. 70%, Fig. 9C). Besides, the predictive risk model was more sensitive
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in forecasting the prognosis of patients with early-stage disease (Fig. 9D,E). In the GSE78220 cohort, no
significant difference in risk scores was observed between patients with PD and those with CR/PR (Fig. 9G).
The percentage of patients with PD was significantly higher in the high-risk group compared to the low-risk
group (57% vs. 38%, Fig. 9H). These results indicate that the prognostic signature effectively predicts the
immunotherapy response in patients with LUAD.

Figure 9: Evaluating the risk model’s predictive accuracy for treatment response and survival. (A) Kaplan-Meier
analysis based on IMvigor210 dataset. (B) Differences in risk scores for different clinical response groups based on the
IMvigor210 dataset. (C) Proportions of high- and low-risk patients in different clinical response groups based on the
IMvigor210 dataset. (D) Kaplan-Meier analysis comparing patients in clinical stages I–II with different risk scores based
on the IMvigor210 dataset. (E) Kaplan-Meier analysis comparing patients in clinical stages III-IV with different risk
scores based on the IMvigor210 dataset. (F) Kaplan-Meier analysis based on the GSE78220 dataset. (G) Differences
in risk scores for different clinical response groups based on the GSE78220 dataset. (H) Proportions of high- and
low-risk patients in different clinical response groups based on the GSE78220 dataset (****p < 0.0001, ns indicates
non-significant)

3.10 RHOV Was Crucial for the Growth of Lung Epithelial Cells
To further investigate the five prognostic genes, we scored each gene in MUT LUAD and WT LUAD

using five scoring algorithms. The total score (Scoring) for each cell was calculated as the sum of these
scoring algorithms (Supplementary Fig. S6A). The results revealed significant differences in Scoring among
several cell types between MUT LUAD and WT LUAD (Supplementary Fig. S6B). Notably, the Scoring
of epithelial cells was significantly higher in MUT LUAD compared to WT LUAD. Given that LUAD
derives from the bronchial mucosa, we focused on epithelial cells for subsequent analyses. HighRisk and
LowRisk epithelial cells were classified and distinct intercellular communication pattern was observed
between these two subtypes (Fig. 10A). Stronger signaling pattern was determined in LowRisk epithelial
cells compared to HighRisk ones (Fig. 10B). Additionally, as the trajectory evolved, RHOV expression was
gradually upregulated, while Keratin 6A (KRT6A) expression was gradually downregulated (Supplementary
Fig. S6C, Fig. 10C).
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Figure 10: Cell type interaction and trajectory analysis in KRAS/TP53 MUT and WT groups. (A) Number of
interactions between cells and the strength of these interactions. (B) Heatmap depicting the signal flow pattern of mutual
recognition among cells in the KRAS/TP53 MUT group. (C) Heatmap showing the expression of seven prognostic genes
over pseudotime
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3.11 Downregulating RHOV Significantly Suppressed Tumorigenesis
Given the progressively elevated expression of RHOV during the evolution trajectory of lung epithelial

cells, subsequent functional experiments focused on RHOV. Western blot assay confirmed that both
siRNA1 and siRNA2 effectively reduced RHOV protein expression (Fig. 11A). CCK8 assay demonstrated that
silencing RHOV impaired the proliferative capabilities of A549 and H1299 cells (Fig. 11B). Consistent results
from transwell and wound healing assays indicated decreased capabilities of migration and invasion in A549
and H1299 cells upon downregulation of RHOV (Fig. 11C–F). These findings provided compelling evidence
for RHOV as a pivotal gene during LUAD progression.

Figure 11: Impact of RHOV knockdown on protein levels, proliferation, invasion, and migration in A549 and H1299
Cells. (A) Western blot assay detecting RHOV expression in A549 and H1299 cells after treatment with siRNAs. (B)
CCK8 assay assessing the proliferation ability of A549 and H1299 cells following siRNA treatment (C,D) Transwell assay
evaluating the migration ability of A549 and H1299 cells after siRNA treatment. (E,F) Wound healing assay assessing
the invasion ability of A549 and H1299 cells following siRNA treatment (*p < 0.05, ***p < 0.001)
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4 Discussion
Tumor heterogeneity encompasses not only the differences within cell subclones but also the diverse

composition of the TME, which significantly influences the evolutionary fate of cancer cells. Gene mutations
serve as critical upstream modulators of cancer progression. However, the predominant effect of genetic
heterogeneity on TME dynamics requires more elucidation. Our investigation systematically dissected the
characteristics of the TME in LUAD with KRAS/TP53 mutations, leading to the development of a prognostic
stratification method and the possibility of a therapeutic target.

Neutrophils act as primary sentinels in innate anti-cancer immune responses, yet they can be co-opted
by cancer cells to promote carcinogenesis [18,19]. Unraveling the interactions between neutrophils and tumor
cells may enhance our understanding of cancer etiology and inform novel therapeutic strategies. Notably,
we identified a higher proportion of neutrophils within the TME of KRAS/TP53-mutated LUAD, leading to
the identification of two novel neutrophil subtypes: IS MUT and WT neutrophils. The IS MUT neutrophils
were found to be more abundant in LUAD with KRAS/TP53 mutations compared to WT LUAD. Intercellular
communication analysis indicated a more active signaling network among IS MUT neutrophils. These
findings suggest a causal relationship between KRAS/TP53 mutations and neutrophil heterogeneity in LUAD,
indicating that genomic mutations may drive TME heterogeneity during tumor evolution. Our findings align
with prior studies demonstrating the prognostic value of neutrophil counts and neutrophil-to-lymphocyte
ratio (NLR) in NSCLC [20–22]. However, while peripheral neutrophil counts reflect systemic inflammation,
our study highlights the unique prognostic significance of tumor-infiltrating neutrophil subpopulations (e.g.,
IS MUT) driven by KRAS/TP53 mutation. This suggests that TME-specific neutrophil heterogeneity may
serve as a more precise biomarker for LUAD prognosis than traditional hematological parameters, potentially
guiding personalized therapeutic strategies such as targeting RHOV or modulating IS MUT neutrophil
activity. He et al. [23] also highlighted TME heterogeneity driven by Epidermal growth factor receptor
(EGFR) mutations in LUAD, revealing stromal cell heterogeneity and complex intercellular interactions.
They found significant enrichment of Cluster of differentiation 1C (CD1C)+ dendritic cells, with infiltrating T
cells primarily exhibiting exhausted and regulatory characteristics within tumors. E74-like ETS transcription
factor 3 (ELF3) was identified as a key target promoting LUAD progression through pseudotime trajectory
analysis. Thus, TME heterogeneity reflects genomic diversity, including gene mutations, at a single-cell res-
olution. Our study extends this paradigm by linking KRAS/TP53 mutations to neutrophil reprogramming,
thereby bridging genetic alterations with immune microenvironment remodeling—a critical gap in current
literature. Subsequently, we identified 70 candidate genes associated with IS MUT neutrophils through
hdWGCNA and univariate Cox regression analysis. Among these, RHOV was found to accumulate in lung
epithelial cells as pseudo time progressed, and its downregulation attenuated lung cancer progression in
vitro. This suggests a potential positive feedback loop where KRAS/TP53 mutations reshape the TME of
LUAD, inducing the enrichment of IS MUT neutrophils during tumor evolution, while RHOV, as an IS
MUT neutrophil-related gene, conversely contributes to tumor progression. This dual role of neutrophils—
both as microenvironment modulators and tumor progression drivers—underscores their therapeutic
potential. Clinically, monitoring IS MUT neutrophil abundance (e.g., via liquid biopsy or imaging-based
TME profiling) could complement existing biomarkers like NLR to refine risk stratification. Furthermore,
targeting RHOV or its downstream pathways may synergize with immune checkpoint inhibitors, particularly
in KRAS/TP53-mutated LUAD patients with high IS MUT neutrophil infiltration.

We successfully established a prognostic signature containing five genes through LASSO regression
analysis, which was validated for its predictive capability. The survival probabilities of LUAD patients could
be significantly stratified based on the risk score. Moreover, significant differences in risk scores were
observed across various clinicopathological features, including sex, T stage, N stage, and clinical stage.
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Cox regression analyses verified the independently prognostic effect of risk score. To further enhance the
predictive performance of the prognostic signature, a nomogram with combination of risk score and clinico-
pathological features was generated to predict OS in LUAD patients. Although the increase in the AUC was
modest, the inclusion of the nomogram significantly improved its clinical utility. The nomogram provided a
comprehensive assessment of patient prognosis by integrating multiple clinicopathological features with the
risk score, allowing for personalized treatment decisions in the clinically heterogeneous landscape of LUAD.
Decision curve analysis further validated the nomogram’s utility in clinical decision-making, underscoring
its value beyond mere numerical AUC enhancement.

Multiple previous studies have highlighted the cancerous roles of five prognostic genes: MS4A1, Actin
binding protein (ANLN), Family with sequence similarity 83 member A (FAM83A), RHOV, and KRT6A.
MS4A1, or CD20, is a molecule expressed on the surface of B cells that regulates their development and
differentiation into plasma cells [24]. Recent investigations have reported the prognostic implications of
MS4A1 in LUAD. Cong et al. [25] identified MS4A1 as a key gene associated with fatty acid metabolism, sug-
gesting it plays a protective role in influencing LUAD prognosis. Furthermore, MS4A1 has been implicated
as a positive prognostic factor concerning tumor microenvironment, tumor invasion, and immunological
responses [26–28]. ANLN is involved in cell growth, migration, and cytokinesis, regulating actin cytoskeletal
dynamics in podocytes, a component of the glomerulus [29]. Research has uncovered the tumor-promoting
effects of ANLN in LUAD, indicating its overexpression correlates with a poorer prognosis, potentially due to
enhanced tumor metastasis [30,31]. Moreover, ANLN’s role in LUAD may also be associated with preventing
pyroptosis in cancer cells [32]. Notably, ANLN has been proposed as a therapeutic target, particularly through
its interaction with Kaempferol, a potential ANLN inhibitor [33]. FAM83A is a critical participant in the
cellular proliferative signaling network. Various studies suggest its oncogenic role in LUAD, concluding that
increased levels of FAM83A are indicative of a negative prognosis and poorer clinical outcomes [34–38].
Mechanistic investigations have revealed that the oncogenic proliferation of lung cancer cells induced by
FAM83A upregulation is primarily attributed to the aberrant activation of several growth-related signaling
pathways, including Hippo, Wnt, Extracellular regulated protein kinase (ERK), and PI3K/Protein kinase B
(AKT)/Mammalian target of rapamycin (mTOR) signaling pathways [39–41]. Additionally, Zhou et al. [42]
demonstrated that overexpressed FAM83A is correlated with enhanced epithelial-mesenchymal transition
(EMT), mediated by the ERK signaling pathway. RHOV has been identified as a negative prognostic factor
for LUAD across multiple studies, emphasizing its potential as a therapeutic target [43–46]. Chen et al. [47]
found that silencing RHOV significantly reduced the proliferation, migration, invasion, and tumorigenicity
of LUAD cells. Subsequent in vivo experiments suggested that RHOV silencing increased gefitinib sensitivity
in resistant LUAD cells and enhanced gefitinib-induced apoptosis. Zhang et al. [48] further reported that
RHOV-overexpression-driven cell growth and metastasis could be inhibited by pyrazolanthrone, a c-Jun
N-terminal kinase (JNK) inhibitor. KRT6A plays a role in the activation of follicular keratinocytes post-
wounding and has been recognized as a prognostic indicator for patients with LUAD [49–51]. Both in vivo
and in vitro analyses confirm that the progression of LUAD can be attenuated by eliminating KRT6A [52–54].

This study presents several strengths. First, the integration of single-cell and bulk transcriptomic data
allows for a comprehensive exploration of TME heterogeneity, providing novel insights into neutrophil
subpopulations. Second, the functional validation of RHOV through in vitro experiments strengthens the
translational relevance of our findings. Third, the prognostic signature was rigorously validated across
multiple independent cohorts, ensuring robustness. However, limitations exist. The retrospective nature of
public datasets may introduce selection bias, and the absence of prospective validation cohorts limits the
immediate clinical applicability of our results. Additionally, while IS MUT neutrophils were identified as key
players, their functional interactions with other immune cells remain unexplored. Future studies should aim
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to validate these findings in larger, ethnically diverse cohorts and investigate therapeutic strategies targeting
RHOV or IS MUT neutrophils in preclinical models.

5 Conclusion
This study primarily elucidates the potential effects of KRAS/TP53 mutations on neutrophil heterogene-

ity in the TME of LUAD. These mutations may influence prognosis through the regulation of neutrophil
subpopulations. Furthermore, the neutrophil-associated prognostic signature provides novel insights into
prognosis prediction and clinical decision-making. Importantly, RHOV, as a pivotal proliferative factor for
lung epithelial cells, holds promise as therapeutic prioritization for mutation-specific LUAD.
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