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Abstract: Cancer remains one of the leading causes of death in the world, with more than 9 million deaths in 2022, a

number that continues to rise. This highlights the urgent need for the development of new drugs, with enhanced

antitumor capabilities and fewer side effects. Metal-based drugs have been used in clinical practice since the late

1970s, beginning with the introduction of cisplatin. Later, two additional platinum-based molecules, carboplatin, and

oxaliplatin, were introduced, and all three continue to be widely used in the treatment of various cancers. However,

despite their significant anticancer activity, the undesirable side effects of these drugs have motivated the scientific

community to explore other metal-based complexes with greater anticancer potential and fewer adverse effects. In this

context, metals such as ruthenium, copper, gold, zinc, palladium, or iridium, present promising alternatives for the

development of new anticancer agents. Unfortunately, although thousands of metal-based drugs have been

synthesized and tested both in vitro and in animal models, only a few ruthenium-based drugs have entered clinical

trials in recent years. Meanwhile, many other molecules with comparable or even greater anticancer potential have

not advanced beyond the laboratory stage. In this review, we will revisit the mechanisms of action and anticancer

activities of established platinum-based drugs and explore their use in recent clinical trials. Additionally, we will

examine the development of potential new metal-based drugs that could one day contribute to cancer treatment

worldwide.

Introduction

Cancer is one of the most significant non-communicable
diseases (NCDs) globally, with nearly 20 million new cases
and 9.7 million deaths in 2022. By 2050, a projected increase
of 77% is expected, leading to over 35 million new cancer
cases annually [1]. In light of this alarming trend, there is a
critical need for the development of new drugs that can
effectively combat the rising incidence of cancer, offering
enhanced antitumor capabilities and fewer side effects.

The development of metal-based drugs in cancer therapy
dates back to the mid-1960s when Barnett Rosenberg
discovered the antiproliferative activity of cisplatin [2,3].
Although the molecule was discovered in 1845 by Michele
Peyrone, it was not until 1978 that the Food and Drug
Administration (FDA) approved cisplatin for use in cancer
therapy [4]. Later, additional platinum drugs, such as

carboplatin and oxaliplatin, were introduced [2,4]. These
platinum drugs have been extensively used to treat different
types of cancer worldwide. However, resistance to these
drugs has been observed in many cases, necessitating to
combine it with other drugs, such as tyrosine kinase
inhibitors (TKIs) (imatinib, nilotinib) [5], taxanes
(paclitaxel) [6], ribonucleotide reductase inhibitors
(Gemcitabine) [7], phosphatidylinositol 3-kinase (PI3K)
inhibitors (Alpelisib) [8], among others. These combinations
not only improve the anticancer activity of platinum drugs
but also reduce the side effects experienced by patients.

Studies have also demonstrated that synergistic use of
platinum drugs with natural compounds, such as
oxyresveratrol [9], isovitexin [10], limonene [11], or extracts
from fermented ginger [12], Vernonia calvoana [13],
Platycodon grandiflorus [14] phenylethanol glycosides from
Herba Cistanche [15], or the essential oil of Ylang ylang
(Cananga odorata) [16], can enhance efficacy and reduce
toxicity.

In a recent article, genes potentially linked to resistance
to platin drugs in ovarian cancer were investigated in 90
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chemoresistant and 197 chemosensitive tissues. The findings,
correlated with data of 1347 patients, revealed that a high
expression of PARD6B and STAT5A or a low expression of
SOS1, MSH6, and STAT5A could serve as reliable markers
for predicting resistance to platinum-based drugs [17].

Since the development of cisplatin, carboplatin, and
oxaliplatin, a wide array of new platinum-based drugs has
been designed using “structure-activity relationship” models.
However, only a few have advanced to clinical trials [2,18].
With the global rise in cancer incidence, other metal-based
complexes, incorporating ions such as ruthenium, copper,
gold, zinc, palladium, and iridium, have attracted significant
interest as potential anticancer agents [18–22].

In this review, we will explore the structures and
potential mechanism of action of metal-based drugs,
including those containing platinum, ruthenium, copper,
gold, palladium, zinc, and iridium, as well as their potential
use in cancer treatment.

Biochemical and Clinical Properties of Metal-Based Drugs

Metal-based complexes exhibit remarkable chemical diversity
and versatility, which depend on factors such as the
coordinated metal, its oxidation state, the number and type
of ligands, and specific magnetic and/or optical properties
[3]. Metals like platinum, ruthenium, copper, gold,
palladium, zinc, or iridium possess notable characteristics,
including redox activity, variable coordination modes, and
reactivity towards organic substrates, principally proteins or
DNA. These properties grant metal complexes significant
therapeutic potential in cancer treatment [18].

Platinum compounds
Cisplatin (Table 1), the first metal-based drug used in the
treatment of cancer, exerts its antiproliferative effects
primarily by binding to DNA, blocking DNA replication and
transcription, and triggering caspase activation and apoptosis
[2,4,23]. In the bloodstream, cisplatin is primarily bound to
plasma proteins, such as albumin, and is subsequently
transported across the plasma membrane by transporters
such as copper transporter-1 and -2 (Ctr1, Ctr2), the P-type
copper-transporting ATPases ATP7A and ATP7B, and the
organic cation transporter-2 (OCT2) [24–27]. Once inside
the cell, cisplatin undergoes monoaquation, where one of the
chloride ligands is replaced by a water molecule due to the
lower chloride concentration in the cytoplasm (4–20 mM)
compared to the blood (approximately 100 mM) [2,28]. The
monoaquated platinum acts as a potent electrophile, reacting
with nitrogen donor atoms in DNA, forming intra- and
inter-strand crosslinks that induce DNA adducts and damage
[29,30]. This damage activates repair mechanisms, including
mismatch repair proteins and high-mobility group box
(HMGB) proteins [24,25]. When the damage surpasses the
cell’s repair capacity, apoptotic pathways are activated,
involving the expression of p53 and Bcl2 Associated X
Protein (BAX, part of the Bcl-2 family proteins), the
cytochrome c release, and the activation of caspase-3, -7 and
-9, leading to apoptosis [2,19,24,30,31].

Cisplatin is used to treat various cancers, including breast,
ovarian, testicular, head and neck, esophageal, lung, bladder,

and brain cancers [2]. However, cisplatin is associated with
severe adverse effects, particularly nephrotoxicity and
ototoxicity [32]. Cisplatin-induced nephrotoxicity occurs in
approximately 28%–36% of patients due to drug
accumulation in proximal tubular cells, which impairs the
expression of glucose, amino acid, magnesium, and water
transporters, reduces renal blood flow, and induces acute
kidney injury (AKI) [33,34]. Nephrotoxicity is more frequent
in children than in adults. A recent study involving 159
children treated with cisplatin revealed that 46% developed
AKI [35]. Nonetheless, Several natural compounds have
demonstrated cytoprotective effects against AKI, including
curcumin (a Curcuma derivative) [36]; Gastrodin (the main
active ingredient of Gastrodia elata Blume) [37]; ginsenosides
(the main active components of ginseng roots) [38]; asiatic
acid (triterpenoid extracted from Centella asiatica) [39];
betulinic acid (a triterpene isolated from Silene succulenta
Forssk) [40]; Oleanolic acid acetate (a triterpene isolated from
Vigna angularis) [41], isorhamnetin (flavanol derived from
Hippophae rhamnoides L. and Ginkgo biloba L.) [42];
Kaempferide (flavanol found in the rhizome of Kaempferia
galanga, Chromolaena odorata, Alpinia conchigera, and
Hippophae rhamnoides L.) [43]; and isoliquiritigenin
(flavonoid extracted from Glycyrrhiza glabra, Allium
ascalonicum, and Glycine max) [44]. Similar nephroprotective
effects have been observed with extracts from Achyranthes
aspera root [45]; Olea europaea [46]; Clinacanthus nutans
[47]; and Primula vulgaris leaves [48].

In these cases, the protective mechanisms involve a
reduction in serum levels of blood urea nitrogen (BUN) and
creatinine, along with an increase in glutathione (GSH)
levels and activation of Nuclear factor erythroid 2-related
factor 2 (Nrf2), a key regulator of cellular redox
homeostasis. Furthermore, these compounds reduce serum
proinflammatory cytokines, including Tumor Necrosis
Factor-alpha (TNF-α), Interleukin-1 beta (IL-1β), and IL-6,
while modulating apoptosis by downregulating BAX and
upregulating Bcl-2, preventing caspase-3 activation.

Other therapeutics have also demonstrated
nephroprotective effects when used concomitantly with
cisplatin, including ammonium tetrathiomolybdate [49]; β-
hydroxybutyrate [50]; diallyl trisulfide [51];
dihydroartemisinin [52]; omega-3-6-9 [53]; piracetam [54];
sodium thiosulfate [55]; and thrombomodulin [56].

Regarding ototoxicity, cisplatin induces hearing loss in
40%–60% of adults, including 18% who experience severe
hearing loss, while in children, more than 70% are affected
[57]. A recent study found that the cumulative incidence of
cisplatin-induced hearing loss three years after treatment
initiation was 75% in children under five years old,
compared to 48% in adult patients [58].

Due to these severe side effects, other platinum drugs
have been developed and approved for clinical use,
including carboplatin and oxaliplatin (Table 1). Thousands
of additional platinum-based molecules have been studied
globally, some of which have been approved for clinical use
in specific countries. These compounds generally act
similarly to cisplatin by interacting with DNA [59].

Carboplatin, developed after cisplatin, is used to treat a
range of cancers including ovarian, lung, certain head-and-
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neck cancers, and some metastatic breast cancer. It enters cells
via transporters such as Ctr1, ATP7A, and ATP7B, as well as
by simple diffusion. Once inside, carboplatin induces the
expression of miR-145 and p53, and binds to DNA, causing
deformation and initiating apoptosis [60].

A 2019 study comparing the genotoxic effects of cisplatin
and carboplatin in cultured human lymphocytes found that
both drugs significantly increased chromosomal aberrations,
but cisplatin caused a higher frequency of sister-chromatid
exchange, likely due to its higher reactivity and faster DNA
binding kinetics compared to carboplatin [61]. However, a
recent meta-analysis of 20 studies involving 4468
participants demonstrated that carboplatin is superior to
cisplatin in treating early triple-negative breast cancer
(TNBC), showing better disease-free survival (DFS), overall
survival (OS), and pathological complete response (pCR),
supporting the use of carboplatin for early TNBC [62].
Another meta-analysis, which included 11,049 patients,
demonstrated that carboplatin, combined with dual HER2
blockade (pertuzumab + trastuzumab) plus docetaxel, was
more effective than the same regimen without carboplatin in
neoadjuvant treatment for HER2-positive breast cancer [63].
A third meta-analysis, conducted on 2111 patients with
advanced or metastatic urothelial carcinoma (AMUC),
demonstrated that cisplatin and carboplatin were similar to
immune checkpoint inhibitor (ICI) monotherapy in terms
of OS and pCR, but both platinum-based drugs had better
objective response rates (ORR) than ICI therapy [64].

Nephrotoxicity observed with cisplatin occurs less
frequently with carboplatin, with rates of 20%–30% for
cisplatin vs. 10%–15% for carboplatin. This difference is
likely due to structural changes in carboplatin, which result
in less accumulation and thus reduced nephrotoxicity [65].
However, two recent studies evaluating a total of 362
patients found no significant difference in nephrotoxicity
between cisplatin and carboplatin treatments [66,67].
Another study suggest that the risk of nephrotoxicity
increased with age, particularly in patients treated with
cisplatin compared to carboplatin, due to the natural decline
in nephron number and size with age, which makes older
individuals more susceptibility to nephrotoxicity [65].

Oxaliplatin was approved for clinical use by the FDA in
2002 and is indicated for cancers where resistance to cisplatin
or carboplatin has developed. It is primarily used in the
treatment of colorectal cancer, often in combination with
other drugs such as 5-fluorouracil and leucovorin (FOLFOX
regimen), FOLFOX plus irinotecan (FOLFOXIRI regimen);
or oxaliplatin combined with capecitabine (CAPEOX
regimen); among others [60].

The mechanism of oxaliplatin’s entry into the cell is
similar to cisplatin, primarily through passive diffusion or
via the CTR1 transporter [60]. Once inside, unlike cisplatin
or carboplatin, oxaliplatin inhibits RNA Pol I, leading to
rRNA silencing and nucleolar disruption, likely mediated by
the DNA damage response kinases Ataxia Telangiectasia
Mutated (ATM) and ATR serine/threonine kinase (ATR) [68].

Although oxaliplatin has fewer side effects than cisplatin,
it can cause a neuropathy known as oxaliplatin-induced
peripheral neurotoxicity (OIPN), which may lead to
treatment interruption, though the condition can be

reversible upon cessation of treatment. OIPN is thought to
arise from DNA damage in sensory neurons, dysfunction of
voltage-gated ion channels, increased pro-inflammatory
response in certain neurons and peripheral nerves, oxidative
stress from DNA adducts in neurons, and eventual neuronal
apoptosis [69].

As noted, oxaliplatin is the treatment of election for
colorectal cancer, often in combination with other drugs. A
recent meta-analysis involving 795 patients demonstrated
that the FOLFOX regimen was superior to fluorouracil plus
leucovorin (IFL) or even oxaliplatin combined with
irinotecan (IROX), in terms of median time to progression,
response rate, and median survival time for the treatment of
metastatic colorectal cancer [70]. Another meta-analysis,
which included 4571 patients, compared regimens
containing oxaliplatin and irinotecan for treating metastatic
colorectal cancer, finding no statistically significant
differences between the two treatment groups in terms of
OS, progression-free survival (PFS), or ORR [71].

A recent study from the National Surgical Adjuvant
Breast and Bowel Project (NSABP), known as the R-04 trial
(NCT00058474), evaluated oxaliplatin’s toxicity in 1132
rectal cancer patients. These patients were randomized into
four groups: 5-FU alone (n = 277), 5-FU + oxaliplatin
(n = 286), capecitabine alone (n = 283), and capecitabine
plus oxaliplatin (n = 286). The study found that oxaliplatin
in combination with either 5-FU or capecitabine was less
tolerable than either chemotherapy alone [72], suggesting
that a careful balance between tumor control and side
effects must be considered.

Next to the development of cisplatin (first generation),
carboplatin, and oxaliplatin (second generation), a third
generation of platinum-based drugs was developed. Among
them, is nedaplatin (Table 1), which retains chemical
similarities to cisplatin and carboplatin but offers improved
anticancer and fewer side effects. Developed to enhance the
water solubility of cisplatin and reduce its adverse effects
while maintaining efficacy, nedaplatin is currently used
clinically in Japan. It has demonstrated notable anticancer
activity against cervical, small- and non-small cell lung,
breast, ovarian, and testicular cancers, although it has not
yet been widely accepted globally [73]. A study evaluating
hypersensitivity to nedaplatin in 31 patients with
carboplatin hypersensitivity showed a response rate of 71.4%
in the nedaplatin-treated group, compared to 30.0% in the
no-treated group. Only one patient in the nedaplatin group
experienced a hypersensitivity reaction, demonstrating that
nedaplatin is both safe and effective in this context [74].

Lobaplatin (Table 1) is another third-generation
platinum-based drug, which appears to have lower nephro-
and ototoxicity than its predecessors. Currently, it is only
available in China. Lobaplatin was tested in bladder cancer
cell lines T24 and 5637, showing IC50 values of 11.62 µg/mL
and 9.61 µg/mL at 24 h, respectively. Flow cytometry
revealed that lobaplatin induced apoptosis in 31.25% of T24
cells, compared to 6.25% in the control group, and 14.3% in
5637 cells, compared to 2.5% in the control. The study
indicated that apoptosis was mediated by the regulation of
Bcl-2 and BAX expression and inhibition of the PI3K/Akt
signaling pathway [75].
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Heptaplatin (Table 1), another third-generation
platinum-based drug, was developed in South Korea and
approved by the Korean FDA in 1999. Heptaplatin forms
DNA adducts, altering transcription and replication
processes, thereby inducing apoptosis [76]. A recent article
explored supramolecular chemotherapy using heptaplatin
and cucurbit-7uril (heptaplatin-CB7) to treat colorectal
cancer cells. The results showed that heptaplatin-CB7
induced a notable percentage of early apoptosis in HCT116
and HT29 cells, and induced an inhibitory response in the
G1 phase of the cell cycle in these cells [77].

The last third-generation platinum-based drug discussed
here is miriplatin (Table 1), designed and synthesized in Japan

for the treatment of unresectable hepatocellular carcinoma.
Due to its poor solubility in water and organic solvents,
miriplatin is unsuitable for intravenous administration [78].
In a recent study, miriplatin was encapsulated in a
liposomal formulation called lipomiriplatin (LMPt) and
tested in human pancreatic cancer cell lines (AsPC-1, BxPC-
3, MIA-PaCa-2, PANC-1, and SU.86.86). The inhibitory
effect of LMPt on these cancer cells was 2.70 to 16.74 times
greater than that of miriplatin alone, with IC50 values
ranging from 0.28 to 19.81 μmol/L. In comparison,
oxaliplatin, used as a control, showed IC50 values greater
than 75 μmol/L, indicating that LMPt is more effective than
oxaliplatin. Additionally, EdU (a thymidine analog) was

TABLE 1

The table represents some examples of the anti-cancer activity of platinum-based compounds

Structure Platinum
compounds

In vitro or in vivo activity Mechanism of action Reference

Cisplatin It is used to treat various types of
cancer, including breast, ovarian,
testicular, head and neck,
esophageal, lung, bladder, and
brain

It enters cells through transporters
Ctr1, Ctr2, ATP7A, ATP7B, and
OCT2. It binds to DNA, and
induces apoptosis through P53,
BAX, and caspase-3, -7, and -9

[2,19,24,30,31]

Carboplatin It is the treatment of choice for
TNBC. It is used to treat ovarian,
lung, and certain head-and-neck
cancers

It enters cells through the
transporters Crt1, ATP7A, and
ATP7B. It can induce the
expression of miR-145 and then
p53, along with binding to DNA,
causing deformation and initiating
apoptosis

[60]

Oxaliplatin Is the treatment of election for
colorectal cancer

It enters cells via the CTR1
transporter. Oxaliplatin inhibits
RNA Pol I, leading to rRNA
silencing and nucleolar disruption,
likely mediated by the DNA
damage response kinases ATM and
ATR

[60]

Nedaplatin It has anticancer activity against
cervical, small- and non-small cell
lung, breast, ovarian, and testicular
cancers,

Nedaplatin has the same
therapeutic mechanisms as
cisplatin but is more water-soluble
than cisplatin

[73]

Lobaplatin Tested in bladder cancer cell lines
T24 and 5637

It induces apoptosis by the
regulation of Bcl-2 and BAX
expression and inhibition of the
PI3K/Akt signaling pathway

[75]

Heptaplatin Tested in colorectal cancer cell
HCT116 and HT2

Induces an inhibitory response in
the G1 phase of the cell cycle in
these cells

[76,77]

Miriplatin It was synthesized for the
treatment of unresectable
hepatocellular carcinoma. It has
also tested in human pancreatic
cancer cell lines AsPC-1, BxPC-3,
MIA-PaCa-2, PANC-1, and
SU.86.86

It inhibits POLG and TFAM-
mediated mtDNA replication

[78]
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used to evaluate LMPt’s ability to inhibit DNA replication and
cell proliferation, demonstrating superior activity compared
to oxaliplatin in pancreatic cancer cells. In vivo, LMPt was
tested in an AsPC-1 mouse xenograft model, where it
exhibited a 31.36% inhibitory effect, approximately eight
times greater than of miriplatin alone [78].

Despite their promising results, including chemical
stability, low toxicity, and potent anticancer activity, even in
cisplatin-resistant cancer cells, nedaplatin, lobaplatin,
heptaplatin, and miriplatin have not been used or evaluated
in Western countries. Economic factors may play a role in
limiting their entry into Western healthcare markets, though
the exact reasons remain unclear.

Ruthenium compounds
Ruthenium-based molecules represent a large family of
compounds with unique properties that make them
promising candidates for cancer treatment. These properties
include the ability to slowly exchange ligands with
biologically important molecules like glutathione and certain
proteins, and the capacity to exist in multiple oxidation
states—Ru(II), Ru(III), and Ru(IV)—under physiological
conditions. This allows some ruthenium complexes to be
administered as a prodrug in the Ru(III) or Ru(IV) states
and then reduced to the more reactive Ru(II) state in the
tumor environment, thereby enhancing their cancer
effectiveness [79,80]. Additionally, ruthenium can be
transported throughout the body by plasma proteins such as
albumin and transferrin, facilitating its distribution [81].
Once in circulation, ruthenium complexes can enter cells
through transferrin receptors or death receptors, triggering
apoptosis [82]. Some ruthenium complexes are internalized
via endocytosis of transferrin receptors, while others may
enter cells through passive diffusion [83].

Regarding the mechanism of action of ruthenium
complexes, they can bind to DNA, disrupting DNA
replication and RNA transcription, and can also stably bind
to the G-quadruplex structure of telomeric DNA, interfering
with telomerase activity. Additionally, ruthenium complexes
can inhibit topoisomerases, which play key roles in DNA
metabolism, leading to the initiation of apoptosis [80,84].
Recent studies have demonstrated that certain ruthenium
complexes, such as [Ru(dip)2(PPβC)]PF6 (Table 2) and [Ru
(phen)2(PPβC)]PF6, accumulate in mitochondria and inhibit
mitochondrial DNA topoisomerase I, thereby inducing
caspase-mediated apoptosis [85]. Another study highlighted
a novel Ru(II) complex, [Ru(U)2(H2O)2]Cl3 (U = 5,6-
Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione), which
induces apoptosis by downregulating nuclear topoisomerase
I expression [86]. Other studies have reinforced the
observation that ruthenium complexes preferentially inhibit
DNA topoisomerase I in cancer cells [87,88]. Similar results
were shown with a thiomaltol-based [Ru(II)]PF6 complex,
which has been shown to induce apoptosis in breast cancer
cells by inhibiting DNA topoisomerase IIα, with a particular
affinity for the DNA-binding pocket of the enzyme [89].

One of the most remarkable characteristics of ruthenium
compounds is their ability to be photoactivated by light of
specific wavelengths. This opens up possibilities for the
development of ruthenium-based drugs for photodynamic

therapy or photoactivated chemotherapy. In these therapies,
the molecules can be selectively activated in the tumor area,
thereby minimizing damage to healthy tissues. Over the past
two years, several photoactivable ruthenium compounds
have been developed for cancer treatment. For example, [Ru
(phen-PPh3)2(1-Py-βC)](PF6)4 and [Ru(phen)2(1-Py-βC)]
(PF6)2, were shown to increase cytotoxicity by 50-100 times
upon photoactivation in breast cancer MDA-MB-231 cells
[90]. Other ruthenium complexes, such as cis-[Ru
(dcbpyH)2(PTAH)2]Cl2, cis-[Ru(bpy)2(PTA)2]Cl2 and trans-
[Ru(bpy)2(PTA)2](CF3SO3)2, exhibited 4- to 10-fold increase
in cytotoxicity upon photoactivation in lung cancer A549
and prostate adenocarcinoma PC-3 cells [91]. Complexes
Ru1−Ru5 of general formula [Ru(phen)2(N

∧N′)]2+, being
CH3 (Ru1), F (Ru2), CF3 (Ru3), NO2 (Ru4), and N(CH3)2
(Ru5) substituents in the phenyl ring, showed a 7- to 15-
fold increase in cytotoxicity in cervical cancer HeLa cells
and a 7- to 29-fold increase in cytotoxicity in A375
melanoma cells upon photoactivation [92]. Furthermore, the
molecule Ru-Cyn-1 (Table 2) demonstrated a 106-fold
increase in cytotoxicity when photoactivated in colon cancer
CT26 cells [93].

At the molecular level, several genes are affected by
ruthenium complexes. For example, the ruthenium complex
RXC has been shown to downregulate the expression of
genes encoding the chaperone Hsp90 in HCT116 colorectal
cancer cells, along with downstream effectors of Hsp90,
including Akt1, Akt (pS473), mTOR (pS2448), 4EBP1
(pT36/pT45), GSK-3β (pS9) and NF-κB p65 (pS529). This
suggests that RXC induces cell death through inhibition of
the AKT/mTOR pathway [94]. Similar results were observed
with a ruthenium complex bound to 5-fluorouracil (Ru/5-
FU), which inhibited the expression of Akt1 and Akt
(pS473), mTOR (pS2448), S6 (pS235/pS236), 4EBP1
(pT36/pT45), GSK-3β (pS9) and NF-κB p65 (pS529) in
HCT116 cells, further indicating inhibition of the Akt/mTOR
pathway as a mechanism of action [95]. Another compound,
RuZ2, demonstrated an IC50 of 4.05 μM in ovarian
carcinoma SKO3CR cells. RuZ2 upregulated beclin-1, PINK1,
Parkin, cleaved-caspase-3, caspase-9, and cytochrome c,
while downregulating FNUDC1 and p62, suggesting a
mechanism of cell death via mitophagy related-apoptosis
[96]. Similarly, the ruthenium complex Ru-UCN1 was found
to induce apoptosis in AGS cells by overexpressing p53,
PUMA, and caspase-3 [97]. Another ruthenium compound,
[Ru(η6-anethole)(en)X]PF6I, also induced significant
overexpression of pro-apoptotic genes as caspase-3, PUMA,
and DIABLO in AGS cells, supporting a mechanism of
apoptosis similar to that seen with other ruthenium
compounds [98]. Continuing this trend, another ruthenium
compound, named complex-6, was shown to activate
caspase-9 in dose- and time-dependent manner, along with
up-regulation of BAX and cleaved-caspase-3, and
downregulation of Bcl-2 in NCI-H460 lung cancer cells. This
suggests that complex-6 induces caspase-mediated apoptosis
through the intrinsic mitochondrial pathway in these cells
[99]. A ruthenium biochanin-A compound has also been
shown to induce apoptosis and cell cycle arrest in A549 lung
cancer cells by activating caspase-3, while downregulating
PI3K, TNF-α, TGF-β, and PPARγ in a dose-dependent
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manner [100]. Interestingly, this same compound was tested in
vivo in Balb/c mice and was found to upregulate p53 and
caspase-3 expression, while downregulating Bcl-2 in lung
tissue [94]. Additionally, another ruthenium compound, a
dendrimer named CRD13, was tested in Balb/c mice injected
with 4T1 breast cancer cells. After 28 days of treatment with
CRD13, tumor size decreased by nearly 50% compared to
untreated control animals, and the ruthenium dendrimer did
not affect the weight of mice [101].

An interesting ruthenium compound, NKP-1339, has
undergone both preclinical and clinical testing. The
biodistribution of this molecule was evaluated at different
times in Balb/c mice bearing CT26 allograft (a murine colon
cancer cell line). The study revealed that NKP-1339 initially
accumulated in the serum within the first 4 h, after which
its concentration gradually decreased. The kidneys and liver
also accumulated the compound, likely due to their role in

excretion and clearance. Only trace amounts of ruthenium
were found in the brain, bones, and muscles up to 72 h
post-administration. While ruthenium concentrations
decreased in all organs over time, the concentration
remained elevated in the kidneys. Notably, the tumor tissue
exhibited higher ruthenium concentration at 24, 48, and
72 h compared to the initial 4 h, indicating preferential
accumulation in the tumor over time [102].

To date, only a few ruthenium compounds have
progressed to clinical trials as antitumor agents, including
NAMI-A, KP1019, KP1339, and TLD1433 (all four in
Table 2) [103]. These trials, which are primarily in Phases I
or II, aim to determine maximal tolerable dose, dose-
limiting toxicities, antitumor efficacy, as well as
pharmacokinetics and pharmacodynamics of these
ruthenium compounds. Details of these clinical studies will
be covered in a separate section.

TABLE 2

The table represents some examples of the anti-cancer activity of ruthenium-based compounds

Structure Ruthenium
compounds

In vitro or in vivo activity Mechanism of action Reference

[Ru
(dip)2(PPβC)]
PF6

It exhibits cytotoxic activity
against A549, HeLa, HepG2 and
MCF-7 cancer cells

Inhibits mitochondrial DNA
topoisomerase I, thereby
inducing caspase-mediated
apoptosis

[85]

Ru-Cyn-1 Induces a 106-fold increase in
cytotoxicity when
photoactivated in colon cancer
CT26 cells

It accumulates preferentially in
the mitochondria and is able to
promote the generation of both
Type I and Type II ROS

[93]

NAMI-A Has been evaluated in patients
with NSCLC

It can inhibit the formation of
new blood vessels, inhibiting
tumor metastasis. In addition,
integrin α5β1 has also been
proposed as a mechanism of
action

[103]

A+ = Na+

KP1339 A+ =
IndH+

KP1019

It exhibits cytotoxicity in various
types of tumor cells in vitro,
including colorectal and ovarian
cancer cells. Shows affinity for
transport proteins such as
transferrin, facilitating its
cellular distribution.

It affects intracellular ROS levels,
induces apoptosis through
mitochondria or the MAPK/P38
pathway, and blocks the cell cycle
in the G2/M phase.

[103]

(Continued)
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Copper compounds
Copper is an essential metal involved in various redox processes
and has emerged as a promising candidate for the development
of new anticancer drugs. Copper can damage DNA, arrest the
cell cycle, and induce apoptosis in tumor cells. Additionally,
copper depletion has been shown to suppress angiogenesis,
thereby inhibiting the neovascularization tumor of tumors
[104,105].

Copper is primarily ingested in the form of Cu(II), which
must be processed by intestinal cells for use by the body. These
cells contain reductases on their surface, that reduce Cu(II) to
Cu(I), facilitated by divalent metal transporters 1 (DMT1),
while the copper transporter protein (CTR1) helps Cu(I)
enter the cell. Once inside, it binds to the antioxidant
chaperone protein 1 (ATOX1), which directs copper to the
transporter proteins ATP7A and ATP7B. Copper is then
bound to ceruloplasmin, which distributes it to various
organs and tissues [106].

Intracellular copper concentrations must be tightly
regulated, as elevated levels can lead to cytotoxicity and
apoptosis. The FDX1 protein plays a crucial role in copper-
induced cell death by acting as a reducing factor that
converts Cu(II) to the more toxic Cu(I) form, increasing
intracellular copper concentrations. This leads to the rapid
generation of reactive oxygen species (ROS), which causes
oxidative stress and ultimately triggers apoptosis [107,108].

Elesclomol (Table 3), a copper ionophere, has
demonstrated high efficiency in inhibiting colorectal cancer
cells (SW480) by inducing copper overload. This molecule
degrades ATP7A, preventing copper from being transported
and eliminated from the cells. The resulting accumulation of
ROS diminishes the transporter responsible for GSH
production, ultimately leading to ferroptosis in the cells
[109]. Ghasemi et al. [110] studied the effect of copper
nanoparticles (CuNPs) on the same SW480 colon cancer
cells, showing that CuNPs induce cytotoxicity and ROS-
mediated apoptosis, this was accompanied by increased
expression of proapoptotic proteins BAX and P53 and
decreased expression of Bcl-2. Similarly, in the breast cancer
cell line (MCF-7), CuNPs were found to increase the
expression of P53 and BAX, and the activation of caspase-8

and -9, suggesting that CuNPs trigger apoptosis through
both intrinsic and extrinsic pathways [111].

In addition to inducing oxidative stress, copper, like
other metals, can interact with DNA and cause genetic
damage due to its reactive and redox-active nature, which
allows it to bond with various functional groups.
Researchers have explored these characteristics by binding
copper with ligands such as 5-fluoracyl and phenanthrolines
to enhance their anticancer properties [112,113]. For
example, two Cu(II) complexes [Cu (bpy)2L1] BF4·CH3OH
and [Cu(phen)2L1] BF4·H2O, with L1 = 5-fluorouracil-1-yl
acetic acid (Table 3), were studied as anticancer agents
against colon cancer cells (HCT116) and triple-negative
breast cancer cells (TNBC) (MDA-MB-231), demonstrating
cytotoxic effects on both cell lines. This study also showed
that DNA binding by Cu(II) is enhanced when conjugated
to 5-fluorouracil [113]. In an effort to reduce the side effects
of copper-based molecules, researchers have formulated
ligands that are selective for tumor cells. One example is the
development of curcumin-derived ligands, as curcumin itself
has demonstrated anticancer properties. Curcumin-copper
complexes have shown cytotoxic effects in breast cancer
cells, with IC50 ranging between 2.3–7.1 μM, significantly
lower than carboplatin (IC50 = 359.3 μM). Moreover, these
compounds were tested in human umbilical vein endothelial
cells (HUVECs), showing a higher IC50, which indicates
lower cytotoxicity compared to carboplatin, making them
promising alternatives with selective toxicity for cancer
cells [114].

Recent research has explored the effects of copper
compounds on other types of cancer cells. Machado et al.
[115] tested the cytotoxic activity of copper in OVCAR3
ovarian and PC3 prostate cancer cells, finding high
anticancer activity in both cell lines. In PC3 cells, these
copper compounds were 7 to 22 times more active than
cisplatin. When investigating the mechanism of cell death in
OVCAR3 cells, the induction of apoptosis was indicated as
the main mechanism, ruling out oxidative stress as a
contributing factor.

Additionally, two copper complexes, [Cu(Trop)Sac] and
[Cu(Trop)Cl] (Table 3), which contain a tropolone structure

Table 2 (continued)

Structure Ruthenium
compounds

In vitro or in vivo activity Mechanism of action Reference

TLD-1433 Has been evaluated in patients
with non-muscle-invasive
bladder cancer (NMIBC)

Is activated with light activation,
generating cytotoxic singlet
oxygen and radical oxygen
species, leading to cell death.

[103]

METAL-BASED MOLECULES IN THE TREATMENT OF CANCER 765



along with saccharin or chlorine, have been studied for their
anticancer effects. These compounds were tested in colon
cancer cells, where the chlorine-containing molecule
[Cu(Trop)Cl] exhibited antiproliferative effects, a property
not observed with the saccharin-containing molecule
[Cu(Trop)Sac]. However, in migration assays, both
molecules inhibited cancer cell movement, with [Cu(Trop)
Sac] demonstrating a stronger effect. This suggests that both
[Cu(Trop)Sac] and [Cu(Trop)Cl], hold potential as
therapeutic agents for reducing invasiveness and metastasis
in colon cancer [116].

Gold compounds
Since the FDA approved the gold compound auranofin
(Table 4) for the treatment of rheumatoid arthritis in the
1980s, interest in gold compounds for therapeutic
applications has significantly increased [117]. Gold(I) and
gold(III) ions can be conjugated to various atoms such as
nitrogen, phosphorus, selenium, carbon, and others, resulting
in complexes with diverse geometric configurations. The
multiple oxidation states, high electronegativity, and electron

affinity of gold make its complexes promising candidates for
cancer therapy. These complexes can modulate immune
responses, inhibit key enzymes involved in cell proliferation,
and induce apoptosis [118–120].

Gold(I) compounds have a lower affinity for DNA but
show a strong preference for sulfhydryl, thiol, and
selenocysteine groups in important protein targets
[121,122]. For instance, gold(I) interacts with the thiol and
selenol groups of thioredoxin reductases (TrxRs), inhibiting
their normal function. Since TrxRs are critical for
maintaining cellular redox homeostasis, their inhibition
leads to elevated intracellular ROS levels, oxidative stress,
and ultimately, apoptosis [123]. Gold(I) compounds also
bind to the sulfhydryl groups of DNA polymerases,
impeding their action and reducing the acuracy of DNA
replication, triggering programmed cell death. While
gold(III) compounds also induce apoptosis, they do so
through different mechanisms. In physiological conditions,
ligands such as diphosphines, terpyridines, dithiolates, and
diamines stabilize gold(III). Notably, terpyridine-based
gold(III) complexes form strong, irreversible bonds with

TABLE 3

The table represents some examples of the anti-cancer activity of copper-based compounds

Structure Cooper
compound

In vitro and in vivo activity Mechanism of action Reference

Elesclomol-
Cu2+

complex

Shows high efficiency in
inhibiting colorectal cancer
cells (SW480)

It induces degradation of ATP7A,
preventing copper elimination.
Increases ROS and decreases GSH,
leading to ferroptosis.

[109,110]

[Cu
(phen)2L1]
BF4H2O
(Z9)

It induces cytotoxic effects on
colon cancer cells (HCT116)
and triple-negative breast
cancer cells (TNBC)

Induction of apoptosis in cancer cells
through interaction with DNA and
oxidative stress

[113]

Cu(Trop)
Cl

Inhibition of cell proliferation
in colon cancer cells. Reduces
cell migration

Interaction with DNA, causing
genetic damage. Generation of
oxidative stress due to its redox-
active nature

[116]
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DNA, a key mechanism underlying their potent
antiproliferative effects in cancer cells [124].

Studies have shown that [C^N]Au(III) cyclometalated
gold compounds with a norbornane scaffold and secondary
diamines exhibit antiproliferative effects on ovarian cancer
cells. These compounds demonstrate high toxicity toward
glycolysis-dependent cells compared to cells reliant on
oxidative phosphorylation, suggesting that, unlike other
metal-based drugs, they do not cause damage to
mitochondria [125]. Other research has explored gold
compounds as a means of overcoming cisplatin resistance in
ovarian cancer cells. In a recent study, the cytotoxicity of
four molecules [Au(mnt)2]

−, [Au(i-mnt)2]
−, [Au(cdc)2]

−

and [Au(qdt)2]
− was evaluated in ovarian cancer cell lines

A2780 and A2780cisR (cisplatin resistant). After 48 h of
exposure, the IC50 values ranged from 0.9 to 5.5 μM in both
cancer cell lines, demonstrating strong cytotoxic effects [126].

Another study conducted on MDA-MB-231 cells, a
model of TNBC, revealed that the gold compound Au4BC
(Table 4) exhibited cytotoxic effects, causing a dose-
dependent reduction in cell viability. This was accompanied
by a significant increase in γ-H2AX levels, a marker of
DNA damage that is recruited to double-strand break sites
to facilitate DNA repair, as well as an increase in ROS
levels. These findings suggest that Au4BC may induce cell
death by modulating ROS levels within the cells [127].
Similarly, AuPhos-89 (Table 4), a gold(III)-bisphosphine
complex, demonstrated alterations in biological pathways
related to inflammation and mitochondrial function in
MDA-MB-231 cells. AuPhos-89 appears to induce apoptosis
by modulating oxidative phosphorylation and redox

pathways, impacting mitochondrial metabolism. In vivo
studies using a murine model of TNBC showed that
AuPhos-89 significantly inhibits tumor growth, positioning
it as a promissory compound for cancer treatment [128].
Other molecules, such as alkylgold(III) compounds, have
also shown cytotoxic effects in MDA-MB-231 and MCF-7
breast cancer cell lines, particularly when irradiated with
UV light. The cytotoxicity of these photoreactive
alkylgold(III) compounds is significantly enhanced in the
presence of light, suggesting a light-dependent activation
mechanism. This ability to selectively activate compounds
using UV light offers greater precision in drug delivery,
potentially reducing systemic toxicity and improving
therapeutic efficacy [129].

Giuso et al. [130] evaluated the anticancer potential of
four binuclear biphenyl organogold(III) complexes, of
general formula [(C^C)Au(Cl)(L^L)(Cl)Au(C^C)]
(Table 4), across various cellular models. Notably, one of
these complexes demonstrated potent antiproliferative
effects in A549 lung cancer, MDA-MB-231 breast cancer,
and A2780 ovarian cancer cells, with IC50 values of 0.13,
0.20 and 0.07 μM, respectively. The most surprising finding
was that these compounds significantly lower cytotoxicity
against non-cancer cells compared to cisplatin, which is a
highly desirable feature in anticancer compounds.

Despite the growing body of research on gold complexes,
further studies are needed, particularly in preclinical models,
followed by clinical trials to fully assess their therapeutic
potential.

Some examples of the anti-cancer activity of gold-based
compounds can be seen in Table 4.

TABLE 4

The table represents some examples of the anti-cancer activity of gold-based compounds

Structure Gold
compound

In vitro activity Mechanism of action Reference

Auranofin Inhibits the proliferation of
TNBC cell line MDA-MB-231

Inhibits TrxR, leading to increased
intracellular ROS levels, causing
oxidative stress and apoptosis. Affects
DNA polymerases and induces
apoptosis

[117]

Au4BC Dose-dependent reduction in
cell viability of HCC (Huh7)
and TNBC (MDA-MB-231) cell
lines

Induction of cell death by modulating
intracellular ROS levels. Increases γ-
H2AX levels, suggesting DNA damage
and activation of repair mechanisms

[127]

(Continued)
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Palladium compounds
Palladium(II) and platinum(II) species show certain structural
and thermodynamic similarities, making palladium(II)
complexes an interesting alternative to platinum-based
drugs. Recent studies have shown that several palladium(II)
complexes exhibit greater bioactivity compared to platinum
(II)-based drugs. Moreover, these palladium(II) complexes
have demonstrated low toxicity and high specificity [131].
Palladium complexes could bind strongly with DNA via the
minor groove and show good binding affinity for bovine
serum albumin (BSA), which may facilitate their targeted
delivery to tumors [132–134].

Palladium-based nanomaterials also exhibit strong
absorption in the near-infrared (NIR) region, with high
photothermal conversion efficiency, photothermal stability,
and biocompatibility. These properties make palladium-based
compounds plausible candidates for photothermal therapy,
where the drugs are activated by light to selectively target
cancer cells [135].

Palladium(II) complexes with thioamide ligands have
shown potential as anticancer agents. The presence of
aromatic N-donor motifs enhances their activity, while
sulfur offers diverse coordination possibilities for metal
centers, contributing to their effectiveness [136,137].
Palladium complexes are thought to be less toxic than
cisplatin. For example, the median lethal dose (LD50) of
cisplatin administered orally to rats is approximately
270 mg/kg, whereas the LD50 for palladium is over
2700 mg/kg, indicating tenfold lower toxicity [136].

Palladium is capable of inducing mitochondrial
dysfunction through the increase of mitochondrial ROS,
alteration of membrane potential, and release of
cytochrome c. This mitochondrial disturbance can alter
oxidative phosphorylation in cells treated with palladium
complexes, thereby affecting cell viability and increasing the
likelihood of apoptosis [138].

One study evaluated the cytotoxicity of various
palladium(II) triphenylphosphine complexes of thioamides
against the human prostate cancer cell line, PC3. In
particular, the complexes [Pd(Tu)2(PPh3)2]Cl2, [Pd
(Dmtu)2(PPh3)2]Cl2, and [Pd(Mpm)2(PPh3)2]Cl2 exhibited
notable cytotoxic activity, with IC50 values of 18.30, 5.80,
and 8.17 µM, respectively, which are desirable for antitumor
agents [139].

Another study on breast cancer cell lines, MCF7, MC4L2,
and 4T1, demonstrated that the palladium compound L2PdCl,
containing thioamide ligands, was capable of inhibiting cell
proliferation with an IC50 value of 20 µM across all cell lines
after 48 h of treatment. Two other palladium compounds
were also evaluated, but their IC50 values ranged from 40 to
100 µM [136].

A recent article evaluated a photoactivable palladium
compound, PdL (Table 5), in tumor xenografts of human
skin melanoma (A375) in nude mice. PdL showed minimal
inhibition of tumor growth in the dark; however, when the
animals were irradiated with green light 12 h after drug
injection, tumor growth was strongly inhibited. Additionally,
PdL exhibited low cytotoxicity in healthy organs, indicating
its potential for selective cancer treatment [140].

Another recent study evaluated the anticancer potential
of several palladium-based drugs in vitro and in vivo in lung
adenocarcinoma models. Palladium compounds were tested
in A549 and Spc-A1 lung cancer cell lines, with IC50 values
ranging from 2 to 26 µM, while in the normal cell line
293T, the IC50 values ranged from 119 to 172 µM. Notably,
a compound called 9a (Table 5) showed IC50 values of 2.4
and 7.28 µM in A549 and Spc-A1 cell lines, respectively,
compared to 130.56 µM in 293T cells, demonstrating
selective toxicity towards cancer cells. Flow cytometry
analysis confirmed that compound 9a induced apoptosis in
lung cancer cells. Furthermore, 9a activated caspase-3 and
-9, and downregulated the antiapoptotic gene Bcl-2. In

Table 4 (continued)

Structure Gold
compound

In vitro activity Mechanism of action Reference

AuPhos-89 Disruption of pathways related
to inflammation and
mitochondrial function in
TNBC cell line MDA-MB-231

Induction of apoptosis by modulating
oxidative phosphorylation and redox
pathways, impacting mitochondrial
metabolism

[128]

[(C^C)Au
(Cl)(L^L)
(Cl)Au
(C^C)]

It exhibits strong
antiproliferative activity against
TNBC cell line MDA-MB-231
and ovary A2780 cells

Not clear [130]
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in vivo studies, animals treated with compound 9a showed a
six-fold decrease in tumor weight, highlighting its potential
as a promising anticancer agent [141].

A coumarin-palladium(II) complex, designated as C1,
was evaluated against the pancreatic carcinoma cell line
PANC-1. The IC50 value for C1 in these cells was 3.39 µM.
Flow cytometry showed that treatment with 5 μM of the C1
complex induces 10% necrosis and 20% late apoptosis in the
cells. In comparison, the control drug doxorubicin caused
four times the level of cell death due to necrosis.
Additionally, C1 significantly upregulated BAK and
downregulated Bcl-2 in PANC-1 cells, markers of apoptosis.
Finally, in an in vivo zebrafish-PANC-1 xenograft model,
treatment with 0.5 μM of C1 resulted in a tumor mass
reduction of approximately 60%, demonstrating the
compound’s potent anticancer activity [142].

Some examples of the anti-cancer activity of palladium-
based compounds can be seen in Table 5.

Zinc compounds
Zinc plays an essential role in nutrition and in human health,
with a recommended daily intake of 6.7 to 15 mg per day
[143]. The FDA has approved zinc oxide (ZnO) as a safe
metal oxide, which is less toxic than many other metals and
exhibits low reactivity with active pharmaceutical
ingredients. The pharmacokinetic properties and
biodistribution of ZnO nanoparticles in vivo can be
enhanced using nanotechnology; studies have shown that
orally administered ZnO tends to accumulate in the liver,
kidneys, and lungs. The primary route of ZnO excretion is
through feces, while smaller particles are excreted via urine
[144].

In cancer patients, serum zinc levels often decrease
significantly, disrupting zinc metabolism. This reduction has
been observed in a variety of cancers, including breast,
ovarian, gastrointestinal, lung, thyroid, and esophageal
cancers [145].

ZnO nanoparticles have been associated with anticancer
activity, likely through the generation of ROS, which activates
the release of apoptotic factors from mitochondria, ultimately
inducing cell death. Additionally, ZnO nanoparticles can
interact with the negatively charged environment of tumor
cells, a characteristic of the Warburg effect. ZnO
nanoparticles release Zn(II) ions into the cell nucleus, where
they can interact with DNA and RNA, disrupting processes
such as replication and transcription [146].

The first evidence of the antiproliferative effects of zinc in
cancer was reported in the late 1990s when Liang and
colleagues found that physiological levels of zinc inhibited
cell growth in dose-dependent prostate cancer cell lines
LNCaP and PC-3. Their study demonstrated that zinc
induces G2/M phase cell cycle arrest through the
overexpression of p21 [147].

Since then, several in vivo and in vitro studies have
confirmed the effectiveness of zinc compounds as
anticancer agents and tumor suppressors, primarily through
the modulation of growth-related genes and signaling
pathways [148].

Previous studies using MTT assays, cell clone formation,
Hoechst staining, and flow cytometry have demonstrated that

exposure of PC-3 prostate cancer cells to zinc can enhance the
antitumor activity of paclitaxel (an anti-microtubule taxane)
by nearly 50%. This effect is believed to be mediated
through the mitochondria-dependent apoptosis pathway.
Additionally, an increase in the activation of caspase-3 and
caspase-9 was observed, along with a reduction in the Bcl-
2/BAX expression ratio, all hallmark characteristics of
apoptosis [149]. Subsequent studies further confirmed that
the combination of paclitaxel and zinc affects cell
proliferation in a dose- and time-dependent manner in PC3
and DU145 prostate cancer cells. This drug combination has
also been shown to inhibit prostate cancer cell invasion and
migration by downregulating the expression of TWIST1, a
transcription factor involved in embryonic development and
cancer progression [150].

In more recent research, ZnO nanoparticles were
synthesized in combination with Rubus fairholmianus root
extract (named RFZnO) to investigate their synergistic
cytotoxic effects on breast cancer MCF-7 cells. Rubus
species have been used in traditional medicine due to their
diverse pharmacological properties, and previous studies
have reported the in vitro cytotoxic effects of R.
fairholmianus on colorectal, breast, and lung cancers. The
results demonstrated that RFZnO nanoparticles significantly
increased cytotoxicity in MCF-7 cells (5.22-fold) compared
to untreated controls. Additionally, there was a marked
increase (4.57-fold) in cytochrome c release in the treated
cells. RFZnO nanoparticles also induced the overexpression
of BAX and p53, while downregulating Bcl-2 at both the
mRNA and protein levels. These findings suggest that
RFZnO nanoparticles induce apoptosis in breast cancer cells
through a mitochondria-mediated, caspase-dependent
apoptotic pathway [151].

As mentioned earlier, various natural extracts can reduce
the adverse effects of metal-based drugs while also enhancing
their anticancer activities. In one study, the cytotoxic and
antitumor effects of zinc oxide nanoparticles (ZnO NPs),
prepared with pure curcumin (Green-ZnO-NPs), were
evaluated on the breast cancer cell line MCF-7. The results
showed a significant reduction in MCF-7 cell viability, with
IC50 values of 23.54 and 20.53 μg/mL at 24 and 48 h,
respectively, demonstrating an increase in activity over time.
Curcumin itself did not show anticancer activity before 24 h
of treatment, indicating that it enhanced the anticancer
activity of the zinc nanoparticles.

A recent study also assessed the effect of ZnO, among
other compounds, on the efficacy of cisplatin in MCF-7
cells. The IC50 value for cisplatin alone was 9.1 μg/mL,
whereas the IC50 for the ZnO/cisplatin complex was
2.12 μg/mL at 24 h, more than 4 times lower than cisplatin
alone. Furthermore, flow cytometry analysis showed that the
ZnO/cisplatin complex induced higher early apoptosis
(67.02%) compared to the cisplatin control (53.59%).
Additionally, a chitosan-ZnO/cisplatin complex exhibited a
higher level of late apoptosis (57.75%) compared to the
cisplatin control (35.96%), demonstrating that ZnO can
significantly enhance the anticancer activity of cisplatin [152].

Although the precise mechanism of ZnO nanoparticle
cytotoxicity remains unclear, the most widely accepted
theory involves the intracellular release of Zn(II) ions, along
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with generation of ROS [153]. This mechanism, together with
changes in the expression of pro- and anti-apoptotic genes,
likely contributes to the observed cytotoxic effects.

Iridium compounds
Recently, iridium(III) compounds have shown a great
potential as anticancer drugs, since they can interact with
DNA and induce alteration of mitochondrial function, in
addition to enhancing the generation of reactive ROS,
inducing endoplasmic reticulum stress and apoptosis
[154,155]. Another interesting feature of iridium(III) is its
ability to absorb and emit light, making it a good candidate
for targeted anticancer photodynamic therapy [156]. In this
regard, a recent article evaluated the photoactivity of two
iridium(III) compounds, [Ir(ppy)2(BDIP)](PF6) (Table 5)
and [Ir(ppy)2(MDIP)](PF6), which were tested on A549
lung cancer cells. When cells were treated for 48 h, the IC50

values were 4 and 26.8 μM, respectively. However, when
cells were treated with these iridium compounds and
exposed to white light for 48 h, the IC50 values were 0.7 and
1.8 μM, respectively, which represent a considerable
improvement in the activity of these compounds. The IC50

of cisplatin in these cells was 6.6 μM, indicating that these
photoactivable iridium compounds could be excellent drugs
for targeted therapy [154].

Another recent study performed in A549 lung cell
cancer, B16 melanoma, and HCT116 colorectal cancer cells,
showed that [Ir(piq)2Cl]2 (Table 5) has potent
antiproliferative activity with IC50 values of 2.2, 2.5, and
2.5 μM, respectively, while the IC50 for cisplatin in these
cells was 6.1, 28.8, and 15.3 μM, respectively. Again, these
iridium compounds show significantly greater antitumor

activity compared to cisplatin in the treated cells.
Furthermore, it was determined that this iridium compound
is capable of affecting mitochondrial function opening the
mitochondrial permeability transition pore, elevating ROS,
and inducing a release of cytochrome c, which causes
ferroptosis and pyroptosis. Finally, this iridium compound
was tested in vivo in Balb/c nude mice xenotransplanted
with A549 cells, demonstrating that it was able to induce a
tumor inhibition rate of 34.04% with the treatment of 3.2
mg/kg and of 58.58% with 5.0 mg/kg of drug [157].

In other studies, the A549 cells were treated with the
iridium compound [Ir(bzq)2PPA]PF6 (Table 5) showing an
IC50 of 1.6 μM, while the IC50 values for cisplatin and
oxaliplatin were 18.6 and 13.5 μM, respectively. This
indicates that the iridium compound increases cytotoxicity
in A549 cells more than 10-fold compared to traditional
platinum-based chemotherapy [158]. This increased activity
opens up an interesting opportunity to develop more drugs
of this type that allow the use of low doses with greater
potential.

Some examples of the anti-cancer activity of iridium-
based compounds can be seen in Table 5.

Clinical assays
Clinical trials with platinum drugs
Despite the increasing exploration of alternative therapies,
hundreds of studies published last year alone highlight
ongoing clinical trials using platinum-based drugs, typically
in combination with other treatments, for cancer therapy.

In particular, cisplatin is widely used as a chemotherapy
drug due to its good results and low cost, however, many
cancer patients show partial or no response when treated

TABLE 5

The table represents some examples of the anti-cancer activity of other metal-based compounds

Structure Name In vitro and in vivo activity Mechanism of action Reference

PdL Inhibits tumor growth in
melanoma xenografts when
irradiated with light. Low
cytotoxicity in healthy organs

Photoactivable molecule, induces
the production of ROS in cancer
cells after ligth irradiation.

[140]

9a It exhibits antiproliferative
activity in A549 and Spc-A1
lung cancer cell lines

It induces apoptosis by activate
caspase-3 and -9, and downregulate
Bcl-2 expression.

[141]

[Ir
(ppy)2(BDIP)]
(PF6)

It exhibits antiproliferative
activity in A549 lung cancer
cells

Photoactivable molecule, affects
mitochondrial membrane potential
by releasing cytochrome c, and
activating caspase-3, ultimately
resulting in apoptosis.

[154]

(Continued)
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with cisplatin for a long time and develop resistance. This
cisplatin resistance is partly due to the hypoxic tumor
microenvironment (TME), which results in elevated
expression of HIF-1α, which is involved in the induction of
angiogenesis, changes in the glucose metabolism, cell
proliferation, inhibition of apoptosis, invasion and metastasis,
finally leading to an adaptation to the hypoxic TME [159].

Platinum drugs combined with etoposide and anti–PD-
L1 therapies currently serve as the standard first-line
treatment for extensive-stage small cell lung cancer (ES-
SCLC). In a study involving 457 patients, 227 received
tislelizumab (a human anti–PD–1 antibody) alongside
chemotherapy (180 patients with etoposide plus carboplatin
and 47 with etoposide plus cisplatin), while 230 patients
received placebo plus chemotherapy (181 with etoposide
plus carboplatin and 49 with etoposide plus cisplatin). The
results showed that tislelizumab, when combined with
platinum-etoposide chemotherapy, significantly reduced the
risk of death and improved PFS, ORR, and duration of
response (DoR). These findings suggest that tislelizumab
plus chemotherapy could become the new first-line
treatment for ES-SCLC patients [160].

In another recent study involving 1214 patients with
non-small cell lung cancer (NSCLC), the efficacy of
avelumab (a human anti-PD-L1 IgG1 antibody) was
evaluated in 688 patients, compared with 526 patients
receiving platinum-based doublet chemotherapy. The
differences in OS and PFS between the two groups were not
statistically significant, indicating that platinum-based
therapy remains the best option for patients with high-
expression PD-L1+ NSCLC [161].

Additionally, for patients with EGFR-mutated metastatic
NSCLC, the combination of nivolumab (another human anti-
PD-1 antibody) with platinum-based doublet chemotherapy
(cisplatin or carboplatin) was evaluated in 141 patients,
compared with platinum chemotherapy alone in 143

patients. No significant differences were found in PFS, ORR,
or DoR between the groups, further confirming that
platinum-based chemotherapy is a viable and effective
option for treating metastatic NSCLC [162].

In an interesting study, selenium yeast, a feed additive,
was evaluated for its potential to prevent adverse effects
related to platinum-based combination therapy in patients
with malignant tumors. Selenium yeast, a selenium
supplement, is primarily used to promote the well-being of
patients with tumors, and cardiovascular, or cerebrovascular
diseases. In this study involving 86 patients, 43 received
platinum treatment (cisplatin or carboplatin) combined with
selenium yeast at a dose of 200 μg daily, while the other 43
received platinum treatment without selenium yeast. The
results indicated that patients supplemented with selenium
yeast experienced a significant reduction in adverse
reactions associated with platinum therapy. Benefits
included improved appetite, prevention of weight loss, and
significant pain relief, making selenium yeast a promising
adjunct for managing the side effects of platinum-based
chemotherapy without compromising its efficacy [163].

In Phases I/II study, the efficacy of dendritic cell (DC)
vaccination combined with carboplatin/paclitaxel was
evaluated in 5 patients with metastatic endometrial cancer
(mEC). The results demonstrated that DC vaccination can
be safely combined with carboplatin/paclitaxel
chemotherapy in these patients, suggesting a potential new
synergistic treatment option with promising outcomes [164].

In a retrospective study involving 198 patients with
ovarian cancer, different chemotherapy regimens were
evaluated. Of these, 92 patients (46.5%) received
gemcitabine plus carboplatin, 76 patients (38.4%) received
paclitaxel plus carboplatin, and 30 patients (15.2%) received
gemcitabine plus cisplatin combined with bevacizumab. The
group that received gemcitabine, cisplatin, and bevacizumab
had the highest overall survival (OS) compared to the other

Table 5 (continued)

Structure Name In vitro and in vivo activity Mechanism of action Reference

[Ir(piq)2Cl]2 It exhibits antiproliferative
activity in A549 lung cell
cancer, B16 melanoma, and
HCT116 colorectal cancer
cells

It affects mitochondrial function,
elevating ROS and inducing the
release of cytochrome c, which
causes ferroptosis and pyroptosis.

[157]

[Ir(bzq)2PPA]
PF6

It exhibits antiproliferative
activity in A549 lung cell
cancer

It affects mitochondrial function,
elevating ROS and inducing the
release of cytochrome c.
Additionally, it induces cell cycle
arrest in the S phase and apoptosis
through the AKT-mediated
signaling pathway.

[158]
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groups, suggesting a potential benefit of this combination
therapy [165].

Clinical trials with ruthenium drugs
In a Phase I study involving 31 patients with NSCLC, NAMI-A
combined with gemcitabine was evaluated. Many patients
experienced common adverse effects, including fatigue,
nausea, vomiting, and diarrhea. Out of 15 evaluable patients,
only 1 experienced partial remission, suggesting that NAMI-
A’s efficacy may not surpass that of gemcitabine alone [166].
In 2009, the ruthenium-based drug KP1019 was
administered to 7 patients with various solid tumors to
assess its pharmacokinetics. No dose-limiting toxicity was
observed, likely due to the low solubility of the drug. KP1019
showed low clearance and renal excretion was responsible for
eliminating only a small fraction of ruthenium. Biliary
excretion was suggested as the primary route of elimination
for KP1019. However, the study did not evaluate the drug’s
effect on the tumors [167]. A more recent study evaluated
the safety and tolerability of the photoactivable ruthenium
compound TLD-1433 in 6 patients with non–muscle-
invasive bladder cancer (NMIBC). The study showed that
TLD-1433 was well tolerated, with no serious adverse events.
Three patients were treated with a dose of 0.70 mg/cm2 of
TLD-1433. Drug concentrations in the urine were measured
at 60.1 ng/mL and 0.6 ng/mL at 24 and 72 h, respectively,
and the drug was undetectable after 72 h. Of these three
patients, two achieved complete responses at 180 days,
although one patient developed metastatic disease at 138
days. Overall, TLD-1433 demonstrated good tolerability and
safety, with potential efficacy [168].

Over the past ten years, no clinical trials have been
conducted with KP1019, KP1339, or other non-platinum
metal-based drugs in cancer patients.

Conclusions

Given the increase in cancer worldwide, it has become
necessary to find new drugs capable of inhibiting tumor
growth and inducing apoptosis in cancer cells specifically,
without affecting normal cells, thereby avoiding undesirable
effects on patients. Metal-based drugs therefore appear to
have considerable potential as novel therapeutic agents
against cancer because they display wide chemical diversity
and versatility, exist in different oxidation states, coordinate
diverse types of ligands, exhibit redox activity, and react
with important biomolecules in cells, such as proteins or
DNA. Metallodrugs based on platinum, ruthenium, copper,
gold, palladium, zinc, and iridium exhibit different
mechanisms of action, target different components, and
show varying toxicities, making them a promising avenue
for overcoming drug resistance in cancer treatment.

Platinum-based drugs were the first metal-based
molecules whose antiproliferative activity was described in
the mid-1960s, particularly cisplatin, which was approved by
the FDA in the late 1970s. Since then, the development of
new drugs has progressed rapidly, with drugs such as
carboplatin, oxaliplatin, nedaplatin, lobaplatin, heptaplatin,
and miriplatin, now in clinical use in various countries.
Unfortunately, other metal-based drugs have not been as

successful, with only a few ruthenium compounds—such as
NAMI-A, KP1019, KP1339, and TLD1433—reaching
clinical studies, but only in Phases I or II. No recent clinical
trials have been conducted with other metal-based drugs.

Various copper-based compounds have been tested on
colon, breast, prostate, and ovarian cancer cells,
demonstrating their ability to induce the activity of pro-
apoptotic molecules such as p53, BAX, caspase-8 and -9,
while inhibiting the expression of Bcl-2. Moreover, copper
compounds have been shown to be more effective than
platinum-based molecules in the studies reviewed.

Gold compounds appear to induce apoptosis through
different mechanisms, either by binding to proteins involved
in cell cycle control or directly interacting with DNA.
Interestingly, some gold compounds, unlike other metal-
based compounds, do not cause mitochondrial damage,
while others are photoreactive, suggesting a light-dependent
activation mechanism. These compounds can be activated
by UV light, allowing for greater precision in drug efficacy.

This photoactivatable activity has also been observed in
palladium and iridium compounds, which were tested on
cancer cells, showing greater anticancer activity when
irradiated with light. Similar results were observed in
palladium compounds, which were tested on tumor
xenografts in nude mice, showing higher inhibition of
tumor growth when the animals were irradiated with light.
Other palladium and iridium compounds have also been
evaluated in vivo, showing a significant decrease in tumor
weight in treated animals.

Zinc-based drugs have been combined with other drugs,
such as paclitaxel and cisplatin, showing significantly higher
activity compared to the drugs used alone.

Additionally, interesting studies combining natural
compounds with metal-based drugs were reviewed,
indicating that these not only improve antitumor activity
but also reduce cytotoxicity in normal cells, which could
potentially reduce side effects for patients in future
applications of metal-based compounds.

The limitation of this review is the lack of clinical studies,
so we only analyzed results on some platinum compounds.
However, we did not find clinical studies with other metal-
based compounds, which restricted the discussion on the
topic. We hope that more metal-based complexes, beyond
the well-known platinum-based drugs, can advance to
clinical trials. The in vitro and in vivo results for these
compounds are very promising, but there is a notable lack
of pharmacokinetic and pharmacodynamic studies for many
of these metallodrugs, which are highlighted in this review.

Advancements in these types of studies could provide
new opportunities for millions of cancer patients worldwide.
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