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Abstract: Immunotherapies have demonstrated notable clinical benefits in the treatment of cervical cancer (CC).

However, the development of therapeutic resistance and diverse adverse effects in immunotherapy stem from complex

interactions among biological processes and factors within the tumor immune microenvironment (TIME). Advanced

omic technologies offer novel insights into a more expansive and thorough layer of the TIME. Furthermore,

integrating multidimensional omics within the frameworks of systems biology and computational methodologies

facilitates the generation of interpretable data outputs to characterize the clinical and biological trajectories of tumor

behavior. In this review, we present advanced omics technologies that utilize various clinical samples to address

scientific inquiries related to immunotherapies for CC, highlighting their utility in identifying metastasis

dissemination, recurrence risk, and therapeutic resistance in patients treated with immunotherapeutic approaches.

This review elaborates on the strategy for integrating multi-omics data through artificial intelligence algorithms.

Additionally, an analysis of the obstacles encountered in the multi-omics analysis process and potential avenues for

future research in this domain are presented.

Introduction

Cervical cancer (CC) is one of the most common gynecologic
tumors, primarily caused by persistent human papillomavirus
(HPV) infection. Unlike other tumors, CC involves a long
process of precancerous lesions, making it a preventable and
therapeutically diverse cancer. In recent years, the use of
immune checkpoint inhibitors (ICIs) has led to a paradigm
shift in therapeutic approaches, demonstrating remarkable
clinical efficacy in the management of CC [1]. Currently,
immunotherapy has emerged as a highly effective anti-tumor
strategy, leading to a shift in the traditional CC treatment
approach, which mainly relied on surgery and

chemoradiotherapy. The National Comprehensive Cancer
Network guidelines now endorse immunotherapy as a
primary and secondary treatment for recurrent or metastatic
CC, also showing notable efficacy in locally advanced cases.
However, despite numerous clinical and preclinical studies,
pembrolizumab remains the only Programmed Cell Death
Protein 1 (PD-1) inhibitor approved for CC patients. Studies
indicate clear benefits of combining ICIs with platinum-
based chemotherapy in treating this disease [2]. The
Keynote-158 [3], Keynote-826 [4], EMPOWER-Cervical 1
(NCT03257267), and Keynote-028 [5] trials have
demonstrated that PD-1 inhibitors, when combined with
chemotherapy, are more effective than chemotherapy alone
in CC patients. Immunotherapy addresses many of the
limitations of surgery and chemoradiotherapy, leading to
significant improvements in overall survival (OS). Tewari’s
study highlighted that cemiplimab achieved significant
survival extension compared to single-agent chemotherapy
in patients with recurrent CC after initial treatment with
platinum-based chemotherapy [6]. Despite the significant
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advances in immunotherapy, particularly with ICIs, for CC,
treatment responses can vary significantly among patients.
Therefore, before initiating immunotherapy, it is crucial to
identify effective and reliable biomarkers for screening. This
helps determine the optimal timing for immunotherapy and
which patients are most likely to benefit from it. Current
biomarkers like PD-1 and Programmed Cell Death Ligand 1
(PD-L1) have some predictive value, but their sensitivity
and specificity are relatively low.

The tumor immune microenvironment (TIME) plays a
crucial role in immunotherapies for patients with CC [7].
The intricate and diverse ecosystems within the tumor
microenvironment (TME) significantly influence the
interactions and behaviors of malignant cells with other
cellular populations, which is essential for tumor
progression and the response to immunotherapy (Fig. 1).
Immune cells and their secreted factors are key
components of the TME, with cytotoxic CD8+ T-cells
being primed by various antigen-presenting cells, such as
macrophages, B cells, and dendritic cells, to regulate the
cytotoxic effector T-cell response. Additional prominent
populations that contribute to a protumorigenic response
include myeloid-derived suppressor cells and
immunomodulatory regulatory T-cells, resulting in
immunosuppression and resistance to immunotherapy [8].
Monitoring tumor-infiltrating Tregs in CC may provide
valuable insights, as peripheral Tregs can be recruited to
tumor sites and proliferate through self-antigen recognition
by memory Tregs. In a separate study conducted by our
research group, it was postulated that during the early
stages of HPV infection in CCs, plasmacytoid dendritic
cells (pDCs) might have exerted an anti-HPV function for
a short period [9]. However, as HPV persists and leads to
malignant transformation of epithelial cells, pDCs may
have transitioned to a state of immune anergy and
developed immune tolerance. Based on the above
information, we focused on the TIME as a critical
determinant of immunotherapy in CC.

The rapid advancement of high-throughput sequencing
technologies and the evolution of large-scale computational
analyses, known as omics, have significantly enhanced our
understanding of intratumoral heterogeneity in oncology
[10]. The continuous improvement of biotechnological
omics technologies has enabled researchers to access
information at various levels by utilizing omics data
obtained from clinical samples, thereby revealing previously
unknown immune states of tumors regarding immune
recognition or immune ignorance [11] (Fig. 2). An
emerging trend in this field involves using multi-omics data
analysis to thoroughly understand the complex interplay
between various layers of molecules and the estimated
heritability of diseases. Integrating multi-omics data for
immune characterization has significantly advanced the
validation of potential therapeutic biomarkers, thus
enabling the potential for personalized treatment with ICIs
basis of the tumor immune profile [12].

This review examines recent advances in multi-omics
research to explore the interplay and temporal changes
within the TIME in gynecological malignancies. Furthermore,
this paper explores the use of multi-omics technology to
understand intricate regulatory networks and immune
diversity. Additionally, we provide a comprehensive
summary of the opportunities and obstacles of multi-omics
analysis in the context of gynecological tumors and future
prospects for their integration. The incorporation of multi-
omics dimensions is anticipated to propel advances in
immunomics biology research and facilitate the clinical
translation of CC.

Application of Multidimentional Omics to the TME of CC

Genomics
Genomic methods primarily focus on DNA sequencing to
identify specific mutations associated with genetic
carcinogenesis and analyze chromosomal rearrangements to
characterize cancer types or subtypes [13]. Second-generation

FIGURE 1. Emerging immunotherapy strategies adapted to the TlME in CC. The antigen-presentation (by the antigen-presenting cells, such
as macrophages, B cells, and dendritic cells) in tumor-draining lymph nodes activates T-cell. Activated T-cells help antibody class-switching,
and production of tumor-specific antibodies. ICI treatments (Anti-PD-1, Anti-PD-L1 and Anti-CTLA-4 therapies) leverages the TME to
suppress the immune evasion mechanisms of tumor cells, thus providing opportunities for the development of novel therapeutic strategies.
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sequencing, also known as next-generation sequencing (NGS),
provides a practical solution to these challenges. NGS systems
typically involve five main steps: nucleic acid extraction, library
construction, template amplification, sequencing reaction, and
data analysis [14]. Single-molecule sequencing (SMS) has
advanced by sequencing DNA molecules individually. SMS
does not require PCR amplification based on single molecule
electrical or chemical signal detection, enabling individual
sequencing of each DNA molecule. SMS includes Single
Molecule Real Time Sequencing (SMRT) and Nanopore
sequencing technology [15]. Whole Genome Sequencing
(WGS) and Whole Exome Sequencing (WES) are two
primary genomic research technologies. WES can be used to
perform NGS of exon-enriched samples and to identify
protein-coding mutations. It involves three steps: exome
enrichment, high-throughput DNA sequencing, and
biological interpretation [16]. WGS sequences the entire
genome, providing the most comprehensive analysis of the
genome’s spectrum and potential biological consequences. It
enables the discovery of new molecular changes in both
coding and non-coding regions of the genome [17]. 3D
genomics, in contrast to classical genomics, considers the
intricate arrangement of chromosomes and the spatial
positioning of genes, providing deeper insight into
functional, structural regions, and intermolecular interactions
within different regions of a three-dimensional framework
[18]. Genomics techniques allow for the detection and
analysis of pathogenic genes in these tumors, facilitating the
identification of tumor subtypes, prediction of prognosis, and
genetic risk assessment for patients (Fig. 3A).

In addition to detecting DNA sequences, genomic
testing can reveal genetic variations such as gene
mutations, copy number variations, chromosomal

structural variations, and genotype variations. Genomics-
based detection techniques are increasingly employed to
guide the application of immunotherapy strategies for
patients with gynecological tumors in research and clinical
settings. Howitt et al. studied 71 patients with squamous
cell carcinoma of the cervix or vulva to explore the link
between PD-L1 protein expression and abnormalities in the
CD274 and PDCD1LG2 genes. They reported a positive
correlation between high PD-L1 copy numbers and
elevated PD-L1 expression [19]. Similarly, Huang et al.
noted that increased CD274 copy numbers were linked to
increased PD-L1 expression in CC [20]. These results on
the whole suggest that CD274 CN changes could be an
independent predictive biomarker for the ICPI response.
Therefore, it is essential for CC patients receiving PD-L1
immunotherapy to be tested for the coding copy number of
key genes. Li et al. classified immune subtypes of CC
patients basis of the expression of immune-related genes.
Patients with high levels of B cells, CD4+ T-cells, and CD8+

T-cells exhibited increased somatic mutations and
activation of immune pathways, indicating a positive
relationship between immune status and mutation burden
[21]. This classification system can identify the immune
subtypes of cervical squamous cell carcinoma (CSCC) and
discover that patients in the immune-enriched subtype may
benefit more from ICI, while immune-desert subtype
patients could potentially benefit from therapies targeting
G protein-coupled receptor (GPCR) and its downstream
signaling molecules. The GPCR pathway represents a
potential therapeutic target for CSCC. This classification
can aid in personalized treatment approaches for patients
in clinical settings. One study revealed that CC patients
with the PIK3CA-E545K mutation exhibited increased

FIGURE 2. Multi-omics technologies. Tissue and body fluid samples can be analyzed using multi-omics platforms, including genomics,
transcriptomics, epigenomics, proteomics, metabolomics, metagenomics, single-cell omics, and radiomics, using artificial intelligence
algorithms for data integration. Additionally, the current clinical challenges that omics research may encounter are summarized.
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PD-L1 transcription and translation compared with those
with wild-type PIK3CA, leading to reduced CD8+ T-cell
differentiation in patients with this mutation [22]. Notably,
a CC patient with systemic metastasis and the PIK3CA-
E545K mutation achieved a complete lesion response after
receiving only pembrolizumab treatment. The study found
that PIK3CA mutation alone or in combination with PD-L1
positivity may serve as biomarkers to identify patients with
CC who would benefit from immune checkpoint blockade
(ICB) therapy. Moreover, in preclinical studies of CC,
PI3Kα inhibitors enhanced the anti-tumor efficacy of PD-1
blockade, suggesting their potential as a choice for
personalized clinical treatment, warranting further clinical
and mechanistic research. Moreover, CD8+ T-cell
infiltration in tumors is influenced by the PARP1 gene,
with mutations in PARP1 potentially indicating increased
infiltration [23]. In summary, genomic detection methods
are increasingly used in CC immunotherapy to identify
genetic abnormalities and immune cell statuses, guiding
treatment strategies.

Epigenomics
The concept of “epigenetics”, as introduced by Conrad
Waddington, pertains to heritable modifications in cellular
characteristics that are not dependent on changes in DNA
sequence [24]. Mutations in chromatin-modifying factors and
overall alterations in the epigenetic environment not only
contribute to the growth of cancer but also offer promising
targets for therapeutic strategies. Current epigenetic studies
have focused mainly on DNA methylation, histone
modifications, nucleosome remodeling, and noncoding RNAs.
DNA methylation involves adding a methyl group to the C5
position of cytosine in DNA with the help of DNA
methyltransferases to form 5-methylcytosine [25]. These
modifications regulate gene expression by recruiting proteins
for gene repression or blocking transcription factors from
binding to DNA. Histones, essential chromatin components,
influence gene expression through chromatin structure
modifications and protein interactions [26]. Genetic and
epigenetic changes within the TME significantly impact
tumor growth, leading to uncontrolled cancer cell

FIGURE 3. Technical principles of multidimensional omics measurements. A, B, C, F, and G are based on sequencing methods, D and E are
based on MS methods, and H is based on imaging methods. (A) Genomics involves DNA extraction, library preparation, sequencing, and
detection of genetic variations; (B) Epigenomics sequencing methods include bisulfite sequencing, chromatin immunoprecipitation
sequencing, determination of open chromatin, and 3D chromatin capture techniques; (C) Transcriptomics involves total RNA extraction,
RNA fragmentation, library preparation, and sequencing; (D) Proteomics involves enzymatic digestion of protein samples, desalting of
peptides, and detection using LC-MS/MS; (E) Metabolomics includes sample preparation, instrument detection, and data analysis; (F)
Metagenomics, typically utilizes 16S rRNA sequencing and shotgun sequencing methods to analyze microbial communities; (G) Single-cell
omics from isolating individual cells from tissue or plasma samples, capturing mRNA, transcribing it into cDNA, amplifying it, and then
sequencing it; (H) Radiomics involves acquisition of imaging data, delineation and segmentation of tumor regions, feature extraction, and
quantification.
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proliferation. The close connection between epigenetics and
human health emphasizes its potential impact on the
discovery of new pharmaceuticals. The most commonly used
method is chromatin immunoprecipitation sequencing
(ChIP-seq) using specific antibodies against modified
histones. After chromatin fragmentation, the protein of
interest is immunoprecipitated along with the associated
DNA fragments [27]. Cleavage Under Targets and Release
Using Nuclease (CUT & RUN) and Cleavage Under Targets
and Tagmentation (CUT & Tag) have become the most
reliable alternatives to ChIP-seq. In CUT & RUN [28], cells
are fixed on concanavalin A-coated magnetic beads to
permeabilize the cell membrane, antibodies targeting the
desired DNA-binding proteins are added, DNA is fragmented
and purified, then DNA is extracted for library construction
and sequencing. Further development led to the CUT & Tag
technology [29], which allows direct attachment of
sequencing adapters to the cleaved DNA, eliminating the
need for library preparation. Alterations in DNA methylation
within tumor suppressor gene promoters, characterized by
widespread hypomethylation and specific hypermethylation,
are significant risk factors for CC development [30].
Consistent promoter hypermethylation silences tumor
suppressor genes (TSGs) in human cancers, indicating that
DNA methylation is a potential target for early cancer
detection and patient prognosis assessment (Fig. 3B).

Considerable focus has been placed on the PAX1 gene,
highlighting its methylation levels as essential biological
markers for the development of CC and the effectiveness of
treatments. These markers are relevant for diagnosing
cervical intraepithelial neoplasia [31], detecting invasive CC
[32], and predicting responses to concurrent radiotherapy
and chemotherapy in CC patients [33]. CSCC, the
predominant histological subtype comprising
approximately 90% of all CC cases, is characterized by the
oncogenic transformation of epithelial tissue cells and
squamous cells. In a groundbreaking study, Yu et al.
utilized a noninvasive histopathological approach to
investigate the methylation status of patients with CSCC,
providing significant insights for forecasting clinical
outcomes and anticipating treatment responses [34]. This
study analyzing gene methylation data identified 14 key
genes related to clinical outcomes in individuals with CC.
These genes were used to construct a robust model for
predicting treatment responses in individuals with CC.
Specifically, the risk model utilizing methylation patterns
was constructed, revealing correlations with immune
system biomarkers such as PD1 and CTLA4. Additionally,
the integration of whole-slide imaging (WSI) for the
analysis of tissue sections led to the creation of a prognostic
model for patient survival utilizing imaging data. The
construction of this model is based on the pathological
features driven by methylation of genes. Patients with this
characteristic in CC can be distinguished in terms of
clinical outcomes, tumor infiltration status, and
effectiveness of immunotherapy. This could enhance
patient management and promote personalized
treatment strategies.

Transcriptomics
Transcriptome analysis examines gene expression profiles by
focusing on all RNA molecules in cells, cell types, or
organisms. The sequencing and analysis of RNA molecules
can reveal gene expression levels, splice variations, and
transcriptional regulation, aiding in the detection of gene
expression changes and interpretation of the TME in cancer
research [35]. Transcriptome analysis, including alternative
splicing assessment, identification of fusion transcripts,
noncoding RNA exploration, and discovery of novel
transcripts, is a valuable tool for understanding cancer
mechanisms, identifying therapeutic targets, conducting
prognostic assessments, and identifying biomarkers [36].
High-throughput methodologies such as microarray and
RNA sequencing are commonly used in transcriptome
analysis. Microarrays are cost-effective but can only assess
genes with known sequences. Traditional RNA-seq, also
known as Bulk RNA-seq, is used to measure gene
expression patterns, isoform expression, alternative splicing,
and single nucleotide polymorphisms [37]. Bulk RNA-seq
enables more sensitive and specific detection of transcripts,
allowing for more quantitative analysis of differentially
expressed genes and detection of genes expressed at lower
levels. Bulk RNA-seq is applied at the tissue and cell
population levels, suitable for comprehensive transcriptomic
sequencing. However, Bulk RNA-seq measures the average
expression levels of genes in tissue and does not explore
detailed structural and functional differences in cell
responses [38]. RNA-seq can capture various types of RNA,
including messenger RNA, microRNA, long non-coding
RNA, and circular RNA [39]. RNA-seq can reveal the
precise locations of transcription boundaries at single-base
resolution, uncover sequence variations within
transcriptional regions, and also provide all essential
information about cellular activities [40]. As the importance
of the TME becomes more widely acknowledged, the
utilization of transcriptomics in gynecological tumors is
increasing (Fig. 3C).

The sensitivity of tumor cells to radiotherapy may be
modulated by the TME, which in turn can be altered by the
biological effects of radiation [41]. A study by Feng et al.
investigated the resistance of cervical carcinoma to radiation
via gene expression microarrays [42]. The results showed a
strong link between Biological Process enrichment and
radioresistance in cervical neoplasms, suggesting that a
synergistic interaction between radiotherapy and the
immune system affects their effectiveness. The genes ZAP70,
CD163, CD247, and CD8B have been identified as signature
genes for predicting CC sensitivity to radiotherapy and are
associated with the TME, and are potential new treatment
targets for CC. Li et al. [43] conducted a study on the
correlation between ACSS2, a conserved nucleosidase that
converts acetate to acetyl-CoA for energy production, and
clinical prognosis as well as tumor immune infiltration in
CSCC. By analyzing paraffin-embedded tissues from 240 CC
patients using tissue microarrays and referencing the Tumor
Immune Estimation Resource (TIMER) database, they
found that ACSS2 expression in CSCC is associated with
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tumor infiltration of B cells, CD4+ and CD8+ T-cells, and
cancer-associated fibroblasts. High ACSS2 expression in
CSCC was linked to a shorter OS, suggesting that ACSS2
could serve as a potential prognostic biomarker for CSCC.
Furthermore, the development of ACSS2 inhibitors might
interfere with immune cells as a therapeutic strategy. Li
et al. [44] used TIMER and UALCAN databases to study
the mRNA expression and methylation data of Nuclear
Factor Erythroid 2-related Factor 2 (NFE2L2) in CSCC
using The Cancer Genome Atlas (TCGA). They utilized
TIMER and the Tumor-Immune System Interactions
Database (TISIDB) to analyze the correlation between
NFE2L2 and CD163, focusing on co-expressed genes in
tumor-infiltrating immune cells. Data analysis revealed a
negative correlation between NFE2L2 and macrophage
CD163 expression levels. This study identified NFE2L2 as a
potential prognostic biomarker associated with CSCC and
related immune infiltration. Wang et al. [45]. conducted a
prognostic analysis using transcriptome and clinical follow-
up data retrieved from TCGA database for CC. They
employed Least Absolute Shrinkage and Selection Operator
with Cox Regression Analysis (LASSO-COX) analysis to
establish a lncRNA risk model associated with prognosis
and copper apoptosis. Tumor Immune Dysfunction and
Exclusion (TIDE) was used to assess immunotherapy
response, showing lower TIDE scores in low-risk patients
with increased checkpoint expression, indicating a stronger
immunotherapy response. The risk model includes six
lncRNAs related to copper apoptosis, demonstrating efficacy
in OS, immune cell infiltration, and immune checkpoint
and drug sensitivity, potentially offering new insights for
personalized treatment of CC.

Proteomics
Proteomics is a discipline that comprehensively studies
proteins within biological systems [46]. The field aims to
understand the structural, functional, and interactive
properties of proteins, along with their expression profiles,
posttranslational modifications (PTMs), and turnover rates.
Proteomic research employs various techniques, with a
shotgun being a common method. Shotgun proteomics
identifies complete proteins by directly detecting peptide
segments obtained from protein enzymatic hydrolysis. The
most commonly used method in shotgun proteomics is to
digest proteins in a mixture, then separate the peptide
segments by liquid chromatography, and then use tandem
mass spectrometry to identify the peptide segments,
matching them with theoretical peptides in the database for
protein identification [47]. Additionally, alternative
proteomic methods, such as top-down proteomics for intact
protein analysis and middle-down proteomics for larger
peptide fragment analysis, provide further insights into
protein composition and behavior. MS is a powerful
analytical technique widely used in proteomics for high-
throughput identification of many proteins, even with
limited clinical samples [48]. Matrix-assisted laser
desorption/ionization (MALDI) and electrospray ionization
(ESI) are widely employed soft ionization methods in MS-
based proteomics. MALDI combined with Time of flight
(TOF) mass spectrometry is utilized for MALDI-MS

imaging, enhancing spatial resolution and rapid data
acquisition [49]. Typical detection procedures involve
protein digestion, analysis of peptide fragments using
MALDI-TOF MS, and comparison of mass fingerprints or
amino acid sequences with databases for protein
identification [50]. ESI allows for database searching of
tandem mass spectra to identify proteins based on their
amino acid compositions. For example, in our research
group, Han and colleagues thoroughly reviewed nucleic acid
and virus detection, laying the groundwork for exploring
potential MALDI-TOF MS-based analytical strategies for
clinical analysis and research [51]. Additionally, Han et al.
devised an enrichment strategy characterized by high
selectivity and specificity for validating phosphorylated
peptides using MALDI-TOF MS [52]. Moreover, owing to
its high level of automation and integration, after separating
clinical samples with LC-ESI-MS, real-time ionization
enables the identification and assessment of proteins and
their posttranslational modifications, especially in the
context of CC (Fig. 3D).

Proteomic analyses have identified disease biomarkers and
treatment targets, enhancing our understanding of cancer
progression and therapy. HPV is the most important single
pathogen in CC, mainly contributing through viral oncogenic
proteins E6, E7, and E5. Hao et al. conducted a proteomic
analysis of cervical exfoliated cells and paired serum samples
from patients with HPV-induced CC and precancerous
lesions. Candidate biomarkers were evaluated using ELISA
and parallel reaction monitoring MS. They found that after
CRISPR/Cas9 gene editing depleted E6/E7 in KoE6/E7 SiHa
cells, levels of ANT3 and FBLN1 were downregulated,
suggesting their expression in CC may be influenced by HPV
infection. FBLN1 and ANT3 could serve as universal serum
protein markers for CC and HPV infection, potentially
enabling the development of an FBLN1 Enzyme-Linked
Immunosorbent Assay (ELISA) kit for early detection of CC
[53]. The TME undergoes complex changes during different
stages of CC progression. Liu et al. conducted a proteomic
analysis using label-free quantitative MS on tissue samples
from stage I and II CC patients [54]. This study revealed that
proteins related to cell growth and intercellular matrix
development are more abundant in the TME of stage II CC
patients than in the TME of stage I CC patients. Multiple
collagen proteins, such as COL12A1, COL5A1, COL4A1, and
COL4A2, were notably upregulated in stage II CC patients,
indicating their importance in the detection of cancer
progression. This study offers valuable insights for early
cancer detection and the development of therapies to address
the immunosuppressive tumor environment.

Metabolomics
Metabolomics primarily focuses on downstream effects on
gene, RNA, and protein expression. It can detect subtle
changes in organisms not captured by other omics methods
[55]. Metabolites are sensitive indicators of cellular processes,
as minor changes in protein expression or structure can lead
to significant alterations in metabolite levels. Additionally,
metabolite changes can signal variations in enzyme and
protein functions [56]. Intermediate metabolites such as
lipids, amino acids, and nucleotides are crucial for cellular
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processes such as inflammation, proliferation, and migration
and are closely linked with immune evasion [57].
Metabolomics measurements employ a wider range of
instruments compared with proteomics and genomics
because of the numerous unique chemicals present among
metabolites, spanning multiple chemical classes. Nuclear
magnetic resonance (NMR) spectroscopy and MS techniques
are crucial for metabolomics analysis. High-resolution magic
angle spinning (HR-MAS) NMR spectroscopy enables
quantitative analysis of metabolites in a safe, non-destructive
manner with minimal sample preparation. Commonly used
gas chromatography-mass spectrometry (GC-MS) or liquid
chromatography-mass spectrometry (LC-MS) is more
suitable for detecting easily ionizable compounds, while ion
suppression commonly found in complex, heterogeneous
mixtures further weakens ionization effects. The complexity
of metabolites, with tens of thousands of distinct chemicals,
presents challenges for comprehensive detection through a
single method. To address this challenge, researchers have
integrated diverse analytical instruments for CC research
based on specific experimental goals. Wang suggested a
method to annotate and quantify metabolites in biological
samples by aligning ions using a spectral-stitching DI-nESI-
HRMS approach in the DIA mode [58]. Metabolomics can
systematically identify and quantify all metabolites in
biological samples, providing essential information about the
cancer status that other omics technologies cannot offer [13].
Metabolomics aids in exploring disease progression and
manifestations by investigating environmental factors in
gynecologic cancer (Fig. 3E).

Compared with serum or tissue samples, vaginal
washings, and swabs are more commonly used to assess
metabolic profiles in clinical settings because of their
noninvasive nature. The main factor linked to cervical
cancer development is persistent infection with HPV. A
study conducted in 2019 analyzed metabolic characteristics
using LC-MS in three patient groups: HPV-negative/positive
status, low-grade cervical intraepithelial neoplasia, and high-
grade cervical intraepithelial neoplasia or CC [59]. The
identification of three-hydroxybutyrate, eicosenoate, and
oleate in distinguishing cancer patients from other groups
with high accuracy, particularly in patients with high-grade
cervical intraepithelial neoplasia dominated by non-
Lactobacillus species, results in metabolic disruptions of
amino acids and nucleotides. The complex virus-host-
microbiota interactions in the cervical-vaginal
microenvironment generate unique metabolic fingerprints,
which could be utilized for future developments in
diagnosis, prevention, or treatment, thereby positively
impacting women’s health outcomes. The cervical-vaginal
microbiota plays a significant role in the development of CC
associated with HPV infection. Zhang et al. [60] conducted
metabolomics analysis on cervical-vaginal secretions and
serum samples from HPV-infected patients, identifying
HPV-specific biomarkers. Their study identified 9,10-
DiHOME, α-linolenic acid, ethylparaben, and glycocholic
acid as potential biomarkers for HPV infection. This
research helps uncover the relationship between cervical
microbiota and serum metabolite changes in HPV infection,
facilitating early screening and treatment initiation for CC

caused by HPV, thereby preventing further tumor
progression. Cervicovaginal metabolomics analysis holds
promise as a diagnostic, preventative, and therapeutic tool
with significant implications for human health.

Metagenomics
Metagenomics is a research method for the study of the
genomes of microbial populations in the environment
through high-throughput sequencing [55]. It is used to
analyze the diversity, composition, and gene content of
microbial communities [61]. In the past, metagenomics
relied on traditional culture methods for biodiversity
analysis. The typical workflow includes DNA extraction,
library preparation, and sequencing on a platform to
minimize sequence biases and artifacts. The initial analysis
focuses on quality control of sequence reads, removing
adapter sequences, low-quality base calls, and contaminant
sequences not originating from the source environment
[55]. Dysbiosis of the gut microbiota can activate Toll-like
receptors, inducing DNA damage and metabolic/hormonal
dysregulation, affecting gastrointestinal tract health and
influencing the prevention, treatment, and prognosis of
gynecological tumors [62]. Studying the connection between
the metagenome and the immune microenvironment of
gynecological tumors is crucial. The microbiota in the
female reproductive tract plays a significant role in
reproductive health and gynecological cancers [63]. Most
microorganisms in the female reproductive tract (FRT) are
present exist in the vagina and are affected by age,
hormones, and hygiene habits. In healthy women of
childbearing age, the vaginal microbiota is usually less
diverse and is mainly dominated by one or more
Lactobacillius species. These lactobacilli help maintain an
acidic vaginal environment and act as a protective barrier
against harmful microorganisms [64]. Nevertheless,
alterations in the microbial composition associated with
certain gynecological cancers may significantly deviate from
this norm and may serve as predictive indicators for the
onset and progression of cancer. With its high-throughput
sequencing, metagenomics can be used to analyze microbial
genomes to improve the understanding of disease
development, aiding in monitoring and immunotherapy
selection for CC patients (Fig. 3F).

This research, which is consistent with the literature,
indicates that changes in Lactobacillus diversity and
abundance within the microbiota may predispose
individuals to high-risk cervical dysplasia (HRCD). This
finding underscores the significance of the metagenome in
shaping the immune microenvironment in CC, which is
crucial for managing gynecological malignancies. In this
study, they used 16S rRNA amplicon sequencing to analyze
the vaginal microbiota in women with HRCD and healthy
controls. They found a marked increase in microbial
diversity in the HRCD group compared with that in the
control group, which was consistent with previous research.
Additionally, Firmicutes was identified as the predominant
phylum in both groups, with a lower abundance in the
HRCD group than in the healthy control group. They
successfully constructed a diagnostic model for HRCD,
biomarkers from the vaginal microbiota have the potential
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to serve as non-invasive diagnostic tools for HRCD, enabling
more precise treatment strategies for CC patients [65].
Alterations in the microflora may potentiate inflammatory
reactions by activating microbial-associated molecular
patterns (MUAPs) and their corresponding pattern
recognition receptors (PRRs), resulting in increased
expression of proinflammatory cytokines such as
interleukin-17 (IL-17) and tumor necrosis factor-α (TNF-α)
[66]. Li et al. utilized 16S rRNA sequencing to explore the
associations among the vaginal microbiome, immune
factors, and CC development [67]. Compared with healthy
controls, CC patients had reduced levels of Lactobacillus
and increased levels of Prevotella and Gardnerella.
Furthermore, increased levels of inflammatory immune
factors such as interferon-γ (IFN-γ)-induced protein 10 (IP-
10) and VEGF-A were detected. These results indicate the
vaginal microbiota and specific immune factors may
represent a potential non-invasive and straightforward
method for predicting CC. Furthermore, VEGF impedes
dendritic cell maturation and promotes tumor immune
evasion, fostering a favorable microenvironment for CC
development. Several studies have assessed the impact of the
gut microbiome on the prognosis of CC patients. Sims et al.
noted significant differences in microbial enrichment
between short- and long-term survivors. Moreover, patients
with higher microbiome diversity showed increased CD4+

lymphocyte tumor infiltration and activation of CD4+ T-cell
subsets expressing ki67+ and CD69+ during radiotherapy
[68]. Consequently, the gut metagenome could be a
prognostic indicator of survival for CC patients undergoing
radiotherapy and chemotherapy. Modulating the gut
microbiota before radiotherapy or chemotherapy may offer
another approach to enhance treatment efficacy and
improve outcomes for CC patients. Mitra et al. discovered
that balancing the gut microbiota may enhance immune
adaptability and reduce gastrointestinal toxicity after pelvic
radiation therapy in CC patients [69]. Łaniewski et al.
detected multiple immune checkpoint proteins in the TME
and found that four immunosuppressive checkpoint
molecules (PD-1, HVEM, LAG-3, and TIM-3) and two
immunostimulatory checkpoint molecules (CD27 and
CD40) were markedly increased in the CC group.
Additionally, the CD40, CD27, and TIM-3 immune
checkpoints exhibit unique differences in CC. PD-L1 and
LAG-3 levels are negatively correlated with Lactobacillus
abundance, while TLR2 is positively correlated. The
interconnection of multiple immune checkpoint proteins is
linked to cancer features, inflammation, and the microbiota
[70]. Additionally, the CD40, CD27, and TIM-3 immune
checkpoints exhibit unique differences in CC. PD-L1 and
LAG-3 levels are negatively correlated with Lactobacillus
abundance, while TLR2 is positively correlated. The
interconnection of multiple immune checkpoint proteins
links cancer features, inflammation, and the microbiota.
Currently, our research group is conducting metagenomic
analysis to evaluate the effectiveness of immunotherapy for
recurrent and metastatic CC. By studying the intestinal and
vaginal microbiomes at different intervals and using a
human intestinal microbial ecosystem simulator, we aimed

to offer valuable insights into immunotherapeutic strategies
for treating CC.

Single-cell omics
Tumors exhibit significant heterogeneity between cancer cells
and TME, featuring diverse cell populations with varied
responses to treatment. Traditional cancer omics methods
struggle to fully capture this cellular-level heterogeneity and
variability [71]. Single-cell technologies offer a promising
approach for profiling the landscape of a single-cell atlas at a
high resolution, revealing biological insights inaccessible
through bulk omics analyses. Currently, single-cell omics,
especially single-cell transcriptomics, are widely used in
gynecological tumor research and have yielded significant
findings. Its crucial role is to dissect the complex TME and
guide the application of immunotherapy for gynecological
tumors. Advancements in single-cell isolation methods,
automation, cost-effectiveness, and increased throughput
have greatly enhanced the sensitivity, accuracy, and efficiency
of single-cell transcriptomics. In gynecological tumor studies
using single-cell transcriptomics, peripheral blood, and
surgically removed tissue are commonly used samples.
Single-cell omics involves amplifying minute amounts of
whole-genome DNA, mRNA, proteins, and metabolites from
isolated individual cells, thereby revealing genetic
information about cellular heterogeneity. The initial step in
single-cell omics is isolating individual cells from tissues.
Common methods for single-cell isolation include mouth
pipetting, serial dilution, robotic micromanipulation, flow-
assisted cell sorting (FACS), and microfluidic platforms [72].
Consequently, selecting an appropriate method for preparing
single-cell suspensions from tissues is crucial and should be
based on the specific circumstances of the study [73].
Advances in single-cell transcriptomics and related omics
technologies have greatly enhanced research on the immune
microenvironment of gynecological tumors (Fig. 3G).

Immunotherapy shows promise for treating CC by
activating immune function. However, its effectiveness is
limited by tumor heterogeneity, the complexity of the TME,
and a limited understanding of lymphatic metastasis
mechanisms in CC. Single-cell omics research has the
potential to significantly impact the field. Through their
investigation of tumor and normal adjacent nontumor
(NAT) tissue from CC patients using single-cell
transcriptomic analysis, Li et al. revealed the extensive
heterogeneity of human CC cells and identified cancer-
associated fibroblasts (CAFs) that could play a role in the
progression of CC [74]. Additionally, they identified four
distinct subtypes of CC—hypoxic, proliferative,
differentiation, and immunoreactive—the stratification of
CC tumors not only enhances our understanding of their
pathogenesis but also accelerates the development of
personalized treatment strategies for CC patients, offering
the potential for more precise prognosis and treatment [74].
Moreover, the TIME is intricately linked to therapeutic
outcomes and prognostic indicators for individuals
diagnosed with CC. Cao et al. conducted a study utilizing
single-cell RNA and T cell receptor (TCR) sequencing
techniques, resulting in comprehensive mapping of the
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immune landscape within CC patients [75]. The findings
revealed a significant enrichment of T and NK cells in the
TME, which transitioned from a cytotoxic phenotype to a
depletion phenotype. Notably, cytotoxic large clone T-cells
were identified as pivotal effector cells in the antitumor
response [75]. The presence of lymph node metastasis
(LNM) in CC patients is a significant prognostic factor and
plays a crucial role in guiding treatment decisions. In a
study by Li et al., single-cell transcriptomics analysis was
conducted on primary tumors, metastatic lymph nodes
(LNs), and normal LN tissues from four CC patients [76].
This study validated MRC1 as a marker for macrophages in
metastatic LNs, suggesting its use as a biomarker for future
tumor therapy. These findings also emphasized the role of
CAFs in immune response modulation within metastatic
LNs. Single-cell transcriptomic research in CC offers
significant insights into tumor heterogeneity, the
complexities of the TME, and lymphatic metastasis
pathways. These findings could advance personalized
diagnostic and therapeutic strategies in clinical practice.

Radiomics
Radiomics techniques provide a noninvasive way to capture
intratumoral heterogeneity using imaging modalities such as
magnetic resonance imaging (MRI), computed tomography
(CT), and positron emission tomography (PET). In 2012,
Lambin et al. introduced radiomics to extract multiple
image features from medical images for better information
retrieval [77]. Radiomics involves five main steps:
acquisition and screening of medical imaging data, manual
or automatical segmentation of regions of interest (ROIs),
and extraction of ROI features using mathematical
algorithms. After eliminating extraneous variables using
machine learning algorithms, feature dimensionality is
reduced. Next, a model is developed and implemented to
address specific clinical issues. Before radiomics, imaging
characteristics were traditionally assessed and described
qualitatively by radiologists or nuclear medicine specialists.
Popular machine learning algorithms such as support vector
machines (SVMs), random forests (RFs), and logistic
regression (LR) were commonly used [78]. Nonetheless,
these subjective assessments are prone to significant
variability within and between observers. This technology
has shown the ability to reveal tumor details that are not
easily visible through visual inspection. Currently, radiomics
holds promise in CC research, mainly in terms of patient
classification and prognosis evaluation using event-time
analysis [79]. These efforts aim to increase diagnostic
accuracy and guide clinical decision-making, but further
prospective studies are needed to validate the efficacy and
utility of radiomics in clinical practice (Fig. 3H).

The management approach for CC patients is tailored
according to the tumor stage and lymph node status.
Research has shown a correlation between splenic 18F-FDG
uptake and systemic inflammatory markers. De Jaeghere
et al. assessed the spleen-to-liver standard uptake value ratio
(SLR) in 18F-FDG PET/CT scans of CC patients, integrating
these findings with survival outcomes, treatment responses,
tumor immune infiltration, and baseline characteristics [80].
The authors utilized univariate and multivariate Cox

regression models to assess the prognostic value of splenic
18F-FDG uptake in predicting outcomes and radiotherapy in
patients with locally advanced CC and its association with
immune status. Some studies have suggested that distinct
subregions exhibit varied responses to treatment or
contribute to disease progression [81]. In contrast to existing
PET/CT radiomic studies that typically analyze tumors as a
whole, Mu et al. developed a model that incorporates
radiomic features from distinct subregions with unique
metabolic profiles [82]. Radiomic features were extracted
from the images, and the LASSO Cox regression method was
used to identify the most significant predictive features with
nonzero coefficients. By generating radiomic features using a
linear combination weighted by the associated coefficients,
researchers can predict the PFS and OS of patients with
locally advanced CSCC who are receiving concurrent
chemoradiotherapy, radiomic features can serve as predictive
and prognostic biomarkers for radiotherapy and
chemotherapy in patients with locally advanced CC.
Currently, there is a temporary dearth of scholarly articles in
the field of CC that employ radiomics to investigate the
TIME. However, there is a wealth of research on concurrent
chemoradiotherapy, with numerous studies demonstrating a
strong correlation between radiotherapy and the TIME.
Radiotherapy-induced immunogenic cell death (ICD) triggers
the upregulation of extracellular calcium-binding proteins,
leading to the release of damage-associated molecular
patterns (DAMPs), such as high mobility group box
(HMGB)1 and adenosine triphosphate (ATP). These
molecules can recruit and activate antigen-presenting cells,
initiating T-cell responses specific to tumor antigens.
Consequently, the potential of exploring the relationship
between immune markers and radiotherapy through
radiomics is promising. Our research group is presently
engaged in a study examining the prognostic implications of
immunotherapy for recurrent and metastatic CC utilizing
MR imaging. This research effort may provide novel
perspectives for assessing the efficacy of immunotherapy for
CC.

Spatial omics
Spatial omics is a rapidly advancing field that maximizes the
utilization of spatial structures to further reveal the positions
of biomolecules within cells and tissues, shedding light on
the spatial relationships of cells and tissues in disease
contexts like CC. Currently, Spatial transcriptomics (ST)
and Spatial proteomics (SP) are extensively studied in this
area. ST enables high-throughput spatial localization
analysis and transcriptomic analysis in biological systems for
various applications. ST technologies mainly encompass
three methods: laser capture microdissection (LCM)-based
approaches, in situ imaging-based approaches, and spatial
indexing-based approaches [83]. LCM methods precisely
dissect individual cells from tissue sections, providing spatial
information about cells. In situ imaging-based methods also
capture spatial information of cells, with the most common
techniques being in situ hybridization (ISH) and in situ
sequencing (ISS). ISH visualizes target molecules using
complementary labeled probes in their native environment
[84]. ISS involves reverse transcription of mRNA into
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cDNA, followed by rolling circle amplification and
sequencing, where primers amplify cDNA from circular
DNA templates [85]. Spatial indexing methods use
barcoding for local hybridization of RNA molecules,
followed by NGS to quantify gene expression profiles,
contrasting with RNA-seq [86]. Compared to RNA-seq, ST
aims to reveal the spatial distribution, subcellular
localization, and interactions of genes within cells, offering
new perspectives on the spatial regulatory mechanisms of
gene expression. SP is a technology focused on studying the
spatial distribution and localization of proteins within cells
and tissues. In SP research, three commonly used
complementary methods include: 1. Organelle analysis based
on MS includes single-organelle analysis and multi-organelle
analysis. Currently, the MS-based methods for multi-
organelle analysis achieve high resolution of organelles,
proteomic coverage, and accurate classification. 2. Protein-
protein interaction studies often use affinity purification-MS,
which is antibody-mediated affinity purification based on
mass spectrometry. 3. Imaging-based SP provides the
opportunity to visualize proteins in their natural cellular
environments without the need for cell lysis or organelle
isolation prior to proteomic analysis [87]. Unlike traditional
proteomics, SP enables the detection of dozens of proteins
without compromising spatial information. Spatial omics
provide precise spatial coordinates of cellular and molecular
spectra at a systemic level, deepening our understanding of
the CC environment.

LNM is a crucial factor in CC outcomes and is strongly
linked to clinical and pathological features. SP sequencing
was used to analyze tissue samples from CC patients with
positive and negative pelvic lymph nodes. This study
revealed a notable increase in the expression of nuclear
speckle-type pox virus and zinc finger protein (SPOP) in the
positive group, with higher levels of SPOP associated with a
significant decrease in OS and recurrence-free survival (RFS)
among patients with CC. Furthermore, SPOP may inhibit
the immune microenvironment by promoting PD-1
dissociation from PD-L1, thereby facilitating pLN metastasis
in CC, leading to poorer OS and RFS in patients. This
finding will expand clinical understanding of CC
progression, and SPOP may emerge as a future therapeutic
target [88]. Furthermore, Guo et al. [89] used single-cell
RNA sequencing and spatial transcriptome techniques to
study cell subset transitions from normal cervical tissue to
precancerous lesions and identified three distinct clusters:
HPV-related normal, High-grade Squamous Intraepithelial
Lesion (HSIL), and cancer and identified key nodes that
may determine disease progression, further revealing
unknown mechanisms of HPV-mediated carcinogenesis.
This study may provide new insights into understanding the
pathogenesis of CC clinically and also offers new
possibilities for precise diagnosis, treatment, and prognosis
prediction for patients with precancerous lesions and CC. A
study by Ou et al. enhanced the understanding of the
immune microenvironment in CSCC. They used scRNA-seq
and spatial boosted resolution histological sequencing to
analyze cervical samples from 2 noncancerous patients and
14 patients with CSCC. A study revealed that a specific
group of myofibroblasts is associated with poorer survival

probabilities in CSCC patients, it predicts resistance to
immunotherapy, and the spatial distribution and potential
functions of myofibroblasts have been validated. These
findings suggest that myofibroblasts in the TME may
facilitate tumor progression and metastasis by inhibiting
lymphocyte infiltration and modulating extracellular matrix
remodeling. The study found that combination therapies
targeting multiple biological processes would be a better
approach for treating CSCC. This research enhances our
understanding of the immune microenvironment in CSCC
and provides new insights into the treatment of advanced
CSCC [90].

Multi-Omics Approaches

Multi-omics analysis enables a thorough investigation of
diverse molecular data across all biological levels, presenting
challenges in deriving significant conclusions from the
increasing quantity of multi-omics data. Our research group
has disseminated numerous articles utilizing multi-omics
methodologies to investigate protein-metabolite associations
in matched plasma samples [91–93]. These investigations
integrate metabolomic and proteomic profiling data,
providing a platform to establish connections between
circulating proteins and metabolites as collaborative partners
in human physiology. Single-cell multi-omics notably
improves traditional scRNA-seq and reveals a more
thorough and conclusive representation of the TIME by
integrating diverse data modalities. In a study that
integrated various omics data in the context of CC, machine
learning techniques were utilized to investigate the
enrichment of tumor-type-specific features. This study
proposed a comprehensive approach demonstrating the
concurrent relationships among the oncogenome,
microbiome modules, and CD8+ T-cells or TAM1 cells,
emphasizing the potential role of the microbiota in either
inhibiting or promoting tumor immune responses [94].
Another notable study examined the influence of
microbiomes, vaginal pH, immunoproteomes, and
metabolomes in cervicovaginal samples obtained from 72
women in Arizona, with or without cervical neoplasms,
utilizing neural networks and random forest supervised
learning techniques. Data integration uncovered associations
between crucial immune regulators and cancer indicators
linked to cervicovaginal health or dysbiosis, as well as the
prevalence of bacterial taxa, indicating interrelations among
the microbiome, metabolome, and immunoproteome. The
authors also revealed MIF as a crucial immune biomarker
linked to vaginal microbiota composition and vaginal pH,
along with IL-6, IL-10, and MIP-1α, in relation to genital
inflammation, emphasizing the complex interplay between
the vaginal microbiota and host immune responses [95].

CSCC exhibits a restricted reaction to ICB therapy. Fan
et al. conducted a thorough multi-omic investigation
involving single-cell RNA sequencing, ST, and SP. The
intricate, spatially detailed profiles of intratumoral
expression heterogeneity in CSCC were established by
integrating genetic and pharmacological interventions. The
different phases of squamous differentiation can be
distinguished on the basis of the tumor status associated
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with epithelial-cytokeratin, epithelial-immune (Epi-Imm),
and epithelial cell senescence. Furthermore, Recombinant
Fatty Acid Binding Protein 5 (FABP5) in Epi-Imm tumors
malignant cells engage with T-cells and NK cells in response
to interferons. The initial examination of a clinical trial
(NCT04516616) focusing on CC suggested that neoadjuvant
chemotherapy elicits a modification in the Epi-Imm state,
leading to pathological complete remission posttreatment
with ICB when neoadjuvant chemotherapy (NACT) is
combined with CSCC immunotherapy, the potential
induction of an Epi-Imm state offers a novel therapeutic
option. These findings provide new insights and treatment
strategies for further management of CC patients [96].
Additionally, research has highlighted the significant
correlations among the metagenomes, metabolism, and
various diseases. HPV has long been recognized as the
primary driving factor for CC. With the widespread
implementation of CC screening and the adoption of HPV
vaccines, it is expected that HPV-related CC rates will
decrease. Therefore, the early diagnosis and treatment of
HPV-independent CC (HPV-ind CC) are highly important.
Wang et al. performed Reverse Transcription-Polymerase
Chain Reaction (RT-PCR) and RNA-seq on 1010 CC
patients to confirm HPV subtypes, and finally, 25 CC were
determined to be HPV-ind. Utilizing WES and RNA-seq
was conducted on HPV-ind CC, yielding a characteristic
spectral profile. The results revealed that HPV-induced CC
is more common in adenocarcinomas, which may also be a
reason for the lower survival rate in adenocarcinomas. And
indicates the importance of PIK3CA mutations and PI3K
pathway activation in tumorigenesis, the PIK3CA mutation
is associated with resistance to CC treatment, suggesting the
potential significance of PI3Kα inhibitors in HPV-ind CC
patients, providing new targets for the treatment of HPV-
ind CC [97]. Previous studies have shown that genes
exhibiting the connection with the tumor microbiome are
predominantly associated with infection-related processes,
TP53 transcription regulation, and antigen presentation.
Correlation analyses involving CD8+ T-cells or TAM-1 cells
suggest the potential involvement of Megasphaera in CC
and Lottiidibacilli in ovarian carcinoma in tumor
immunosuppression. Furthermore, the microbiome genome
prognosis model has displayed robust predictive capabilities
for short-term prognosis, and the study also found that
Tissierella drugs exhibit a certain inhibitory effect on cancer,
potentially offering new therapeutic directions for clinical
applications, and requiring further research and validation
[94]. Owning to the noted connection of tumor angiogenesis
and cuproptosis with the TME, a multi-omics analysis was
performed to profile the high or low cuproptosis-associated
angiogenesis (CuRA) scores using single-cell sequencing
dataset and TCGA dataset and construct a CuRA model for
prognostic evaluation in CC. The model holds promise for
developing innovative prognostic prediction models and
treatment methods for CC patients. Additionally, the study
found that patients with high CuRA had less CD8+ T-cell
infiltration, and most of their immune checkpoint genes
were reduced, making immunotherapy more difficult in
these patients. The study validated an independent
prognostic gene, SFT2D1, which is highly expressed in CC

and positively correlated with microvessel density.
Knockdown of SFT2D1 significantly inhibits the
proliferation, migration, and invasion abilities of CC cells.
CuRA gene features contribute to developing new strategies
for personalized precision treatment of CC patients [98]. A
more recent study conducted by the Yuan Group similarly
focused on the application of multi-omics strategies for
improving the efficacy and prognosis of immunotherapy for
CC. In particular, as gamma-delta (γδ) T-cells serve as a key
component of the TIME, this study further demonstrated
that γδ T lymphocytes could be utilized in the development
of immunotherapies for cervical cancer. Specifically, a
considerably improved prognosis was observed in CCs with
high levels of γδ T-cell infiltration, and they are more
adaptable to anti-tumor immunotherapies such as
treatments of ICI and Tumor Infiltrating Lymphocyte (TIL).
Additionally, noninvasive assessment of γδ T-cell infiltration
in CC tissues can be observed by MRI-based radiomics
models, laying the foundation for more comprehensive
research [99].

Clinical Application

CC is a complex systemic disease, exhibiting abnormalities at
one or multiple levels of omics. Any single omics study is
insufficient to elucidate the complex pathogenesis of CC.
Multi-omics provides a better understanding of information
about a disease, pointing out the direction to discover the
causes, consequences, and related interactions of malignant
tumors. Multi-omics technologies analyze multiple layers of
biology simultaneously, exploring the functions of molecules
at different levels in the biosystem together, and revealing the
specific mechanism of tumor occurrence and development in
a more systematic way. Integrating omics studies overcomes
the limitations of single omics analysis, detecting molecular
differences that single omics alone cannot perceive. This
provides more accurate molecular classification of tumors
and more precise predictions of death or recurrence
probabilities in cancer patients [100]. Currently, the gold
standard for diagnosing CC is still histopathological analysis
of biopsy samples or postoperative pathological
examinations. However, these methods are invasive, and
there is a certain risk of needle tract metastasis with biopsy.
Therefore, utilizing multi-omics approaches to conduct in-
depth analysis of samples from CC patients has expanded the
range of detectable molecular biomarkers facilitating precise
clinical diagnosis and early cancer detection while reducing
the harm caused to patients by biopsies.

By utilizing multi-omics methods, we can accurately
determine the pathological type of the patient, provide a
systematic basis for classification, enable personalized
treatment by selecting the optimal immunotherapy strategy
for each patient, and also enhance the monitoring of internal
changes in patients during the process of immunotherapy,
optimize treatment outcomes and prognosis. To overcome
cancer, integrating multi-omics approaches helps to
understand the molecular mechanisms of tumorigenesis,
development, and drug resistance and provides a theoretical
basis for identifying potential therapeutic targets, immune
escape, and resistance mechanisms, thereby enhancing the
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efficacy of immunotherapy in CC treatment. Tumor malignant
evolution involves complex interactions among various
elements as well as thorough changes in the TME and the
immune system [101]. For the clinic, multi-omics
technologies not only provide the fundamental principles of
molecular subtyping but also guide the development of
individualized intervention which leads to improved prognosis.

Challenges and Prospects

Precision medicine in clinical settings highlights the
importance of using a multi-omics approach for
personalized and predictive medicine in complex diseases
[102]. This approach can distinguish variability among
patients and improve diagnostic accuracy. But there are
some challenges that lie ahead.

Large cohort and large-scale studies are needed to obtain
reliable and comprehensive results. To improve reliability and
minimize external factors, conducting carefully planned
experiments with an adequate quantity of high-quality
samples is crucial. Analyzing the longitudinal and horizontal
dimensions of tumor occurrence and development in CC at
various stages and levels can provide valuable insights.
Variability in samples from patients at different tumor stages
and locations, along with the sampling methodology used,
can greatly influence study outcomes [103]. Consequently,
comparing conclusions from different studies is complex due
to differences in sampling time, location, method, and
instrument parameters. Standardized large-scale studies are
essential. However, clustering large cohorts with long-term
follow-up can be challenging. It poses economic burdens,
especially in studies involving single-cell and specialized
omics. Conducting extensive research in gynecological
oncology omics requires substantial financial resources.

Data processing is a noteworthy step. It is inevitable that
missing values will occur in omics data, especially in single-cell
omics where a large number of missing values may occur.
Statistical and machine learning analyses usually require
complete datasets without missing values. Proper handling of
any missing data is necessary. Deleting features with any
missing values can reduce uncertainty but may also result in
significant data loss. The typical approach is to remove
features with missing values beyond a specific ratio of the
total samples and then impute the remaining missing values.
Different imputation algorithms exist, such as zero, K-nearest
neighbors, and mean value imputation, but no consensus
exists on the best evaluation method for selecting the most
suitable algorithm based on specific circumstances. The usage
of deep learning in gynecologic oncology is hindered by
small sample sizes, especially within individual studies.
Researchers frequently combine and analyze data from
multiple studies to overcome this limitation, a common
strategy in bioinformatics analyses of diseases. However,
differences in sampling procedures, processing methods, and
detection platforms among studies can introduce technical
variations that mask the genuine physiological changes
linked to the disease [104]. There is a lack of gold-standard
unified post-processing data analysis protocols including
normalization, transformation, and scaling to ensure

robustness, reproducibility, and comparability across studies
[105]. Careful data preprocessing and alignment are essential.

Integrating multi-omics data can offer valuable insights
into the mechanisms operating at different biological levels.
Strategies for multi-omics integration include early
integration and late integration. Early integration involves the
concatenation of all omics datasets prior to analysis, and late
integration involves independent interrogation of individual
datasets followed by comparative analysis [106]. Early
integration has the potential to uncover more relationships
between variables from the different layers. However, due
to the heterogeneity and complexity of omics data,
preprocessing before integration is crucial [107]. Integrating
multi-omics data in CC research poses challenges such as
increased computational burden and potential redundancy.
Minimizing redundancy and enhancing computational
efficiency are crucial for preserving data integrity. Current
multi-omics data integration often focuses solely on the data,
overlooking complex biological interactions among
biomolecules. Although models based on machine learning
and neural networks have been proposed to include these
interactions in data analysis, more effort is needed to fully
explore these interactions and the interpretability of results in
omics analysis [108,109]. Pathological images are crucial for
diagnosing and grading CC. Integrating these images with
omics data can potentially improve personalized diagnosis
and treatment. Pathological images consist of extensive high-
resolution image collections, while omics data are
characterized by their structured nature. Further research is
needed to explore methods for effectively integrating image
features and omics data to develop precise diagnostic and
treatment models for CC. Additionally, considering factors
such as medical history, lifestyle choices, tobacco use, and
alcohol exposure in omics data analysis could improve
research outcomes.

Despite progress in omics research on gynecological
tumors, there is a gap between research advances and their
practical use in clinical settings. It is crucial for findings
intended for clinical use to be highly reproducible, which is
often lacking in studies with small sample sizes.
Furthermore, false positives in omics data present a major
challenge in interpreting and applying research findings.
Further experiments are needed to validate the omics
analysis findings. The results must be interpretable, as most
omics analysis outcomes are data-driven. Clarifying the
biological significance of these analytical results is crucial for
improving the understanding of tumor pathogenesis and
developing new clinical diagnostic and therapeutic methods.
The feasibility of applying these discoveries in clinical
practice, considering technical and economic aspects, is
essential for successful translation. Analyzing omics data for
individual patients is resource-intensive, creating financial
and time burdens. Developing user-friendly detection
methods from omics analyses can accelerate research
translation into clinical practice, improving patient outcomes.

Despite ongoing challenges, omics research has enriched
the understanding of gynecological malignancies. As omics
technology matures and analysis algorithms develop, we
expect multi-omics to enhance our understanding of
gynecological tumors. This advancement is crucial for
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driving progress in precision medicine for these tumors. The
evolution of omics technology and algorithms will boost the
effectiveness of multi-omics as a tool for expanding our
knowledge and improving precision medicine for
gynecological tumors.

Conclusions

A comprehensive approach is crucial for understanding the
complexity and multifaceted nature of the immune
microenvironment in precision medicine. The increasing
importance of precision medicine in clinical practice has
highlighted the use of multi-omics strategies in personalized
and predictive medicine for complex diseases. In the
precision medicine of CC, there is potential to discover
more accurate biomarkers for the early prediction of CC,
thus reducing the incidence of cervical cancer. Additionally,
multi-omics strategies can help determine personalized
treatment plans for late-stage CC patients to achieve
personalized treatment and reduce the recurrence rate of
CC. Omics analysis thoroughly examines biological samples
and is key in studying CC. The progress in multi-omics
analysis enhances integrative approaches, leading to a better
understanding and treatment of immuno-oncology.

Acknowledgement: The authors thank Ting Fu and
Zhenzhen Deng from the Shared Instrumentation Core
Facility at the Hangzhou Institute of Medicine (HIM),
Chinese Academy of Sciences for technical support to
proteomics and metabolomics.

Funding Statement: This work was supported by the
Zhejiang Province Traditional Chinese Medicine Science
and Technology Project (GZY-ZJ-KJ-24063), the Natural
Science Foundation of Zhejiang Province (Q24H290031),
and the Key Laboratory for Molecular Medicine and
Chinese Medicine Preparations (No. GZY-ZJ-SY-2303).

Author Contributions: Yue Feng and Hanmei Lou took the
lead in designing the review. Yue Feng, Guanting Pang, and
Yaohan Li were responsible for the initial draft: preparation,
creation, and presentation of the published work. They
specifically handled the writing of the initial draft. Yue Feng,
Jingkui Tian, Hanmei Lou, Qiwen Shi and Guanting Pang
contributed to the critical review, commentary, or revision.
All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The content, figures, and
any information in this manuscript will be made available by
the authors, without undue reservation.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of
interest to report regarding the present study.

References

1. Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P,
Nagarajan A, et al. Immune checkpoint therapy-current
perspectives and future directions. Cell. 2023;186(8):1652–69.

2. Zong Y, Chang Y, Huang K, Liu J, Zhao Y. The role of BATF2
deficiency in immune microenvironment rearrangement in
cervical cancer-new biomarker benefiting from combination
of radiotherapy and immunotherapy. Int Immunopharmacol.
2024;126:111199.

3. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R,
Nakagawa K, et al. Association of tumour mutational burden
with outcomes in patients with advanced solid tumours
treated with pembrolizumab: prospective biomarker analysis
of the multicohort, open-label, phase 2 KEYNOTE-158 study.
Lancet Oncol. 2020;21(10):1353–65.

4. Nishio S, Yonemori K, Usami T, Minobe S, Yunokawa M, Iwata
T, et al. Pembrolizumab plus chemotherapy in Japanese patients
with persistent, recurrent or metastatic cervical cancer: results
from KEYNOTE-826. Cancer Sci. 2022;113(11):3877–87.

5. Frenel JS, Le Tourneau C, O’Neil B, Ott PA, Piha-Paul SA,
Gomez-Roca C, et al. Safety and efficacy of pembrolizumab in
advanced, programmed death ligand 1-positive cervical
cancer: results from the phase Ib KEYNOTE-028 trial. J Clin
Oncol. 2017;35(36):4035–41.

6. Tewari KS, Monk BJ, Vergote I, Miller A, de Melo AC, Kim HS,
et al. Survival with cemiplimab in recurrent cervical cancer. N
Engl J Med. 2022;386(6):544–55.

7. Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic
interplay in the tumor microenvironment. Cancer Cell.
2021;39(1):28–37.

8. Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical
implications of T cell exhaustion for cancer immunotherapy.
Nat Rev Clin Oncol. 2022;19(12):775–90.

9. Xu X, Yuan S, Zhang X, Lou H. Immune response of
plasmacytoid dendritic cells stimulated by human
papillomavirus (HPV) E6 in an in vitro system. Med Sci
Monit. 2020;26:e919770.

10. Seferbekova Z, Lomakin A, Yates LR, Gerstung M. Spatial
biology of cancer evolution. Nat Rev Genet. 2023;24(5):
295–313.

11. Li G, Choi JE, Kryczek I, Sun Y, Liao P, Li S, et al. Intersection of
immune and oncometabolic pathways drives cancer
hyperprogression during immunotherapy. Cancer Cell. 2023;
41(2):304–22.e7. doi:10.1016/j.ccell.2022.12.008.

12. Nam AS, Chaligne R, Landau DA. Integrating genetic and non-
genetic determinants of cancer evolution by single-cell multi-
omics. Nat Rev Genet. 2021;22(1):3–18. doi:10.1038/
s41576-020-0265-5.

13. He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based
multi-omics analysis fuels cancer precision medicine. Semin
Cancer Biol. 2023;88(9):187–200. doi:10.1016/j.semcancer.
2022.12.009.

14. Cheng C, Fei Z, Xiao P. Methods to improve the accuracy of
next-generation sequencing. Front Bioeng Biotechnol.
2023;11:982111. doi:10.3389/fbioe.2023.982111.

15. Zhao LY, Song J, Liu Y, Song CX, Yi C. Mapping the
epigenetic modifications of DNA and RNA. Protein Cell.
2020;11(11):792–808. doi:10.1007/s13238-020-00733-7.

16. Zhang X. Exome sequencing greatly expedites the progressive
research of Mendelian diseases. Front Med. 2014;8(1):42–57.
doi:10.1007/s11684-014-0303-9.

17. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants
in common disease through whole-genome sequencing. Nat
Rev Genet. 2010;11(6):415–25. doi:10.1038/nrg2779.

18. Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T.
Dynamic interplay between enhancer-promoter topology and

OMICS SCIENCES FOR CERVICAL CANCER PRECISION MEDICINE 833

http://dx.doi.org/10.1016/j.ccell.2022.12.008
http://dx.doi.org/10.1038/s41576-020-0265-5
http://dx.doi.org/10.1038/s41576-020-0265-5
http://dx.doi.org/10.1016/j.semcancer.2022.12.009
http://dx.doi.org/10.1016/j.semcancer.2022.12.009
http://dx.doi.org/10.3389/fbioe.2023.982111
http://dx.doi.org/10.1007/s13238-020-00733-7
http://dx.doi.org/10.1007/s11684-014-0303-9
http://dx.doi.org/10.1038/nrg2779


gene activity. Nat Genet. 2018;50(9):1296–303. doi:10.1038/
s41588-018-0175-z.

19. Howitt BE, Sun HH, Roemer MG, Kelley A, Chapuy B, Aviki E,
et al. Genetic basis for PD-L1 expression in squamous cell
carcinomas of the Cervix and Vulva. JAMA Oncol. 2016;2(4):
518–22. doi:10.1001/jamaoncol.2015.6326.

20. Huang RSP, Murugesan K, Montesion M, Pavlick DC, Mata
DA, Hiemenz MC, et al. Pan-cancer landscape of CD274
(PD-L1) copy number changes in 244 584 patient samples
and the correlation with PD-L1 protein expression. J
Immunother Cancer. 2021;9(5):e002680. doi:10.1136/jitc-
2021-002680.

21. Li Y, Lu S, Wang S, Peng X, Lang J. Identification of immune
subtypes of cervical squamous cell carcinoma predicting
prognosis and immunotherapy responses. J Transl Med.
2021;19(1):222. doi:10.1186/s12967-021-02894-3.

22. Jiang W, Ouyang X, Li C, Long Y, Chen W, Ji Z, et al. Targeting
PI3Kα increases the efficacy of anti-PD-1 antibody in cervical
cancer. Immunology. 2023;170(3):419–38. doi:10.1111/imm.
13682.

23. Zhang X, Wang Y, A. G, Qu C, Chen J. Pan-cancer analysis of
PARP1 alterations as biomarkers in the prediction of
immunotherapeutic effects and the association of its
expression levels and immunotherapy signatures. Front
Immunol. 2021;12:721030. doi:10.3389/fimmu.2021.721030.

24. Feinberg AP, Levchenko A. Epigenetics as a mediator of
plasticity in cancer. Science. 2023;379(6632):eaaw3835. doi:10.
1126/science.aaw3835.

25. Heras S, Smits K, De Schauwer C, Van Soom A. Dynamics of 5-
methylcytosine and 5-hydroxymethylcytosine during
pronuclear development in equine zygotes produced by ICSI.
Epigenetics & Chromatin. 2017;10(1):13. doi:10.1186/s13072-
017-0120-x.

26. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R.
Histone post-translational modifications—cause and
consequence of genome function. Nat Rev Genet. 2022;23(9):
563–80. doi:10.1038/s41576-022-00468-7.

27. Panara V, Monteiro R, Koltowska K. Epigenetic regulation of
endothelial cell lineages during zebrafish development-new
insights from technical advances. Front Cell Dev Biol.
2022;10:891538. doi:10.3389/fcell.2022.891538.

28. Skene PJ, Henikoff S. An efficient targeted nuclease strategy for
high-resolution mapping of DNA binding sites. eLife. 2017;6:
e21856. doi:10.7554/eLife.21856.

29. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD,
Henikoff JG, et al. CUT&Tag for efficient epigenomic
profiling of small samples and single cells. Nat Commun.
2019;10(1):1930.

30. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet.
2010;70(Suppl. 2):27–56. doi:10.1016/B978-0-12-380866-0.
60002-2.

31. Nikolaidis C, Nena E, Panagopoulou M, Balgkouranidou I,
Karaglani M, Chatzaki E, et al. PAX1 methylation as an
auxiliary biomarker for cervical cancer screening: a meta-
analysis. Cancer Epidemiol. 2015;39(5):682–6.

32. Xu J, Xu L, Yang B, Wang L, Lin X, Tu H. Assessing methylation
status of PAX1 in cervical scrapings, as a novel diagnostic and
predictive biomarker, was closely related to screen cervical
cancer. Int J Clin Exp Pathol. 2015;8(2):1674–81.

33. Li X, Zhou X, Zeng M, Zhou Y, Zhang Y, Liou YL, et al.
Methylation of PAX1 gene promoter in the prediction of

concurrent chemo-radiotherapy efficacy in cervical cancer. J
Cancer. 2021;12(17):5136–43.

34. Yu YC, Shi TM, Gu SL, Li YH, Yang XM, Fan Q, et al. A novel
cervix carcinoma biomarker: pathological-epigenomics,
integrated analysis of MethylMix algorithm and pathology for
predicting response to cancer immunotherapy. Front Oncol.
2022;12:1053800.

35. Park HE, Jo SH, Lee RH, Macks CP, Ku T, Park J, et al. Spatial
transcriptomics: technical aspects of recent developments and
their applications in neuroscience and cancer research. Adv
Sci. 2023;10(16):e2206939.

36. Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R.
Transcriptomics and solid tumors: the next frontier in
precision cancer medicine. Semin Cancer Biol. 2022;84:50–9.

37. Thind AS, Monga I, Thakur PK, Kumari P, Dindhoria K, Krzak
M, et al. Demystifying emerging bulk RNA-Seq applications:
the application and utility of bioinformatic methodology.
Brief Bioinform. 2021;22(6):bbab259.

38. Chen G, Ning B, Shi T. Single-Cell RNA-seq technologies and
related computational data analysis. Front Genet. 2019;10:317.

39. Wu J, Fang Z, Liu T, Hu W, Wu Y, Li S. Maximizing the utility
of transcriptomics data in inflammatory skin diseases. Front
Immunol. 2021;12:761890.

40. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool
for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.

41. Guo S, Yao Y, Tang Y, Xin Z, Wu D, Ni C, et al. Radiation-
induced tumor immune microenvironments and potential
targets for combination therapy. Signal Transduct Target
Ther. 2023;8(1):205. doi:10.1038/s41392-023-01462-z.

42. Feng Y, Wang Z, Yang N, Liu S, Yan J, Song J, et al.
Identification of biomarkers for cervical cancer radiotherapy
resistance based on RNA sequencing data. Front Cell Dev
Biol. 2021;9:724172. doi:10.3389/fcell.2021.724172.

43. Li CJ, Chiu YH, Chang C, Chang YI, Sheu JJ, Chiang AJ. Acetyl
coenzyme a synthase 2 acts as a prognostic biomarker associated
with immune infiltration in cervical squamous cell carcinoma.
Cancers. 2021;13(13):3125. doi:10.3390/cancers13133125.

44. Li CJ, Chang CH, Tsang YL, Fang SH, Chen SN, Chiang AJ.
Prognostic significance of ferroptosis pathway gene signature
and correlation with macrophage infiltration in cervical
squamous cell carcinoma. Int Immunopharmacol. 2022;
112(2):109273. doi:10.1016/j.intimp.2022.109273.

45. Wang Q, Xu Y. Comprehensive analysis of cuproptosis-related
lncRNAs model in tumor immune microenvironment and
prognostic value of cervical cancer. Front Pharmacol.
2022;13:1065701. doi:10.3389/fphar.2022.1065701.

46. Ding Z, Wang N, Ji N, Chen ZS. Proteomics technologies for
cancer liquid biopsies. Mol Cancer. 2022;21(1):53. doi:10.
1186/s12943-022-01526-8.

47. Santos MDM, Lima DB, Fischer JSG, Clasen MA, Kurt LU,
Camillo-Andrade AC, et al. Simple, efficient and thorough
shotgun proteomic analysis with PatternLab V. Nat Protoc.
2022;17(7):1553–78. doi:10.1038/s41596-022-00690-x.

48. Meissner F, Geddes-McAlister J, Mann M, Bantscheff M. The
emerging role of mass spectrometry-based proteomics in drug
discovery. Nat Rev Drug Discov. 2022;21(9):637–54. doi:10.
1038/s41573-022-00409-3.

49. Zhu X, Xu T, Peng C, Wu S. Advances in MALDI mass
spectrometry imaging single cell and tissues. Front Chem.
2021;9:782432. doi:10.3389/fchem.2021.782432.

50. Yates JR 3rd. Mass spectrometry and the age of the proteome. J
Mass Spectrom. 1998;33(1):1–19. doi:10.1002/(ISSN)1096-9888.

834 GUANTING PANG et al.

http://dx.doi.org/10.1038/s41588-018-0175-z
http://dx.doi.org/10.1038/s41588-018-0175-z
http://dx.doi.org/10.1001/jamaoncol.2015.6326
http://dx.doi.org/10.1136/jitc-2021-002680
http://dx.doi.org/10.1136/jitc-2021-002680
http://dx.doi.org/10.1186/s12967-021-02894-3
http://dx.doi.org/10.1111/imm.13682
http://dx.doi.org/10.1111/imm.13682
http://dx.doi.org/10.3389/fimmu.2021.721030
http://dx.doi.org/10.1126/science.aaw3835
http://dx.doi.org/10.1126/science.aaw3835
http://dx.doi.org/10.1186/s13072-017-0120-x
http://dx.doi.org/10.1186/s13072-017-0120-x
http://dx.doi.org/10.1038/s41576-022-00468-7
http://dx.doi.org/10.3389/fcell.2022.891538
http://dx.doi.org/10.7554/eLife.21856
http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2
http://dx.doi.org/10.1016/B978-0-12-380866-0.60002-2
http://dx.doi.org/10.1038/s41392-023-01462-z
http://dx.doi.org/10.3389/fcell.2021.724172
http://dx.doi.org/10.3390/cancers13133125
http://dx.doi.org/10.1016/j.intimp.2022.109273
http://dx.doi.org/10.3389/fphar.2022.1065701
http://dx.doi.org/10.1186/s12943-022-01526-8
http://dx.doi.org/10.1186/s12943-022-01526-8
http://dx.doi.org/10.1038/s41596-022-00690-x
http://dx.doi.org/10.1038/s41573-022-00409-3
http://dx.doi.org/10.1038/s41573-022-00409-3
http://dx.doi.org/10.3389/fchem.2021.782432
http://dx.doi.org/10.1002/(ISSN)1096-9888


51. Li D, Yi J, Han G, Qiao L. MALDI-TOF mass spectrometry in
clinical analysis and research. ACS Meas Sci Au. 2022;2(5):385–
404. doi:10.1021/acsmeasuresciau.2c00019.

52. Han G, Zeng Q, Jiang Z, Deng W, Huang C, Li Y. Simple
preparation of magnetic metal-organic frameworks composite
as a bait for phosphoproteome research. Talanta.
2017;171:283–90. doi:10.1016/j.talanta.2017.03.106.

53. Hao Y, Ye M, Chen X, Zhao H, Hasim A, Guo X. Discovery and
validation of FBLN1 and ANT3 as potential biomarkers for
early detection of cervical cancer. Cancer Cell Int. 2021;21(1):
125. doi:10.1186/s12935-021-01802-5.

54. Liu X, Ni G, Zhang P, Li H, Li J, Cavallazzi Sebold B, et al.
Single-nucleus RNA sequencing and deep tissue proteomics
reveal distinct tumour microenvironment in stage-I and II
cervical cancer. J Exp Clin Cancer Res. 2023;42(1):28. doi:10.
1186/s13046-023-02598-0.

55. Taş N, de Jong AE, Li Y, Trubl G, Xue Y, Dove NC.
Metagenomic tools in microbial ecology research. Curr Opin
Biotechnol. 2021;67:184–91. doi:10.1016/j.copbio.2021.01.019.

56. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden
MG, Locasale JW. Metabolomics in cancer research and
emerging applications in clinical oncology. CA Cancer J Clin.
2021;71(4):333–58. doi:10.3322/caac.21670.

57. Wang YP, Li JT, Qu J, Yin M, Lei QY. Metabolite sensing and
signaling in cancer. J Biol Chem. 2020;295(33):11938–46.
doi:10.1074/jbc.REV119.007624.

58. Wang L, Lv W, Sun X, Zheng F, Xu T, Liu X, et al. Strategy for
nontargeted metabolomic annotation and quantitation using a
high-resolution spectral-stitching nanoelectrospray direct-
infusion mass spectrometry with data-independent
acquisition. Anal Chem. 2021;93(30):10528–37. doi:10.1021/
acs.analchem.1c01480.

59. Ilhan ZE, Łaniewski P, Thomas N, Roe DJ, Chase DM, Herbst-
Kralovetz MM. Deciphering the complex interplay between
microbiota, HPV, inflammation and cancer through
cervicovaginal metabolic profiling. eBioMedicine. 2019;44(2):
675–90. doi:10.1016/j.ebiom.2019.04.028.

60. Zhang Y, Wu X, Li D, Huang R, Deng X, Li M, et al. HPV-
associated cervicovaginal microbiome and host metabolome
characteristics. BMC Microbiol. 2024;24(1):94. doi:10.1186/
s12866-024-03244-1.

61. Łaniewski P, Ilhan ZE, Herbst-Kralovetz MM. The microbiome
and gynaecological cancer development, prevention and
therapy. Nat Rev Urol. 2020;17(4):232–50.

62. Borella F, Carosso AR, Cosma S, Preti M, Collemi G, Cassoni P,
et al. Gut microbiota and gynecological cancers: a summary of
pathogenetic mechanisms and future directions. ACS Infect
Dis. 2021;7(5):987–1009.

63. Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz
M. The vaginal and gastrointestinal microbiomes in gynecologic
cancers: a review of applications in etiology, symptoms and
treatment. Gynecol Oncol. 2015;138(1):190–200.

64. Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the
potential of Lactobacillus derivatives in maintaining vaginal
health. Microb Cell Fact. 2020;19(1):203.

65. Xu X, Rao H, Fan X, Pang X, Wang Y, Zhao L, et al. HPV-
related cervical diseases: alteration of vaginal microbiotas and
promising potential for diagnosis. J Med Virol. 2023;95(1):
e28351.

66. Cerf-Bensussan N, Gaboriau-Routhiau V. The immune system
and the gut microbiota: friends or foes? Nat Rev Immunol.
2010;10(10):735–44.

67. Li X, Wu J, Wu Y, Duan Z, Luo M, Li L, et al. Imbalance of
vaginal microbiota and immunity: two main accomplices of
cervical cancer in chinese women. Int J Womens Health.
2023;15:987–1002.

68. Sims TT, El Alam MB, Karpinets TV, Dorta-Estremera S,
Hegde VL, Nookala S, et al. Gut microbiome diversity is an
independent predictor of survival in cervical cancer patients
receiving chemoradiation. Commun Biol. 2021;4(1):237.

69. Mitra A, Grossman Biegert GW, Delgado AY, Karpinets TV,
Solley TN, Mezzari MP, et al. Microbial diversity and
composition is associated with patient-reported toxicity
during chemoradiation therapy for cervical cancer. Int J
Radiat Oncol Biol Phys. 2020;107(1):163–71.

70. Łaniewski P, Cui H, Roe DJ, Chase DM, Herbst-Kralovetz MM.
Vaginal microbiota, genital inflammation, and neoplasia impact
immune checkpoint protein profiles in the cervicovaginal
microenvironment. npj Precis Oncol. 2020;4:22.

71. Advances in single-cell omics and multiomics for high-
resolution molecular profiling. Exp Mol Med, 2024;56(3):
515–26. doi:10.1038/s12276-024-01186-2.

72. Wang Y, Navin NE. Advances and applications of single-cell
sequencing technologies. Mol Cell. 2015;58(4):598–609.
doi:10.1016/j.molcel.2015.05.005.

73. O’Flanagan CH, Campbell KR, Zhang AW, Kabeer F, Lim JLP,
Biele J, et al. Dissociation of solid tumor tissues with cold active
protease for single-cell RNA-seq minimizes conserved
collagenase-associated stress responses. Genome Biol. 2019;
20(1):210. doi:10.1186/s13059-019-1830-0.

74. Li C, Wu H, Guo L, Liu D, Yang S, Li S, et al. Single-cell
transcriptomics reveals cellular heterogeneity and molecular
stratification of cervical cancer. Commun Biol. 2022;5(1):
1208. doi:10.1038/s42003-022-04142-w.

75. Cao G, Yue J, Ruan Y, Han Y, Zhi Y, Lu J, et al. Single-cell
dissection of cervical cancer reveals key subsets of the tumor
immune microenvironment. Embo J. 2023;42(16):e110757.
doi:10.15252/embj.2022110757.

76. Li C, Liu D, Yang S, Hua K. Integrated single-cell transcriptome
analysis of the tumor ecosystems underlying cervical cancer
metastasis. Front Immunol. 2022;13:966291.

77. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van
Stiphout RG, Granton P, et al. Radiomics: extracting more
information from medical images using advanced feature
analysis. Eur J Cancer. 2012;48(4):441–6.

78. Yip SS, Aerts HJ. Applications and limitations of radiomics.
Phys Med Biol. 2016;61(13):R150–66.

79. Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K,
O’Connor JPB, et al. Radiomics in oncology: a practical guide.
Radiographics. 2021;41(6):1717–32.

80. De Jaeghere EA, Laloo F, Lippens L, Van Bockstal M, De Man
K, Naert E, et al. Splenic 18F-FDG uptake on baseline PET/CT is
associated with oncological outcomes and tumor immune state
in uterine cervical cancer. Gynecol Oncol. 2020;159(2):335–43.

81. Napel S, Mu W, Jardim-Perassi BV, Aerts H, Gillies RJ.
Quantitative imaging of cancer in the postgenomic era: radio
(geno)mics, deep learning, and habitats. Cancer. 2018;124(24):
4633–49.

82. Mu W, Liang Y, Hall LO, Tan Y, Balagurunathan Y, Wenham
R, et al. 18F-FDG PET/CT habitat radiomics predicts outcome
of patients with cervical cancer treated with
chemoradiotherapy. Radiol Artif Intell. 2020;2(6):e190218.

83. Tian L, Chen F, Macosko EZ. The expanding vistas of spatial
transcriptomics. Nat Biotechnol. 2023;41(6):773–82.

OMICS SCIENCES FOR CERVICAL CANCER PRECISION MEDICINE 835

http://dx.doi.org/10.1021/acsmeasuresciau.2c00019
http://dx.doi.org/10.1016/j.talanta.2017.03.106
http://dx.doi.org/10.1186/s12935-021-01802-5
http://dx.doi.org/10.1186/s13046-023-02598-0
http://dx.doi.org/10.1186/s13046-023-02598-0
http://dx.doi.org/10.1016/j.copbio.2021.01.019
http://dx.doi.org/10.3322/caac.21670
http://dx.doi.org/10.1074/jbc.REV119.007624
http://dx.doi.org/10.1021/acs.analchem.1c01480
http://dx.doi.org/10.1021/acs.analchem.1c01480
http://dx.doi.org/10.1016/j.ebiom.2019.04.028
http://dx.doi.org/10.1186/s12866-024-03244-1
http://dx.doi.org/10.1186/s12866-024-03244-1
http://dx.doi.org/10.1038/s12276-024-01186-2
http://dx.doi.org/10.1016/j.molcel.2015.05.005
http://dx.doi.org/10.1186/s13059-019-1830-0
http://dx.doi.org/10.1038/s42003-022-04142-w
http://dx.doi.org/10.15252/embj.2022110757


84. Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, et al. Advances in
spatial transcriptomics and its applications in cancer research.
Mol Cancer. 2024;23(1):129.

85. Jain S, Eadon MT. Spatial transcriptomics in health and disease.
Nat Rev Nephrol. 2024 May 8. doi:10.1038/s41581-024-00841-1.

86. Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies
illuminate the tumor microenvironment. Cancer Cell. 2023;
41(3):404–20.

87. Lundberg E, Borner GHH. Spatial proteomics: a powerful
discovery tool for cell biology. Nat Rev Mol Cell Biol. 2019;
20(5):285–302.

88. Wu J, Wu Y, Guo Q, Chen S, Wang S, Wu X, et al. SPOP
promotes cervical cancer progression by inducing the
movement of PD-1 away from PD-L1 in spatial localization. J
Transl Med. 2022;20(1):384.

89. Guo C, Qu X, Tang X, Song Y, Wang J, Hua K, et al.
Spatiotemporally deciphering the mysterious mechanism of
persistent HPV-induced malignant transition and immune
remodelling from HPV-infected normal cervix, precancer to
cervical cancer: integrating single-cell RNA-sequencing and
spatial transcriptome. Clin Transl Med. 2023;13(3):e1219.

90. Ou Z, Lin S, Qiu J, Ding W, Ren P, Chen D, et al. Single-nucleus
RNA sequencing and spatial transcriptomics reveal the
immunological microenvironment of cervical squamous cell
carcinoma. Adv Sci. 2022;9(29):e2203040.

91. Sun Z, Feng D, Jiang L, Tian J, Wang J, Zhu W. Integrated
proteomic and metabolomic analysis of plasma reveals
regulatory pathways and key elements in thyroid cancer. Mol
Omics. 2023;19(10):800–9. doi:10.1039/D3MO00142C.

92. Gong J, Feng Y, Mei Y, Han S, Sun X, Niu P, et al. Plasma
metabolomics and proteomics reveal novel molecular insights
and biomarker panel for cholelithiasis. J Pharm Biomed Anal.
2024;238(4):115806. doi:10.1016/j.jpba.2023.115806.

93. Zhang D, Li Y, Liang M, Liang Y, Tian J, He Q, et al. LC-MS/MS
based metabolomics and proteomics reveal candidate
biomarkers and molecular mechanism of early IgA
nephropathy. Clin Proteomics. 2022;19(1):51. doi:10.1186/
s12014-022-09387-5.

94. Guan SW, Lin Q, Wu XD, Yu HB. Weighted gene coexpression
network analysis and machine learning reveal oncogenome
associated microbiome plays an important role in tumor
immunity and prognosis in pan-cancer. J Transl Med.
2023;21(1):537. doi:10.1186/s12967-023-04411-0.

95. Bokulich NA, Łaniewski P, Adamov A, Chase DM, Caporaso
JG, Herbst-Kralovetz MM. Multi-omics data integration
reveals metabolome as the top predictor of the cervicovaginal
microenvironment. PLoS Comput Biol. 2022;18(2):e1009876.
doi:10.1371/journal.pcbi.1009876.

96. Fan J, Lu F, Qin T, Peng W, Zhuang X, Li Y, et al. Multiomic
analysis of cervical squamous cell carcinoma identifies cellular
ecosystems with biological and clinical relevance. Nat Genet.
2023;55(12):2175–88. doi:10.1038/s41588-023-01570-0.

97. Wang Y, He M, He T, Ouyang X, Shen X, Shi W, et al.
Integrated genomic and transcriptomic analysis reveals the

activation of PI3K signaling pathway in HPV-independent
cervical cancers. Br J Cancer. 2024;130(6):987–1000. doi:10.
1038/s41416-023-02555-w.

98. Kang J, Jiang J, Xiang X, Zhang Y, Tang J, Li L. Identification of
a new gene signature for prognostic evaluation in cervical
cancer: based on cuproptosis-associated angiogenesis and
multi-omics analysis. Cancer Cell Int. 2024;24(1):23. doi:10.
1186/s12935-023-03189-x.

99. Li J, Cao Y, Liu Y, Yu L, Zhang Z, Wang X, et al. Multiomics
profiling reveals the benefits of gamma-delta (γδ) T
lymphocytes for improving the tumor microenvironment,
immunotherapy efficacy and prognosis in cervical cancer. J
Immunother Cancer. 2024;12(1):e008355. doi:10.1136/jitc-
2023-008355.

100. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D,
Ng S, et al. Multiplatform analysis of 12 cancer types reveals
molecular classification within and across tissues of origin.
Cell. 2014;158(4):929–44. doi:10.1016/j.cell.2014.06.049.

101. Adashek JJ, Subbiah V, Kurzrock R. From tissue-agnostic to N-
of-one therapies: (R)evolution of the precision paradigm. Trends
Cancer. 2021;7(1):15–28. doi:10.1016/j.trecan.2020.08.009.

102. Benson M. Clinical implications of omics and systems
medicine: focus on predictive and individualized treatment. J
Intern Med. 2016;279(3):229–40. doi:10.1111/joim.12412.

103. Hsieh W-C, Budiarto BR, Wang Y-F, Lin C-Y, Gwo M-C, So
DK, et al. Spatial multi-omics analyses of the tumor immune
microenvironment. J Biomed Sci. 2022;29(1):96. doi:10.1186/
s12929-022-00879-y.

104. Kleppe A, Skrede O-J, De Raedt S, Liestøl K, Kerr DJ, Danielsen
HE. Designing deep learning studies in cancer diagnostics. Nat
Rev Cancer. 2021;21(3):199–211. doi:10.1038/s41568-020-
00327-9.

105. Menyhárt O, Győrffy B. Multi-omics approaches in cancer
research with applications in tumor subtyping, prognosis, and
diagnosis. Comput Struct Biotechnol J. 2021;19(11):949–60.
doi:10.1016/j.csbj.2021.01.009.

106. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D.
Methods of integrating data to uncover genotype-phenotype
interactions. Nat Rev Genet. 2015;16(2):85–97. doi:10.1038/
nrg3868.

107. Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A.
Integration strategies of multi-omics data for machine learning
analysis. Comput Struct Biotechnol J. 2021;19(Suppl 2):3735–
46. doi:10.1016/j.csbj.2021.06.030.

108. Fu Y, Xu J, Tang Z, Wang L, Yin D, Fan Y, et al. A gene
prioritization method based on a swine multi-omics
knowledgebase and a deep learning model. Commun Biol.
2020;3(1):502. doi:10.1038/s42003-020-01233-4.

109. Hao J, Kim Y, Kim TK, Kang M. PASNet: pathway-associated
sparse deep neural network for prognosis prediction from
high-throughput data. BMC Bioinformatics. 2018;19(1):510.
doi:10.1186/s12859-018-2500-z.

836 GUANTING PANG et al.

http://dx.doi.org/10.1038/s41581-024-00841-1
http://dx.doi.org/10.1039/D3MO00142C
http://dx.doi.org/10.1016/j.jpba.2023.115806
http://dx.doi.org/10.1186/s12014-022-09387-5
http://dx.doi.org/10.1186/s12014-022-09387-5
http://dx.doi.org/10.1186/s12967-023-04411-0
http://dx.doi.org/10.1371/journal.pcbi.1009876
http://dx.doi.org/10.1038/s41588-023-01570-0
http://dx.doi.org/10.1038/s41416-023-02555-w
http://dx.doi.org/10.1038/s41416-023-02555-w
http://dx.doi.org/10.1186/s12935-023-03189-x
http://dx.doi.org/10.1186/s12935-023-03189-x
http://dx.doi.org/10.1136/jitc-2023-008355
http://dx.doi.org/10.1136/jitc-2023-008355
http://dx.doi.org/10.1016/j.cell.2014.06.049
http://dx.doi.org/10.1016/j.trecan.2020.08.009
http://dx.doi.org/10.1111/joim.12412
http://dx.doi.org/10.1186/s12929-022-00879-y
http://dx.doi.org/10.1186/s12929-022-00879-y
http://dx.doi.org/10.1038/s41568-020-00327-9
http://dx.doi.org/10.1038/s41568-020-00327-9
http://dx.doi.org/10.1016/j.csbj.2021.01.009
http://dx.doi.org/10.1038/nrg3868
http://dx.doi.org/10.1038/nrg3868
http://dx.doi.org/10.1016/j.csbj.2021.06.030
http://dx.doi.org/10.1038/s42003-020-01233-4
http://dx.doi.org/10.1186/s12859-018-2500-z

	Omics sciences for cervical cancer precision medicine from the perspective of the tumor immune microenvironment
	Introduction
	Application of Multidimentional Omics to the TME of CC
	Multi-Omics Approaches
	Clinical Application
	Challenges and Prospects
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


