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Abstract: Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue

repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors,

angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through

proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase. This

balance is disrupted in tumors, and extracellular vesicles (EVs) contribute to this by transferring proangiogenic factors

and increasing their expression in endothelial cells (ECs). Malignant melanoma, a particular type of skin cancer,

accounts for only 1% of skin cancer cases but more than 75% of deaths. Its incidence has risen significantly, with a

40% increase between 2012 and 2022, especially in fair-skinned populations. Advanced metastatic stages have a high

mortality due to delayed diagnosis. This review examines the molecular basis of angiogenesis in melanoma, focusing

on melanoma-derived EVs and their possible use in new antiangiogenic therapies.

Introduction

Angiogenesis is a multistep process that leads to the expansion
of pre-existing vascular and microvascular networks in all
organs and tissues [1]. It is essential for normal organ
growth and is required for the repair of any damaged tissue.
However, aberrant angiogenesis can be observed in a variety
of pathologies, including inflammation, ischemia, diabetes,
varicose veins, hemangiomas, aneurysms, and many others.
Angiogenesis plays a particularly important role in cancer,
as solid tumors larger than a few millimeters in size require
a constant blood supply. Tumor vasculature enables oxygen
and nutrient delivery to growing tumors, removal of
metabolic wastes, and provides a route for local and distant
metastasis [1].

Most tumors are also capable of producing various
molecular signals to induce or enhance angiogenesis. Main
proangiogenic factors can be divided into two groups, i.e., 1)

classical factors such as angiopoietins (ANGPTs), fibroblast
growth factor-2 (FGF-2), hepatocyte growth factor (HGF),
interleukin-6 (IL-6), platelet-derived growth factor (PDGF),
tumor necrosis factor (TNF), and vascular endothelial
growth factor (VEGF), as well as 2) non-classical factors
such as chymase, stem cell factor (SCF), and tryptase [2–4].
The above-mentioned and other proangiogenic factors act in
balance with antiangiogenic molecules under physiological
conditions.

Disruption of this homeostasis is observed in the tumor
microenvironment (TME). The secretion and intercellular
transfer of proangiogenic factors are increased, causing
alternations to the structure of the extracellular matrix
(ECM) and expansion of tumor vasculature. The factors
contributing to tumor angiogenesis include among others
extracellular vesicles (EVs)–nanosized, phospholipid bilayer-
enclosed particles, involved in the horizontal transfer of
specific molecular cargo between almost all cell types in the
human body. EVs have already been shown to carry several
proangiogenic factors, including VEGF, matrix
metalloproteinases (MMPs), and their endogenous activator
CD147, PDGF, microRNAs, and lncRNAs as well as up-
regulating their expression in ECs [5,6], thus facilitating
interactions between tumor and ECs or other cells involved
in angiogenesis.
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Malignant melanoma is one of the most aggressive
cancers, and although it is responsible for only 1% of skin
cancer cases, it accounts for more than 75% of skin cancer-
related mortality [7,8]. The last few decades have brought a
decline in the incidence and mortality rates of most cancers,
but nevertheless, the incidence of melanoma has increased,
especially in fair-skinned populations. Between 2012 and
2022, there was more than 40% increase in melanoma cases
per year [9]. A particularly high mortality rate is associated
with advanced metastatic stages of the disease (Stages III
and IV), mainly due to delayed diagnosis. Intravasation of
tumor cells is a key step to subsequent metastasis and
disease containment at this stage significantly improves
patient outcomes.

Therefore, in this review, we cover the molecular basis
behind angiogenesis in melanoma. We focus on the role of
melanoma-derived EVs in this process and on their possible
use in new antiangiogenic therapies.

Angiogenesis in Melanoma

Angiogenesis is central to the progression of solid tumors, and
melanoma is no exception. The development of primary
cutaneous melanoma is usually divided into two growth

phases, radial phase and vertical phase. In the radial phase,
melanoma forms an irregular plaque, and tumor cells
cannot invade the dermis. In the vertical phase, the lesion
grows vertically into deeper parts of the dermis. During the
vertical growth phase, angiogenesis is crucial for tumor
growth and metastasis, which is strictly associated with the
invasion of blood or lymphatic vessels. Melanoma metastatic
sites are most commonly observed in the bones, lungs, liver,
and brain [10].

Mechanism of angiogenesis
The uncontrolled proliferation of melanoma cells leads to
increased energy demand, which manifests as a drastic
decrease in oxygen in TME and the development of
hypoxia. Hypoxia is present in 90% of solid tumors and
occurs in tissues more than 100–200 µM away from the
functional blood supply [11]. In response to hypoxia the
hypoxia-inducible factor (HIF) pathway is activated (Fig. 1).
HIF is composed of an alpha subunit (HIF-α) and a beta
subunit (HIF-β). HIF-α is the main transcription regulator
of the developmental response to hypoxia [12]. The HIF-α
subunits (HIF-1α, HIF-2α, and HIF-3α) are stabilized by
enzymes that are oxygen sensors, i.e., factor inhibiting HIF-
1 (FIH-1) and prolyl hydroxylase domain (PHD) [13,14]. In

FIGURE 1. Effects of normoxia and hypoxia on angiogenesis in tumor cells. HIF-1α-hypoxia-inducible factor 1 subunit α, HIF-1β-hypoxia-
inducible factor 1 subunit β, VHL-Von Hippel–Lindau tumor suppressor, PHD-prolyl hydroxylase domain enzyme, FIH-factor-inhibiting
HIF. The figure was prepared under the license in BioRender: Scientific Image and Illustration Software.

246 MAGDALENA WILCZAK et al.



an oxygen-available environment, PHD and FIH-1
hydroxylate HIF-α, and hydroxylated HIF-α are then tagged
by Von Hippel–Lindau tumor suppressor with E3 ubiquitin
ligase activity. Ubiquitinated HIF-α is then degraded in
proteasomes [15]. Reduced oxygen availability leads to
inhibition of PHD and FIH-1 function and stops
degradation of HIF-α subunits, which are transported to the
nucleus and dimerized with HIF-β subunits and act as a
transcription factor [16].

The HIF-1α and the nuclear factor ĸB (NF-ĸB) pathways
interact with other proangiogenic factors, such as
cyclooxygenase-2 (COX-2), cytokine-inducible nitric oxide
synthase (iNOS), and stromal cell-derived factor 1(SDF-1)
VEGF, and VEGF receptor (VEGFR) [17]. HIF-α is
mainly involved in the recruitment of bone marrow
endothelial progenitor cells (EPCs), which later differentiate
into ECs via the VEGF pathway, thereby stimulating
vascularization [16].

Angiogenesis is preceded by vasculogenesis, de novo
formation of a primitive vascular network (mainly during
embryogenesis) from bone marrow-derived EPCs.
Subsequently, this pre-existing vasculature, made of
differentiated ECs, takes part in the formation and
expansion of new blood vessels in angiogenesis. There are
several mechanisms of blood vessel formation [18–20]. The
vessels formed by ECs are then strengthened by pericytes
and smooth muscle cells, which enable perfusion. Blood
vessels can grow both by sprouting and by a non-sprouting

mechanism of intussusceptive microvascular growth (IMG).
In sprouting angiogenesis, the basement membrane
undergoes rearrangement at the site of the dilated
peritumoral postcapillary venule in proximity to the
angiogenic stimulus. The ECs then relocate to the
connective tissue to form a solid cord, and the migrating
front leads to lumen formation. Non-sprouting angiogenesis
is a recovery adaptation of the existing microvascular
network. Unlike traditional angiogenesis, which depends on
the rapid proliferation of ECs, this process results from the
reorganization of existing ECs and the incorporation of
EPCs. Intussusceptive angiogenesis is related to the presence
of the intussusceptive pillar, a transvascular tissue bridge of
1–5 μm in length that spans the vessel lumen. Therefore, the
vascular network expands by the insertion of pillars.

Proangiogenic and antiangiogenic factors in melanoma
There are many proangiogenic factors released by melanoma
cells (Fig. 2), which form a complex intra-and intercellular
signaling network [4]. Some of these factors including
VEGF, PDGF, or ANGPTs, generally stimulate melanoma-
related angiogenesis by directly affecting the basic functions
(such as proliferation or migration) of ECs. In contrast,
factors such as IL-8, metalloproteinases (MMPs), or
integrins are more indirect mediators, although still
important contributors to the development of tumor
vasculature. They usually act as cofactors for the factors
from the first group or promote their secretion. They may

FIGURE 2. Schematic summary of the role of proangiogenic factors in melanoma. Melanoma microenvironment consists of different cell
types, such as immune system cells (TAMs, neutrophils, T cells) and endothelial cells. These cells cooperate in multiple processes involved
in melanoma progression, one of which is angiogenesis. The coexistence of the cells forms paracrine loops involved in ECM degradation,
lymphoangiogenesis, and importantly the formation of new blood vessel and their maturation. ANGPT–angiopoietin, EC–endothelial cell,
ECM–extracellular matrix, FGF–fibroblast growth factor, HSC–hematopoietic stem cell, IL-8–interleukin 8, MDSC–myeloid-derived
suppressor cell, MMP–matrix metalloproteinase, PDGF–platelet-derived growth factor, PlGF–placental growth factor, TAM–tumor-
associated macrophages, TGF-β–transforming growth factor β, VEGF(R)–vascular endothelial growth factor (receptor). The figure was
prepared under the license in BioRender: Scientific Image and Illustration Software.
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be also involved in ECM remodeling required for
angiogenesis, without direct interaction with ECs [4]. The
specific mechanisms of action of the main proangiogenic
factor identified in melanoma are described in the following
subsections.

Vascular endothelial growth factor (VEGF)
VEGF is a signaling protein produced by various types of cells.
The human VEGF family consists of VEGF-A, B, C, D, and E.
All VEGF isoforms elicit a response through cell surface
tyrosine kinase receptors. Binding of VEGF results in their
dimerization and activation by transphosphorylation [21].
VEGF has been shown to be the survival factor for ECs in
vivo and in vitro [22]. ECs of newly formed vessels
functionally rely on VEGF, in contrast to established vessels
within tumors. The loss of VEGF dependence may be
explained by the coverage of ECs by pericytes [23].

VEGF also contributes to the horizontal/vertical growth
phase transition in melanoma [24]. Moreover, strong
reactivity in anti-VEGF immunohistochemical staining of
melanoma specimens and increased microvascular density
correlate positively with the formation of tumors of larger
thicknesses (>3.6 mm). This supports the hypothesis that
VEGF is involved in increasing vessel diameter and IMG in
melanoma [25].

Studies on melanoma cell lines also revealed that cells
with low VEGF expression can be stimulated to increase
VEGF secretion by culture in hypoxic conditions [26].
Clinical studies have also shown a positive correlation
between VEGF levels and Breslow scale depth and with
Clark scale levels [27].

Furthermore, VEGF-A promotes the proliferation of
VEGFR-2-positive cells in lymphatic vessels and metastasis
to sentinel and distant lymph nodes [28]. VEGF-C also
induces tumor lymphangiogenesis and enhances melanoma
metastasis to lymph nodes by binding to VEGFR-3 [29].
VEGF-C expression, as well as intratumoral lymphatic
vessel density (LVD), peritumoral LVD, melanoma
thickness, and Clark level are good predictors of lymph
node metastasis in melanoma [30]. Similarly, VEGF-C/D
expression in melanoma lymph node metastases was higher
than in non-metastatic melanomas [31]. VEGF-C also
enhances the transport of tumor cells to the draining lymph
node and their exposure to immune cells. In murine
melanoma, VEGF-C promoted immune tolerance [32].
Finally, VEGF-B was found to inhibit angiogenesis. The
mechanism of action was based on the FGF-B binding to
FGFR1, and subsequent FGFR1/VEGFR1 complex
formation, which blocked Erk activation by FGF-B [33].

Platelet-derived growth factor (PDGF)
PDGF glycoprotein mainly exists in three variants, i.e., PDGF-
AA consisting of two A subunits, PDGF-BB consisting of two
B subunits, and PDGF-AB heterodimer. In the early 2000s,
two additional family members, PDGF-C and PDGF-D,
were identified as novel ligands for PDGF receptors
(PDGFRs) [34]. Primary and metastatic melanoma is
characterized by overexpression of two PDGFRs, namely
PDGFR-α and PDGFR-β, compared to normal skin [35].
PDGF is secreted by melanoma cell lines and tumors,

stimulating the development of new blood vessels [35].
Moreover, it inhibits melanoma apoptosis, promotes cell
cycle progression enhances melanoma cell survival [36], and
exhibits mitogenic properties for melanoma cells by
stimulating their proliferation through MAPK/ERK and
PI3K/Akt pathways.

Mice inoculated with PDGF-BB-transfected B16
melanoma cells showed an increased pericyte coverage of
tumor blood vessels [37]. However, susceptibility-contrast
Magnetic Resonance Imaging (MRI) showed a significant
reduction in the vessel size index in tumors formed by B16
cells with PDGF overexpression [37]. Similarly, PDGFR-α
overexpression abrogated the growth of some melanoma
tumors [38]. Additionally, tumor-derived PDGF-BB dimer
may mediate connective tissue stroma formation as mice
inoculated with WM9 melanoma cells lacking PDGF-B
subunit expression showed highly necrotic tumors with
narrow lumen blood vessels and lack of connective tissue.
Tumors formed by WM9 cells with PDGF-B subunit
overexpression had properly developed vessels and
connective tissue, which resulted in a lack of necrosis [39].

Interleukin-8 (IL-8)
Human IL-8 is currently called chemokine (C-X-C motif)
ligand 8 (CXCL8), and its receptors, previously known as
IL8Rα and IL8Rβ, are now named CXCR1 and CXCR2,
respectively [40]. In melanoma, CXCR2 expression is
increased compared to neutrophils [41]. This results in
increased binding of IL-8 to the tumor instead of immune
cells. Normal melanocytes do not produce IL-8 unless
stimulated. In melanoma, IL-8 mRNA is consistently
expressed and is correlated with the tumor’s ability to
metastasize [42]. However, IL-8 mRNA has also been
observed in non-metastatic melanoma [38].

IL-8 is released by macrophages, epithelial or ECs and
attracts neutrophils in infections and injuries. This results
not only in the removal of pathogens, but also in enhanced
angiogenesis, and the synthesis of MMPs [43,44]. Dermal
microvascular ECs express IL8Rs, so IL-8 regulates MMP-
2/-9 secretion and subsequent angiogenesis [45]. IL-8 is also
a target of the nuclear factor of activated T cells, i.e., NFAT1
and NFATC2. NFATs are involved in immune response, but
also in melanoma progression and metastasis. NFAT1 binds
to the IL-8 promoter and increases IL-8 transcription,
thereby promoting tumor development, growth, and
dissemination [46].

Tumor-associated neutrophils (TANs) have anti-or pro-
tumor phenotypes, N1-TANs, and N2-TANs, respectively
[47]. IL-8 is one of the major factors in the N1-/N2-TANs
balance, suppressing antitumor immunity by recruiting N2-
TANs. TANs can produce IL-8, further stimulating
neutrophil migration, vessel formation, and tumor growth
[48]. Also, tumor-associated macrophages (TAMs) are key
effectors in tumor angiogenesis, especially macrophage-
derived angiogenesis and tumor invasiveness through
processes mediated by IL-8 [49].

Fibroblast growth factor-2 (FGF-2)
FGF-2, also known as the basic fibroblast growth factor
(bFGF), is a cytokine that binds to the fibroblast growth
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factor receptor (FGFR) [50,51]. FGF-2 is produced by
melanoma cells and ECs [52]. In tumors, FGF-2 through
FGFR2 stimulates the proliferation of pericytes and activates
PDGFRβ signaling required for pericyte migration to the
angiogenesis site [53]. During angiogenesis in melanoma,
FGF-2 cooperates with heparinase, which enzymatically
cleaves the glycosaminoglycan chains of heparan sulfate
proteoglycans, which act as a receptor or coreceptor for
FGFR [54].

Abnormal expression of FGF-2 (along with FGF-18) and
elevated FGFR1 and FGFR3 characterize primary melanoma
vs. healthy skin [55]. Also, analyses of the FGFR4 Arg388
polymorphism in 185 melanoma patients identified Arg388
allele in 45% of patients and was associated with tumor size
and high microvascular density [56].

Angiopoietins (ANGPTs)
Four ANGPTs are known: ANGPT1, ANGPT2, ANGPTL3,
and ANGPT4 [57]. ANGPT1 is secreted by pericytes and
vascular smooth muscle cells. It is a key factor in the blood
vessel maturation, adhesion, and migration of ECs. Its
proangiogenic activity is induced by binding to the
angiopoietin-1 receptor (Tie-2), which increases vessel
quiescence and inhibits vascular permeability. ANGPT1 is
significantly overexpressed in the vasculature of most
tumors, and in ANGPT-1-deficient mice, MT-ret and
B16F10 melanomas grow more slowly [58]. ANGPT2 is
released by ECs and may act as a Tie-2 antagonist, leading
to temporary disruption of existing blood vessels required
for their further development, i.e., angiogenesis [57,59]. The
balance between ANGPT1 and ANGPT2 undergoes a
proangiogenic shift in melanoma. High levels of ANGPT2
compared to ANGPT1 positively correlate with tumor
vascularity, tumor growth, and poorer prognosis [60].

Transforming growth factor β (TGF-β)
TGF-β is a class of cytokines with multiple biological
functions. The TGF-β family includes a variety of molecular
subtypes, among which TGF-β1, -β2, and -β3 are most
extensively studied to date. Unlike normal melanocytes,
melanoma cells not only escape cell cycle arrest induced by
TGF-β but also produce it and respond to it at the gene
level [61]. TGF-β1 is produced by melanocytes and
melanoma tumor cells. On the other hand, TGF-β2 and -β3
are expressed heterogeneously only in nevi and melanomas,
and their expression increases during tumor progression [62].

TGF-β is involved in the formation of peri-tumoral blood
vessels by stimulating the secretion of IL-8 and VEGF-A.
TGF-β also activates the migration of ECs to sites of
angiogenesis within the tumor niche [61]. Endoglin
(CD105) is a TGF-β receptor binding TGF-β1 and -β3, but
not TGF-β2 [63]. In ECs, endoglin is crucial for
angiogenesis since it facilitates the binding of TGF-β family
members to activin receptor-like Kinase 1 (ALK 1).
Endoglin expression in melanoma indicates angiogenesis [64].

Moreover, two bone morphogenetic proteins (BMPs)
from the TGF-β family, namely BMP-4 and BMP-7, are
frequently overexpressed in melanoma. Importantly,
downregulated expression of BMP-4 in melanoma cells

correlated with their diminished proangiogenic paracrine
activity [65,66].

Placental growth factor (PlGF)
Melanoma cells express two PIGF isoforms, namely PlGF-1
and PlGF-2, which bind to neuropilin-1 and neuropilin-2
receptors on ECs [67]. In addition, PlGF forms
heterodimers with VEGF, indirectly interacting with
VEGFR-2 on ECs [68,69]. PlGF also enhances blood vessel
maturation by interacting with VEGFR-1-positive pericytes
[68]. Moreover, PlGF contributed to increased vessel
branching, size, and stability in vivo [70]. Finally, a
comparison of PlGF levels between patients with metastatic
melanoma and healthy control revealed 20-fold higher
plasma PlGF levels in patients [71].

Matrix metalloproteinases (MMPs)
MMPs are a group of more than 20 Zn2+-dependent
endogenous peptidases that participate in wound healing,
tissue remodeling, and angiogenesis [72,73]. MMPs catalyze
the degradation of collagen, gelatin, elastin, fibronectin, and
laminin, which are key ECM components. As a
consequence, their activity supports tumor metastasis,
allowing tumor cell migration from primary sites to
metastatic niches [74].

All MMPs expressed in melanoma cells directly or
indirectly participate in angiogenesis [75,76]. IL-8 enhances
the activity of MMP-2 secreted by melanoma cells, which in
turn promote melanoma invasion [77]. Moreover, through
interaction between membrane matrix metalloproteinase
type 1, MMP-2, and laminin-5γ2 chain fragments
melanoma cells tend to display vasculogenic mimicry, the
phenomenon in which tumor cells mimic EC activity to
participate in neovascularization and the formation of a
matrix-rich meshwork [78].

In melanoma cells, MMP-9 colocalizes with CD44, this
interaction promotes the proteolytic activity of MMP-9
against type IV collagen [79]. ECM degradation by MMP-9
induces secretion of FGF and VEGF [80]. Moreover, in
melanoma cells, the rapamycin-insensitive companion of
mTOR complex 2 (Rictor-mTORC2) can phosphorylate
AKT, causing overexpression of MMP-2 and MMP-9 and
microvessel formation [81]. However, MMP-9 has been
shown to be expressed only during the horizontal but not
vertical growth phase [82]. Malignant melanoma cells
express not only MMP-2 and 9, but also MMP-1, 13, and
14, and their inhibitors such as TIMP-1, 2, and 3 [75,76].

Integrins
The protein family of integrins consists of heterodimeric (α
and β subunits with non-covalent linkage) transmembrane
cell surface receptors involved in cell-cell and cell-ECM
adhesion. Integrin signaling cascades also modulate cell
proliferation and survival, as shown, for example, in the
focal adhesion kinase (FAK), Rho GTPase, MAPK/ERK, and
PI3K/Akt/mTOR pathways. After the transition from the
primary to metastatic phase melanoma cells overexpress
chosen integrins, namely αvβ3, αvβ5, α2β1, α4β1 α1β1, and
α5β1 integrins [60].

A major part of research concerning the proangiogenic
role of integrins was related to αvβ3 integrin. Integrin αvβ3
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is a classic vitronectin receptor, often overexpressed in
developing blood vessels and required for angiogenesis. The
β3 integrin subunit expressed by ECs can undergo
phosphorylation via the VEGF/c-Src pathway, and the
phosphorylated β3 integrin subunit promotes activation of
VEGFR-2. Blocking αvβ3 integrin with antibodies or low-
molecular-weight antagonists, (e.g., arginyl glycyl aspartic
acid (RGD) mimetics) inhibited angiogenesis in in vitro and
in vivo models [83,84], including tumor angiogenesis in
melanoma. Knockout of αvβ3 integrin in mouse melanoma
tumors led to reduced tumor growth and microvessel
density [84,85]. Also, conditioned media from αvβ3
integrin-expressing and αvβ3 integrin-non-expressing
melanoma cell cultures were collected and added to
HUVEC cells. ECs treated with media deprived of αvβ3
integrin showed a significantly lower proliferation rate in
the MTT assay, suggesting that αvβ3 integrin present in the
melanoma secretome has a measurable functional effect on
ECs [85]. Moreover, melanoma cells co-expressing α2bβ3
and αvβ3 integrins were shown to also have an increased
expression of FGF-2 [86].

Another integrin, αvβ5 integrin, is involved in the
regulation of neuropilin 1 (NRP-1)-dependent angiogenic
pathways in melanoma. Inhibition of αvβ5 integrin prevents
the formation of NRP-1/VEGF-A complexes and abrogates
angiogenesis [82]. In addition, the β1 integrin subunit was

found to be required for melanoma cell adhesion to ECs
[87], mainly through the FAK/paxillin pathway, and for the
extravasation of melanoma cells at metastasis sites (mainly
in liver and lung) [88,89]. Also, α5β1 integrin modulates
ANG-1-dependent angiogenesis through interaction with
Tie-2 [90].

Extracellular Vesicles (EVs)

Interest in EVs is constantly increasing due to their enormous
diagnostic and therapeutic potential. EVs can be isolated from
body fluids (blood, breast milk, cerebrospinal fluid, saliva,
sperm, urine,), and conditioned culture media [91]. Within
EVs, three subpopulations of vesicular structures are usually
distinguished, i.e., exosomes, ectosomes (also known as
microvesicles), and apoptotic bodies (Fig. 3). The largest
EVs are apoptotic bodies (ABs) (1000 to 5000 nm in
diameter), which are released by cell shrinkage during
apoptotic death. Biogenesis of ectosomes involves cell
membrane budding caused by rearrangements in the
cytoskeleton. MVs are also released constitutively, and an
increase in their production by cells is usually associated
with the action of various stressors, such as nutrient
deprivation or increased Ca2+ levels. The diameter of MVs
varies between 100–1000 nm. Exosomes are the smallest
EVs (30 to 100 nm in diameter). Exosome biogenesis is a

FIGURE 3. Schematic presentation of exosomes and microvesicles biogenesis and the ways of cargo transmission to recipient cells. ILV–
Intraluminal vesicle, MVB–multivesicular body, EVs–extracellular vesicles, mRNA–messenger RNA, siRNA–small interfering RNA,
miRNA–microRNA, lncRNA–long non-coding RNA. The figure was prepared under the license in BioRender: Scientific Image and
Illustration Software.
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multistep process, in which endosomes are involved. After
invagination of the endosome membrane intraluminal
vesicles (ILVs) are formed. From this point on, endosomes
transporting ILVs are called multivesicular bodies (MVBs).
Once MVBs fuse with the cell membrane, exosomes are
released to the extracellular space [92,93].

However, the terminology for classifying EVs, including
“exosomes”, “microvesicles/ectosomes” and “apoptotic
bodies”, should be used with caution in accordance with
Minimal information for studies of extracellular vesicles
(MISEV2023) guidelines [94]. Most isolation methods (e.g.,
filtration or differential ultracentrifugation) separate EVs
according to their size and density, whereas the terminology
described here relates more strictly to their biogenesis. The
size ranges (30–100 nm and 100–1000 nm) are highly
arbitrary–exosomes and ectosomes probably overlap in size,
especially around 100 ± 50 nm. Therefore, terms such as
“small” (<200 nm) and “large” (>200 nm) have been
commonly used to denote EV populations over the past few
years, unless the cellular origin (endosomal vs. outer cell
membrane) can be clearly demonstrated for an isolated
sample. Thus, while different terminologies can still be used,
researchers should be aware of their limitations and aim to
characterize the EVs under study as clearly as possible [94].

When EVs were first observed, no role was assigned to
them, as they were considered a type of cellular waste. It
was later discovered that they participate in cellular
communication and are involved in various physiological
and pathological processes, e.g., autoimmune [95] and
neurodegenerative diseases [96], processes associated with
transplanted organ rejection [97], and cancer [98]. In
carcinogenesis, EVs facilitate drug resistance, angiogenesis,
epithelial-mesenchymal transition, invasion, migration,
escape from apoptosis, and both pro-and anti-tumor
stimulation of the immune system. All of these processes
may be modified by the cargo transported by EVs, including
metabolites, active forms of lipids, proteins (e.g.,
transcription factors, receptors, growth factors), and a broad
panel of nucleic acids, including mRNAs, lncRNAs, and
miRNAs [99].

The EV cargo largely mirrors the state of the cell that
released them. The molecular information contained in EVs
can be transmitted to the recipient cells in several ways as
shown in Fig. 3 [100]. EVs can interact with recipient cells
through various types of endocytosis, such as caveolin- or
clathrin-mediated endocytosis, micropinocytosis, lipid raft-
mediated endocytosis, or phagocytosis. EVs can also directly
fuse with the membrane of recipient cell. Finally, the
molecular signal can be transduced via receptor-ligand
interaction. Therefore, the interaction between EVs and
recipient cells can result in epigenetic reprogramming or
inducing or inhibiting cellular pathways in recipient cells.

Role of Melanoma-Derived EVs in Angiogenesis

Despite significant advances in EV research, knowledge of
their role in melanoma-related angiogenesis is still very
limited. Nevertheless, as mentioned above, the presence of
various pro-and/or-antiangiogenic factors in melanoma-
derived EVs has already been confirmed [5,6]. Several

different mechanisms by which EVs may promote
angiogenesis have also been investigated. In the following
section, we review the available research data on the effect
of melanoma-derived EVs on tumor angiogenesis and
discuss their therapeutic and prognostic potential.

Transfer of proangiogenic factors and regulation of their
expression in endothelial cells
Melanoma-derived EVs regulate angiogenesis itself or
modulate related processes such as ECM remodeling. First,
the urokinase-type plasminogen activator receptor (uPAR)
carried by them increased the expression of EGFR, uPAR,
and VE-cadherin, and activated the ERK1/2 pathway in
recipient ECs [101]. Functional EGFR can also be directly
transferred from melanoma to ECs via larger EVs, i.e.,
ectosomes (microvesicles), and such transfer depends on the
phosphatidyl serine (PS) presence on the EV surface [101].
As a result, EGFR activates MAPK/Akt pathways in
recipient cells and increases the expression of VEGF and its
receptor VEGFR-2, thereby activating autocrine VEGF-
VEGFR-2 signaling.

Moreover, overexpression of Wnt Family Member 5A
(WNT5A) in several melanoma cell lines was associated
with increased release of exosomes enriched in VEGF, IL-6,
IL-8, and MMP-2 [102]. In addition, exosomes derived from
melanoma cells overexpressing WNTA5A enhanced tube
formation by ECs on Matrigel [102]. To follow up on
matrix-degrading enzymes, membrane-type 1 matrix
metalloproteinase (MT1-MMP) was also identified in
melanoma-derived EVs [103].

Another proangiogenic factor identified in melanoma-
derived EVs is tissue factor (TF). Alongside its procoagulant
activity, TF can also stimulate signaling via the PAR-2
receptor, leading to upregulation of VEGF and enhanced
angiogenesis. In addition, melanoma-derived EVs have been
shown to contain more TF than melanocyte-derived
EVs [104].

Finally, Hood et al. described the most complex 3D in
vitro model of endothelial tissue to better mimic the
microenvironment and morphology of ECs [105]. It was
found that melanoma-derived exosomes are transferred
between ECs via tunneling nanotubes. Moreover,
melanoma-derived exosomes stimulated the formation of
sprouting endothelial spheroids and the secretion of various
proangiogenic cytokines. Interestingly, the secretion of IL-
1α, FGF, GCS-F, TNFα, leptin, TGF-α, and VEGF, by
endothelial spheroids correlated positively with the exosome
dose used for incubation. These data provided evidence
supporting the involvement of exosomes in endothelial
angiogenic responses.

Induction of proangiogenic switch in bone marrow progenitor
cells
Bone marrow-derived progenitor cells (BMPCs) are known to
promote both, neoangiogenesis and remodeling of existing
blood vessels. Peinado et al. showed that melanoma-derived
exosomes induce a proangiogenic phenotype in BMPCs
associated with the horizontal transfer of c-Kit, Tie-2, and
Met oncoprotein [106]. Moreover, in melanoma-bearing
B16F10 mice, the same exosomes enhanced the formation of
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pulmonary pre-metastatic niches with typical leaky
vasculature that supports subsequent metastasis. Such an
effect was not observed when exosomes with lower Met
content were used, indicating that exosomal Met is a key
factor determinant of the proangiogenic switch in BMPCs in
melanoma. Similar findings were later made in another
study in which the same B16F10 mice were also inoculated
with Met-enriched exosomes [107]. It led to increased
numbers of lung and femur metastases, while exosomes with
lower Met expression did not induce significant changes.

Generation of cancer-associated fibroblasts (CAFs) displaying a
proangiogenic phenotype
Melanoma-derived EVs display the potential to induce the
differentiation of fibroblasts and/or ECs into CAFs. CAFs
present in the TME can contribute to angiogenesis by
directly altering the protein composition of TME but also by
secretion matrix-degrading enzymes, for example. First of
all, the transfer of lncRNA Gm26809 via melanoma-derived
exosomes into normal fibroblasts induced their
differentiation into CAFs [108]. Melanoma-derived
exosomes carrying miR-155 have also been shown to induce
CAF differentiation and downregulate the expression of the
suppressor of cytokine signaling 1 (SOCS1) gene in recipient
fibroblasts [109]. Downregulation of SOCS1 activated the
Janus kinase 2/signal transducer and activator of
transcription 3 (JAK2/STAT3) signaling pathway, resulting
in proangiogenic switch and increased expression of VEGF,
FGF2, and MMP-9 in recipient CAFs. Moreover, exosomes
from miR-155-overexpressing B16 mouse melanoma cells
significantly alleviated tube formation in 2D assay by MS-1
endothelial cell line and increased microvessel density in
mice melanoma xenografts. In contrast, the downregulation
of exosomal miR-155 brought opposite results, both in vitro
and in vivo.

Also, Yeon et al. showed in a microfluidic 3D
microvascular model that exosomes from melanoma cells
stimulate the differentiation of ECs into CAFs [110]. This
process was associated with increased expression of
endothelial to mesenchymal transition-related genes, i.e., alpha
smooth muscle actin (α-SMA), fibroblast-specific protein-1
(FSP-1), MMP-9, N-/VE-cadherins, vimentin, and TGF-β.

Finally, the most recent study analyzed whether EVs
derived from melanoma cells cultured under hypoxia affect
the proangiogenic properties of CAFs [111]. Hypoxia led to
the enrichment of melanoma-derived EVs with HSP90/
phosphorylated inhibitor of NF-κB kinase (IKK) (p-IKKα/β)
complex. Subsequent EV-mediated transfer of HSP90/p-IKKα/
β to CAFs activated the IKK/IκB/NF-κB signaling pathway
and promoted CXCL1 expression and secretion in CAFs. In
the same study, conditioned media from CAFs that
underwent the described proangiogenic switch were added to
HUVECs and increased their proliferation and tube formation
in the 2D Matrigel assay. Moreover, in a xenograft murine
model, mice inoculated with hypoxic EVs showed larger
tumors than those inoculated with normoxic EVs. Moreover,
blocking of EV-associated HSP90 with tanespimycin
significantly reduced the size of xenografts. This proved the
involvement of CAFs and HSP90/IKK/NF-κB/CXCL1 axis in
the regulation of melanoma angiogenesis by EVs.

Induction of proangiogenic properties of tumor-associated
macrophages (TAMs)
The function of TAMs may also be regulated by melanoma-
derived EVs. Due to the occurrence of their M1/M2
polarization, TAMs show varied functions in melanoma.
Regarding angiogenesis, increased M2 polarization
stimulates the formation of tumor vasculature. On the other
hand, M1 TAMs have been shown to support the
normalization of irregular vascular networks, which helps,
for example, in the delivery of chemotherapeutics to tumor
cells [112,113].

EVs are one of the mediators between melanoma cells
and TAMs that may increase the latter’s proangiogenic
properties. Back in 2016, Hood hypothesized that exosomes
from melanoma cells increase the expression of granulocyte-
macrophage colony-stimulating factor (GM-CSF) in ECs,
and secreted GM-CSF increases the activity of HIF-2α in
M2 TAMs [114]. HIF-2α further induces VEGFR-1
production, and activation of signaling pathways mediated
by VEGF. Unfortunately, this hypothesis has not been
confirmed experimentally. However, in a later study, Jarosz-
Biej et al. [115] showed on melanoma tumor tissues that
higher blood vessel density correlates positively with
increased numbers of M1 rather than M2 TAMs.

Recently, Parikh et al. investigated the properties of
melanosomes, a specific, melanin-transporting population of
EVs derived from MNT-1 cells [116]. Unlike other EVs that
are utilized by the recipient cell, melanosomes remain intact
and can be further transferred to another cell. The isolated
MNT1-derived melanosomes were used to treat CAFs and
were then re-isolated and used to treat macrophages. From
the very beginning, they carried AKT1, which stimulated
mTOR-dependent VEGF secretion by macrophages,
promoting angiogenesis in the murine model. Furthermore,
the same study used human melanoma specimens and
positively correlated macrophages histologically co-localized
with AKT1 with more progressive disease. Moreover,
samples from patients unresponsive to immunotherapy were
enriched in macrophages expressing melanosome markers.

Role of melanoma-derived EVs in lymphangiogenesis
Besides classical angiogenesis, melanoma-derived EVs
regulate lymphatic vessel formation, as first shown in
premetastatic niches in mice [117]. The observed effect was
attributed to the nerve growth factor receptor (NGFR)
transferred via EVs and activated ERK and NF-κB signaling
in recipient lymphatic ECs. Consistently, EVs not expressing
NGFR reduced the number of lymph node metastases and
improved the survival of B16 mice. Moreover, lymphatic
ECs were shown to overexpress intracellular adhesion
molecules (ICAM-1) after EV treatment. Overexpression of
ICAM-1 contributed to increased lymphangiogenesis and
adhesion of melanoma cells.

Another study also found interactions between
melanoma-derived EVs and lymphatic EC, this time
mediated by vascular cell adhesion molecule 1 (VCAM-1)
[118]. EVs increased lymphatic ECs proliferation and lymph
node remodeling. Moreover, EVs transferred various
melanoma antigens and MHC-1 molecules, and their
subsequent presentation by lymphatic ECs led to cytotoxic
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T cells apoptotic death and subsequent inhibition of the
immune response. The role of melanoma-derived EVs in
angiogenesis is summarized in Fig. 4.

Clinical Potential of EVs in Antiangiogenic Therapies

Angiogenesis is undoubtedly a key step in melanoma
progression, enabling faster tumor growth and local/distant
metastases. Unfortunately, many diagnoses are made after
the disease has reached this point, hindering the
effectiveness of common therapeutic approaches. For these
reasons, the majority of melanoma treatment strategies
involve antiangiogenic drugs that target VEGF, VEGFR,
FGFR, PDGFR, or integrins (summary in Table 1).

Although a modest improvement in overall survival has
been observed following the administration of
antiangiogenic therapies, there are still unresponsive patients
who have developed resistance over time. EVs likely
contribute to the failure of antiangiogenic therapies. In non-
melanoma cancers, such as breast, colorectal, and renal
cancers or glioblastoma, EVs have been shown to transfer

different variants of VEGF with a much lower affinity for
antiangiogenic drugs (mainly bevacizumab) than soluble
VEGF in plasma. On the other hand, VEGF variants
transferred via EVs show higher affinity for VEGFRs on
ECs, which may represent a detour used by tumor cells to
sustain angiogenesis [145].

However, there is another side to the EV story. The
specific properties of EVs can be used to improve the
effectiveness of antiangiogenic therapies in melanoma. First
of all, abrogation of proangiogenic EV release in
combination with antiangiogenic drugs could restore
sensitivity to, for example, drugs targeting the VEGF/
VEGFR axis. Known inhibitors of EV release/uptake by
recipient cells are shown in Table 2 and have been
thoroughly reviewed [146]. Unfortunately, no studies or
clinical trials have been conducted on the combined use of
EV inhibitors and anti-angiogenic drugs. However, recently,
EVs in the plasma of healthy individuals were shown to
transfer mostly anti-angiogenic proteins which suppress the
angiogenic properties of recipient ECs [147]. On the other
hand, EVs from patients with head and neck cancer

TABLE 1

Overview of antiangiogenic therapies in melanoma

Type of
drug

Drug Trade name Target Effect Literature

Monoclonal
antibodies

Bevacizumab Avastin™ VEGF Inhibition of VEGF-A binding to its receptors; decrease of
ECs growth and vessel formation; can be administered in
combination with paclitaxel and carboplatin;

[119,120]

Aflibercept EYLEA™,
Zaltrap™ (ziv
Aflibercept™)

VEGF/PlGF decoy receptor for VEGF-A and PlGF with greater affinity
than their natural receptors; inhibition of VEGF binding to
VEGFR1 and VEGFR2; can be combined with
pembrolizumab and IL-2;

[121–123]

Etaracizumab Abegrin™ αvβ3 integrin Binding to αvβ3 integrin and inhibiting its function; [124–126]

Ramucirumab Cyramza™ VEGFR-2 Inhibition of VEGF binding by binding to VEGFR-2
receptor; inhibition of angiogenesis;

[127]

Ontuxizumab Ontuxizumab™ Endosialin Binds to endosialin (CD248/TEM1); inhibition of
angiogenesis and tumor growth;

[128]

Tyrosine
kinase
inhibitors

Axtinib Inlyta™ c-SRC, Kit,
and RET,
VEGFR-1/2,

Inhibition of VEGF signaling pathway; [129–131]

Imatinib Imatinib™ PDGFR, c-kit,
v-Abl

Inhibition of PDGF signaling pathway; [132,133]

Lenvatinib Lenvima™,
Lenvatinib™

VEGFR, FGFR Inhibition of VEGF and FGF signaling pathways; can be
combined with PD-L1 inhibitors;

[134–136]

Pazopanib Pazopanib™,
Votrient™

c-kit, PDGFR-
α/β, VEGFR-
1/2/3

Inhibition of VEGFR1/2/3, PDGFR-α/β pathways; [137,138]

Sorafenib Sorafenib™,
Nexavar™

c-kit, FGFR-1,
PDGFR-1,
VEGFR

Inhibition of PDGFR-1, VEGFR and FGFR-1 pathways; [139–141]

Sunitinib Sunitinib™,
Krka™, Sutent™,
Sutinib™

VEGFR Inhibition of VEGFR pathway; [142,143]

Vatalanib PDGFR-β,
VEGFR-1/2/3

Inhibition of VEGFR and PDGFR-β pathways. [144]
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increased migration and proliferation of ECs and their tube-
forming potential. This suggests that targeting EV release
may be an indirect way to abrogate tumor angiogenesis.

Another thing to consider is the development of new
drugs (antibodies, etc.) binding specifically to the different
variants of proangiogenic factors expressed in EVs.
Importantly, not only tumor-derived EVs shall be evaluated
as potential targets for antiangiogenic therapies in
melanoma. The function of other TEM cells such as ECs,
CAFs, or macrophages, strongly depends on intercellular
communication mediated by EVs. EVs, which, for example,
induce polarization of M1 macrophages, should therefore be
a focus of further research on tumor angiogenesis.

Moreover, EVs are biocompatible, non-toxic, and have
high bioavailability. Because of these properties, they are
used for drug delivery after being loaded with various drugs,
including antiangiogenic agents used in melanoma
treatment (Table 1). However, although EVs do not exhibit
immunotoxicity, they can exhibit varying degrees of
immunogenicity, which can potentially contribute to their
increased clearance. The immunogenicity of EVs may be
due to their surface molecular composition, as well as their
internal cargo, cellular origin, dosage and infusion rate, etc.
To mitigate this phenomenon, it is possible to use less
differentiated cells as a source of EVs, modification EV
cargo (removal of immune response-inducing molecules
such as MHC-I or introduction of immune suppressors–
complement regulator, PEG), reduction of dose and infusion
rates, or use of smaller particles for drug delivery [148].

As mentioned above, no clinical trials strictly utilizing EVs
in antiangiogenic therapy have been registered to date.
However, the potential of various EV-based therapeutic

strategies has been proven in several types of cancers and
other diseases Almost 400 diagnostic or therapeutic trials
utilizing EVs are registered on clinicaltrials.gov, of which
more than 60 use EV therapy as the primary intervention,
and articles have been already published extensively
discussing this issue [149,150]. Currently, most trials focus on
lung diseases, mainly due to the COVID-19 pandemic,
although EVs are also used to treat acute respiratory distress
syndrome and non-COVID-19 infections. Other important
therapeutic applications of EVs include, among others,
anti-rejection therapy post organ transplantation,
gastroenterological diseases (inflammatory bowel disease,
including Crohn’s and ulcerative colitis), hypercholesterolemia
or nervous system conditions (Alzheimer’s, depression,
neuralgia, or stroke) [149,150].

Finally, regenerative medicine is a field where EVs also
show well-documented therapeutic potential. They are used
for wound healing and regeneration (including burns,
venous trophic lesions, etc.), treatments of bone defects and
meniscal injuries, as well as muscle regeneration after
myocardial infarction [149,150]. Importantly, tissue
regeneration most often includes angiogenesis, so such trials
indirectly indicate the potential of EV-based therapy in
various conditions involving angiogenesis. For instance,
there is a clinical trial using autologous plasma-derived
exosomes for the management of most severe cutaneous
ulcers (NCT02565264).

In cancer, however, enhanced angiogenesis is one of the
factors contributing to cancer progression. The potential of
EVs in antiangiogenic therapy has not yet been evaluated in
clinical settings. Nevertheless, since the early 2000s, EV-
oriented clinical trials have been developed for various

FIGURE 4. Summary of the role of melanoma-derived EVs in angiogenesis by affecting cells present in the TME. Cell types and their function
are color-coded. The melanoma microenvironment consists of several types of cells, including immune system cells (TAMs, neutrophils, T
cells) and ECs. These cells cooperate in multiple processes involved in melanoma progression, one of which is angiogenesis. The
coexistence of cells forms paracrine loops regulating ECM remodeling, lymphoangiogenesis, and importantly the formation of new blood
vessels and their maturation. The figure was prepared under the license in BioRender: Scientific Image and Illustration Software.
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cancers. The first trials used EVs as a vaccine to boost the anti-
tumor immune response in colon cancer [151], non-small cell
lung cancer [152] and melanoma [153]. Although they
involved a small number of patients and showed
unsatisfactory results, they clearly indicated the possibility
and safety of therapeutic EV administration. In terms of
ongoing trials, EV are currently being tested for the
treatment of advanced hepatocellular carcinoma and liver
metastasis of gastric and colorectal cancer (NCT05375604,
EVs loaded with STAT6 antisense oligonucleotides),
metastatic pancreatic cancer with a KRAS G12D mutation
(NCT03608631, EVs loaded with KRAS G12D siRNA), and
colon cancer (EVs loaded with curcumin).

None of the aforementioned trials was focused on
angiogenesis, leaving the area unexplored for now.
However, the data from basic research suggests that the
antiangiogenic application of EVs may be a way to control
or constrain the impact of tumor angiogenesis during cancer
progression.

FIGURE 5. Various aspects of using EVs as drug delivery systems. The figure summarizes methods for isolating EVs from various sources,
methods for standardizing and normalizing, methods for drug-loading and targeting them to recipient cells, and routes of administration.
Used abbreviations: CSF–cerebrospinal fluid, DLS–dynamic light scattering, FC–flow cytometry, MS–mass spectrometry, NTA–nano
tracking analysis, PCR–polymerase chain reaction, RNA seq–RNA sequencing, SEC–size exclusion chromatography, TEM–transmission
electron microscopy, WB–western blotting. The figure was prepared under the license in BioRender: Scientific Image and Illustration Software.

TABLE 2

Inhibitors of EV release or uptake

Action Inhibitor Literature

Inhibition of
exosome formation

DPTIP (2,6-dimethoxy-4–(5-
phenyl-4-thiophen-2-yl-1H-
imidazole-2-yl)-phenol)

[154]

Glyburide [146]

GW4869 [155]

Imipramine [156]

Indomethacin [157]

Simvastatin [158]

Spiroepoxide [159]

Inhibition of
exosome formation
and release

Ketoconazole [160]

Macitentan [161]

Manumycin A [162]

(Continued)
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Conclusions and Future Perspectives

Despite ongoing research in the EV field, there is a shortage of
studies on melanoma-derived EVs in terms of their role and
potential therapeutic application in antiangiogenic therapies.
In particular, in vivo and clinical studies are lacking.
Although the pro-/antiangiogenic action of EVs has been
demonstrated in simpler models, there are still some
limitations preventing the wider use of EVs in
antiangiogenic therapies. For example, isolated/drug-loaded
EVs must be strictly standardized in terms of their cellular
source, concentration, purity, stability, etc. That should be
followed by of the application of the most appropriate and
efficient protocol for drug loading (Fig. 5). It is also
necessary to ensure accurate biodistribution within the
tumor vasculature, which involves providing therapeutic
EVs with targeting molecules and assessing various routes of
their administration. These issues make large-scale
production of therapeutic EVs a major challenge. At that
point, therapies based on artificial liposome-based EV-
mimicking particles appear to be more within reach [174],
as their production can be easily standardized and more
widely commercialized. Another approach should include
investigating which key proangiogenic components of EV
cargo or signaling pathways activated by EVs in recipient
cells during angiogenesis should be targeted by novel
antiangiogenic therapies.
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