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Abstract: Objectives: Mitochondrial Ca2+ uniporter (MCU) provides a Ca2+ influx pathway from the cytosol into the

mitochondrial matrix and a moderate mitochondrial Ca2+ rise stimulates ATP production and cell growth. MCU is

highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial

Ca2+ uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU

inhibition as an anti-cancer mechanism. Methods: The effects of MCU-i4, a newly developed MCU inhibitor, on cell

viability, apoptosis, cytosolic Ca2+, mitochondrial Ca2+ and potential, glycolytic rate, generation of ATP, and reactive

oxygen species, were examined in breast cancer BT474 cells. Results: MCU-i4 caused apoptotic cell death, and it

decreased and increased, respectively, mitochondrial and cytosolic Ca2+ concentration. Inhibition of MCU by MCU-i4

revealed that cytosolic Ca2+ elevation resulted from endoplasmic reticulum (ER) Ca2+ release via inositol 1,4,5-

trisphosphate receptors (IP3R) and ryanodine receptors (RYR). Unexpectedly, MCU-i4 enhanced glycolysis and ATP

production; it also triggered a large production of reactive oxygen species (ROS) and mitochondrial membrane

potential collapse. Conclusion: Cytotoxic mechanisms of MCU-i4 in cancer cells involved enhanced glycolysis and

heightened formation of ATP and ROS. It is conventionally believed that cancer cell death could be caused by

inhibition of glycolysis. Our observations suggest cancer cell death could also be induced by increased glycolytic

metabolism.

Abbreviations
MCU Mitochondrial Ca2+ uniporter
ER Endoplasmic reticulum

IP3R Inositol 1,4,5-trisphosphate receptors
RYR Ryanodine receptors
ROS Reactive oxygen species

Introduction

Ca2+ ions are important for living cells, and their trafficking
and signaling are under control through different kinds of
cation channels, uniporters, and receptors [1]. Several
studies have shown that regulation of Ca2+ signaling by
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modulating ion channel gating could induce cell death in
cancer cells with different pathways [2–4]. A tight control of
mitochondria matrix Ca2+ level is necessary, as a small rise
could stimulate tricarboxylic acid (TCA) cycle enzymes,
resulting in enhanced ATP production; on the contrary,
excessive mitochondrial matrix Ca2+, as a result of cytosolic
Ca2+ overload caused by deleterious agents, would result in
cell death [5,6]. It has been demonstrated that constitutive
endoplasmic reticulum (ER)-mitochondria Ca2+ transfer is
necessary for normal mitochondrial functioning. For
instance, Ca2+ released via inositol 1,4,5-trisphosphate
receptors (IP3R) of ER flows into mitochondria to stimulate
oxidative phosphorylation [7–9].

The molecular machinery responsible for the
mitochondria to uptake Ca2+ from the cytosol is the
mitochondrial calcium uniporter (MCU), a molecular
complex residing in the inner mitochondrial membrane
[10,11]. This complex comprises the MCU channel itself
and accessory regulatory proteins, namely, MCU regulatory
subunit β (MCUβ), essential MCU regulator (EMRE),
mitochondrial Ca2+ uptake proteins (MICU1, 2, and 3), and
mitochondrial Ca2+ uniporter regulator 1 (MCUR1) [12,13].
MCU is positively and negatively regulated by MCUR1 and
MICU1, respectively [14].

Remarkably, MCU is highly expressed in various cancer
cells including breast cancer cells, thereby increasing the
capacity of mitochondrial Ca2+ uptake, ATP production,
and cell proliferation [15]. MCU-mediated Ca2+ entry into
the mitochondrial matrix stimulates colorectal cancer
growth [16]. MCU promotes pancreatic ductal
adenocarcinoma metastasis and metabolic stress resistance
[17]. There is a high correlation between MCU expression
and tumor growth and metastasis of triple-negative breast
cancer; down-regulation of MCU attenuates tumor growth
and invasiveness [18]. MCU inhibitors are therefore
potential anti-cancer drugs [5]. Classical MCU inhibitors
such as ruthenium red and ruthenium 360 are direct pore
blockers of MCU [19,20]. A new category of MCU-
inhibiting drugs was introduced recently: MCU-i4 binds to
and stimulates MICU-1, and since the latter negatively
regulates MCU, MCU-i4 serves as a negative modulator of
MCU and inhibits Ca2+ uptake into the mitochondrial
matrix [21]. MCU-i4 fails to inhibit mitochondrial Ca2+

uptake in MICU1-silenced cells or cells expressing a MICU1
mutant lacking an MCU-i4-binding site [21].

In our study, we aim to investigate the cytotoxic actions
of MCU-i4 in breast cancer BT474 cells. In particular, we aim
to examine how MCU-i4 modulated cytosolic Ca2+

homeostasis, mitochondrial functions and metabolism to
cause such cytotoxicity.

Materials and Methods

Cell culture and materials
Fetal calf serum, Dulbecco’s modified Eagle’s medium
(DMEM), and tissue culture reagents were purchased from
Invitrogen Corporation (Carlsbad, CA, USA). Carbonyl
cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), 2-
aminoethoxydiphenyl borate (2-APB) and cyclosporin A
were from Sigma-Aldrich chemical Co. (St. Louis, MO,

USA). JTV-519 and MCU-i4 were from Tocris BioScience
(Bristol, UK). All other chemicals were of reagent grades
and were from Sigma-Aldrich. BT474 cells were purchased
from American Type Culture Collection (Manassas,
VA, USA), and were cultured in RPMI-1640 medium
supplemented with L-glutamine (2 mM), 10% fetal
bovine serum, penicillin (100 U/mL), and streptomycin
(100 μg/mL) at 37°C (98.6°F) with 5% humidified CO2.

Assay of cell viability and apoptosis
BT474 cells were cultured in 96-well plates at a density of
1.5 × 104 and were treated with different agents for 48 h.
DMSO was added to the medium as solvent control (final
concentration = 0.1%). 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenltetrazolium bromide (MTT; final concentration of
0.5 mg/mL) was added to each well and further incubated
for 4 h. Culture medium was discarded and DMSO (100 μL)
was added to each well for another 15 min with mild
shaking to dissolve precipitates. Absorbance at 595 nm was
measured by an ELISA reader; absorbance was used to
indicate cell viability or metabolic activities. A reduction in
MTT absorbance indicates cell death, reduced cell
proliferation or metabolic activities. Number of viable cells
was quantified by the trypan blue exclusion method: viable
cells were unstained by trypan blue and were counted with a
hemocytometer. An FITC annexin V apoptosis detection kit
(BioLegend, San Diego, CA, USA) and flow cytometer (BD
Biosciences, San Jose, CA, USA) were used to quantify
apoptosis. Caspase-9 level was measured using an ELISA
kit (cat. # E-EL-H0663; Elabscience, Houston, TX, USA)
following the instructions in the manufacturer’s manual.

Microfluorimetric measurement of cytosolic Ca2+

Cytosol Ca2+ concentration was measured using fura-2 as a
fluorescent probe [22]. Cells were incubated with 5 μM
fura-2 AM (Invitrogen) at 37°C (98.6°F) for 1 h; cells were
then washed in bath solution (mM): 140 NaCl, 2 CaCl2,
1 MgCl2, 4 KCl, 10 HEPES (pH was adjusted to 7.4 by
NaOH). Intracellular Ca2+ release was examined in
Ca2+-free bath solution; the latter being the same as the bath
solution, except that Ca2+ was removed and EGTA
(100 μM) was added. Cells were excited by 340 and 380 nm
alternately (switching frequency = 1 Hz) by an optical filter
changer (Lambda 10-2, Sutter Instruments, Novato, CA,
USA). Emission was collected at 500 nm. and data were
captured by a CCD camera (CoolSnap HQ2, Photometrics,
Tucson, AZ, USA), which was connected to a Nikon
(Tokyo, Japan) TE2000-U microscope. Data were analyzed
with an MAG Biosystems Software (Sante Fe, MN, USA).
Experiments were conducted at 25°C (77°F). Changes in
340/380 ratio were analyzed at a region of interest of single
cells; the same experimental procedures were repeated
multiple times to obtain the mean.

Measurement of mitochondrial Ca2+ concentration
Microfluorimetric quantification of Ca2+ concentration within
the mitochondrial matrix was performed using a Ca2+-sensitive
dye Rhod-2 AM [23]. The cells were incubated with 5 μM
Rhod-2 AM (Invitrogen, Carlsbad, CA, USA) at 37°C
(98.6°F) for 1 h. Cells were then permeabilized and washed
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with a digitonin (30 μM)-containing intracellular solution,
which contained (mM): 140 KCl, 8 NaCl, 1 CaCl2, 1 MgCl2,
1.85 EGTA, 10 HEPES, and 8 MgATP (KOH was used to
adjust pH to 7.25). Free [Ca2+] in this intracellular solution
was calculated to be 114 nM. Excitation wavelength was
540 nm and emission wavelength was 605 nm. Images were
captured by a CCD camera (CoolSnap HQ2, Photometrics,
Tucson, AZ, USA) connected to an inverted microscope
(Nikon TE 2000-U). An MAG Biosystems Software (Sante
Fe, MN) was used for analysis. All experiments were
performed at room temperature (25°C) (77°F).

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential was measured by a
mitochondrial membrane potential assay kit (#12664; Cell
Signaling, Danvers, MA, USA) as described in a previous
report [24]. The cells were plated at a density of 5 × 104 cells
per well to settle overnight. The cells were treated with
DMSO or other agents for 24 h. JC-1 (2 μM) was added to
each well for 30 min. Fluorescent emission was measured by
a Varioskan LUX multimode microplate reader (Thermo
Fisher Scientific, Waltham, MA, USA). Excitation wavelength
was at 485 nm and dual emission wavelengths were at 520
and 590 nm. Mitochondrial membrane potential was
calculated as the ratio RFU of red emission (590 nm)/RFU of
green emission (520 nm).

Reactive oxygen species (ROS) assay
ROS was measured as described in a previous report [25]. The
cells were treated with various agents for 4 h, and were then
incubated in serum-free DMEM supplemented with 2,7-
dichlorodihydrofluorescein diacetate (DCFH2-DA, 20 μM,
Sigma, St. Louis, MO, USA) at 37°C (98.6°F) for 30 min in
darkness. Cells were then washed, trypsinized at 37°C for 3
min, and washed again three more times in phosphate-
buffered saline using centrifugation. The cells were then
dispersed in phosphate-buffered saline, put in polystyrene
tubes for FACS (fluorescence-activated cell sorting). The
samples (1 × 105 cells/sample) were analyzed by an FACS
Canto flow cytometer system (BD Biosciences, San Jose, CA,
USA). Data analysis was performed with the aid of a BD
FACSDIVA™ software (BD Biosciences).

Assay of ATP content
Cellular ATP content was quantified as described in a
previous report [26]. The cells were seeded in 10-cm dishes
at a density of 6 × 106 cells per dish and treated with
DMSO or 30 μM MCU-i4 for 24 h. The cells were
subsequently trypsinized and cell viability was quantified by
the trypan blue exclusion method. The cells were sonicated
(33 Hz, 90 s) in ice bath, centrifuged (10,000 g, 10 min) and
30 μL supernatant was taken for ATP quantification using
an ATP assay kit (catalogue # E-BC-K57-M; Elabscience,
Houston, TX, USA). Samples were analyzed by a BioTek
Epoch 2 microplate spectrophotometer (Winooski, VT, USA).

Assay of glycolytic activity
Quantification of lactate was used as an indicator of glycolysis
[27]. The cells were seeded in 96-well plates at a density of
1 × 104 cells/per well overnight. The cells were then treated

with DMSO or 30 μM MCU-i4 for 3 h, and 5 μL
supernatant was taken for lactate quantification using a
glycolysis assay kit (catalogue # ECGL-100; BioAssay
Systems, Hayward, CA, USA), and samples were analyzed
by a BioTek Epoch 2 microplate spectrophotometer
(Winooski, VT, USA).

Statistical analysis
Statistical analysis and graphing were performed using
Origin8.5 (OriginLab, MA, USA). Results are presented as
means ± standard error of mean (S.E.M.). Paired or
unpaired Student t-test was employed where appropriate to
compare two groups. When multiple groups were analyzed,
ANOVA and the Tukey’s HSD post-hoc test were used.
Statistical significance was considered to be reached if the
p-value is less than 0.05.

Results

MCU-i4 induced apoptotic cell death
Treatment of BT474 cells with MCU-i4 (3–30 μM) for 2 days
resulted in a concentration-dependent decrease in cell viability
(Fig. 1A). Since the MTT assay shown in Fig. 1A could not
discriminate between cell death and reduced cell
proliferation, we used the trypan blue exclusion method to
quantitate the number of viable cells (Fig. 1B). Cell
proliferation was suppressed by 3 μM MCU-i4, while higher
concentrations (10–30 μM) concentration-dependently
caused cell death. We investigated whether cell death was
necrotic or apoptotic. There was a 10-fold increase in
annexin-positive/propidium iodide-negative cells (Q4),
suggesting early apoptosis had taken place (Fig. 1C).
Caspase-9 has been known as a marker of apoptosis [28].
Consistently, MCU-i4 treatment also resulted in a moderate
increase in the level of caspase-9 (Fig. 1D).

Effects of MCU-i4 on cytosolic Ca2+ fluxes
We investigated whether MCU-i4 affected cytosolic Ca2+ levels.
MCU-i4 did not cause an immediate elevation in cytosolic Ca2+

concentration [Ca2+]i (Fig. 2A). We then investigated whether a
prolonged MCU-i4 pre-treatment (25 min) would affect the
Ca2+ level. The cells in Ca2+-containing bath solution were
treated with DMSO or MCU-i4 for 25 min (kept in the dark
to avoid photobleaching) prior to microfluorimetric
measurement. An elevated Ca2+ baseline was observed in the
MCU-i4-treated cells (Fig. 2B). Treatment with MCU-i4 for
24 h (followed by fura 2 loading and microfluorimetric
measurements) also resulted in an elevated Ca2+ baseline,
suggesting prolonged MCU-i4 treatment raised Ca2+

concentration in the cytosol (Fig. 2C). We repeated the above
protocol (25 min) in Ca2+-free bath solution (Fig. 2D). An
elevated Ca2+ baseline was again observed in the MCU-i4-
treated cells, suggesting the raised Ca2+ concentration in the
cytosol was in part due to Ca2+ release. Inhibition of inositol
1,4,5-trisphosphate receptors (IP3R) by 2-APB strongly
suppressed the elevation of Ca2+ baseline, while inhibition of
ryanodine receptors (RYR) by JTV-519 only mildly alleviated
it, suggesting the Ca2+ leak was mainly via IP3R and in part
via RYR.
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MCU-i4 reduced mitochondrial matrix Ca2+ level
Ca2+ release from intracellular Ca2+ store caused elevation in
cytosolic Ca2+ level under inhibition of mitochondrial Ca2+

uptake by MCU-i4 (Fig. 2). To show that inhibition of
mitochondrial Ca2+ uptake by MCU-i4 led to a decrease in
mitochondrial Ca2+ concentration, we used Rhod-2, a
fluorescent probe for Ca2+ concentration in the
mitochondrial matrix (Fig. 3). In the control where DMSO
was added, there was a slow decrease in fluorescence which
was due to inevitable photobleaching of the fluorescent dye;
addition of MCU-i4 caused an immediate and persistent
decrease in fluorescence when compared to the control,
indicating a decrease in mitochondrial matrix Ca2+

concentration. This result, together with the data in Fig. 2,
suggest that upon MCU-i4 inhibition of mitochondrial Ca2+

uptake, Ca2+ released from Ca2+ store failed to enter
mitochondria and thus “spilled over” in the cytosol.

MCU-i4 enhanced glycolysis and production of ATP and ROS
We next examined whether MCU-i4-induced lowered
mitochondrial matrix Ca2+ level would affect ATP production.
MCU-i4 treatment for 24 h resulted in a 51.9 ± 5.8% decrease
in viable cell count (trypan blue exclusion test) but only
moderately reduced ATP production by 23.9 ± 9.8%. When
ATP production was normalized by the number of viable
cells, MCU-i4 treatment significantly enhanced ATP
production (Fig. 4A). Since lowered mitochondrial matrix
Ca2+ level was not compatible with increased mitochondrial
ATP production, we examined whether increased ATP
production resulted from increased glycolytic activities. As

(A)

(C)

(D)

(B)

FIGURE 1. MCU-4 decreased cell viability and caused apoptosis. (A) Cells were treated with different concentrations of MCU-i4 for 2 days
before the MTT assay was used to determine cell viability. (B) Cells, initially seeded on 24-well plates at a density of 3 × 104/well, received no
vehicle or drug (untreated) or were treated with DMSO (vehicle) or different concentrations of MCU-i4 for 2 days, and viable cells were
counted by the trypan blue exclusion method. (C) Cells were treated with DMSO or 30 μM MCU-i4 for 1 day and examined for
apoptosis. (D) Cells were cultured on 6-cm wells at a density of 5 × 105/well (in order to have sufficient protein harvest for caspase-9
determination), treated with DMSO or 30 μM MCU-i4 for 2 days, and examined for the level of caspase-9. Results are mean ± SEM from
3–4 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001 different from the DMSO control.
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shown in Fig. 4B, MCU-i4 caused a 1.6-fold elevation in secreted
lactate concentration, which indicated an increase in glycolysis.
Whether MCU-i4 elicited ROS formation was next examined.
As shown in Fig. 5, treatment of cells with MCU-i4 for 4 h
resulted in large production of ROS.

Effects of MCU-i4 on mitochondrial membrane potential
Using JC-1 as a fluorescent probe of mitochondrial membrane
potential, we examined if MCU-i4 would depolarize

mitochondrial potential. MCU-i4 at 10 μM caused marked
depolarization whilst at 30 μM it caused collapse of
mitochondrial membrane potential to an extent comparable
to that caused by FCCP (Fig. 6A). Since mitochondrial
membrane potential collapse could be a result of
mitochondria permeability transition pore (MPTP) opening
and that cyclophilin D is an integral part of the MPTP, we
examined if cyclosporin A (an MPTP inhibitor by
interacting with cyclophilin D) could reduce MCU-i4

FIGURE 2. Effects of MCU-i4 (30 μM) on Ca2+ fluxes. (A) Cells in Ca2+-containing solution were exposed to DMSO (vehicle control) or
MCU-i4. (B) Cells were pretreated with DMSO or MCU-i4 for 25 min in a Ca2+-containing solution and then subject to microfluorimetric
measurement. (C) Cells were cultured in the presence of DMSO or MCU-i4 for 1 day, loaded with fura-2, bathed in Ca2+-containing solution,
and then subject to microfluorimetric measurement. The right panels show pseudocolor images (low ratio being blue to high ratio being red) of
fluorescent ratio analysis of DMSO-and MCU-i4-treated cells. (D) Cells were pretreated with DMSO or MCU-i4 (in the absence or presence of
30 μM JTV-159 or 30 μM 2-APB) for 25 min in Ca2+-free solution and then subject to microfluorimetric measurement. For (B)–(D), there are
significant (p < 0.001) differences between the DMSO and MCU-i4 groups at all time points. For (D), there are significant (p < 0.001)
differences between the MCU-i4 group and MCU-i4 plus JTV-159 group or MCU-i4 plus 2-APB group at all time points. Results are
mean ± S.E.M.; each group had 14–57 cells from 3 independent experiments.
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cytotoxicity. However, MCU-i4-inflicted cell death was not
prevented by cyclosporin A (Fig. 6B).

Discussion

Classical MCU inhibitors (direct pore blockers) such as
ruthenium complexes (ruthenium red and Ru360) have
been shown to induce apoptosis in kidney tubular cyst cells
and colon carcinoma HCT-116 cells [29,30]. By contrast,

they inhibit apoptosis in colonocytes, mammary gland
adenocarcinoma cells, neuroblastoma cells, and podocytes,
by preventing mitochondrial Ca2+ overload [31–34]. The
factors governing whether these ruthenium-related
compounds prevent or induce apoptosis are unclear. The
antibiotics minocycline and doxycycline also cause MCU
inhibition, which may lead to their anti-cancer activities
[5,35–37]. MCU-i4 differs from the classical MCU pore
blockers: it binds to MICU1 and is therefore a negative
modulator of MCU [21]. We here provided data to show
how MCU-i4 caused apoptotic death in cancer cells.

In our report, we showed MCU-i4 decreased
mitochondrial matrix Ca2+ level. This, however, did not lead
to the expected reduction of ATP production but instead
caused a moderate increase in ATP production. One
explanation is that the reduction in mitochondrial matrix
Ca2+ level was too mild to cause a significant drop in ATP
production, whilst persistent cytosolic Ca2+ rise (Fig. 2)
enhanced glycolytic production of ATP. This is supported
by our findings that MCU-i4 caused increases in glycolytic
activity and ATP production (Fig. 4). Our data are therefore
in concordance with previous observations showing that
Ca2+ stimulates glycolysis [38,39]. Our study showing that
MCU-i4 caused increased ATP production and apoptotic
(instead of necrotic) cell death (Fig. 1) is reminiscent of
previous reports demonstrating that cells undergoing
apoptosis had raised levels of ATP. For instance, cerebellar
granule cells undergoing apoptosis had enhanced ATP
production derived from both oxidative phosphorylation
and glycolysis [40]. HeLa, PC12 and U937 cells had
increased cytosolic ATP levels when they underwent
apoptosis; inhibition of glycolysis abolished apoptosis [41].
In isolated hypoxic rat cardiac myocytes, cell death shifted
from necrosis to apoptosis when cellular ATP level was
raised by increasing glucose concentration in the medium
[42]. Therefore, lack and abundance of ATP favor,
respectively, necrosis and apoptosis [43].

In heart failure, disturbed Ca2+ handling reduces
mitochondrial Ca2+ uptake and results in oxidative stress in
cardiomyocytes [44]. How ROS formation was raised in
MCU-i4-treated BT474 cells was uncertain. It might be
partly due to heightened metabolism: increased cytosolic
Ca2+ level enhanced glycolysis (see above; Figs. 2 and 4),
with pyruvate increasingly fueling the Kreb’s cycle and
oxidative phosphorylation. ROS may activate hypoxia-
inducible factor 1-α, which further promotes glycolysis [45].
ROS can elicit further ROS formation from proximal
mitochondria, a term coined ROS-induced ROS release
[46,47]. This may account for the substantial amount of
ROS formation in MCU-i4-treated BT474 cells. Thus, ROS
formation, together with persistent cytosolic Ca2+ overload
(see below), may eventually lead to apoptotic cell death
(Fig. 1C). The latter was also evidenced by the increase in
caspase-9 level, an indicator of mitochondria-dependent
apoptosis (Fig. 1D). Reduced mitochondrial Ca2+ level may
sensitize cytotoxicity by apoptotic signals. Remarkably, a
reduction in mitochondrial Ca2+ level by chelation or Ru360
potentiates cytotoxicity induced by tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL) in
apoptosis-resistant tumor cells [48].

FIGURE 3. MCU-i4 (30 μM) caused a decrease in mitochondrial
Ca2+ level. Cells were loaded with Rhod-2 and permeabilized as
described in the methods section. Cells were then treated with
DMSO or MCU-i4. Changes in mitochondrial Ca2+ level are
quantified as fluorescence/fluorescence at time zero (F/F0). There
are significant differences between the DMSO control and the
MCU-i4 group after 171 s (p < 0.05). Results are mean ± SEM; each
group had 26–31 cells from 3 independent experiments.

FIGURE 4. MCU-i4 treatment increased ATP and lactate
production. (A) Cells were treated with DMSO or 30 μM MCU-i4
for one day and then subject to ATP quantification. (B) Cells were
treated with DMSO or 30 μM MCU-i4 for 3 h and then subject to
lactate quantification. Results are mean ± SEM from 4 independent
experiments. Significantly different from the DMSO control
*p < 0.05.
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One of the lethal causes of MCU-i4 is likely cytosolic
Ca2+ overload, as excessive and persistent Ca2+ elevation
activates multiple phospholipases, proteases, and caspases
[49]. As constitutive ER-mitochondria Ca2+ transfer is
necessary for normal mitochondrial functioning such as
oxidative phosphorylation [7–9], blockade of Ca2+ influx
into the mitochondrial matrix by MCU-i4 resulted in
sustained cytosolic Ca2+ elevation. Our data suggest that
Ca2+ released from ER was mainly via IP3R and in part
RYR. Although MICU1 is the known target of MCU-i4, the
possibility that MCU-i4 targets on other protein molecules
involved in cell metabolism, and hence inflicts cell death,
could not be ruled out. Future work to identify possible off-
targets is warranted.

Raised mitochondrial Ca2+ levels and ROS are strongly
implicated in mitochondrial permeability transition pore

(MPTP) opening and consequent mitochondrial membrane
potential collapse [50]. Here we show that although MCU-i4
caused a mild reduction in mitochondrial Ca2+, the drastic
ROS production it elicited might have overridden and
sufficed to cause mitochondrial membrane potential collapse
(which was to the same extent as elicited by FCCP).
Ruthenium-related compounds reportedly do not alter
mitochondrial membrane potential and thus serve as more
selective probes for the MCU [51]. The ability of MCU-i4 to
decrease mitochondrial membrane potential limits its
selectivity but endows it with anti-cancer activities. Given
that cyclophilin D is an integral part of the MPTP, the
observation that MCU-i4 caused mitochondrial membrane
potential collapse but its cytotoxicity was not alleviated by
cyclosporin A (which binds to cyclophilin D and thus
inhibits MPTP), appears intriguing. A possible explanation

FIGURE 5.MCU-i4 triggered ROS formation. Cells were treated with DMSO or different concentrations of MCU-i4 for 4 h and then subject to
ROS measurement using flow cytometry. Results represent mean ± SEM from 6 independent experiments. *p < 0.05, ***p < 0.001 significantly
different from the DMSO control.
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for this is that the MPTP opening caused by MCU-i4 was
partly independent of cyclophilin D. To support this notion,
evidence comes from observations that cardiomyocytes and
embryonic fibroblasts from cyclophilin D knock-out mice
still exhibited MPTP opening, albeit to a lesser extent than
that of the wild-type counterparts [52,53].

We have presented evidence that MCU-i4 enhanced
glycolysis and ATP production (Fig. 4). MCU-i4 also caused
mitochondrial dysfunction (Fig. 6A), which might lead to
decreased oxygen consumption. Therefore, it is likely that
MCU-i4-treated BT474 cells consumed less oxygen when
compared to untreated cells. A limitation of our study was
the lack of data on oxygen consumption rate, which would
warrant further investigation.

Conclusion

MCU-i4 inhibited mitochondrial Ca2+ uptake and thus caused
cytosolic Ca2+ overload due to continuous ER Ca2+ release.
Increased glycolysis, ATP production, and ROS burst were
followed by mitochondrial membrane potential collapse and
eventually apoptotic death of BT474 cells. It is
conventionally believed that cancer cell death could be
caused by inhibition of glycolysis [54]. Our observations
suggest cancer cell death could also be induced by increased

glycolytic metabolism. The cytotoxic mechanisms of
MCU-i4 may shed light on future investigations into the use
of anti-cancer drugs that target the MCU.
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