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Abstract: Multiple myeloma (MM) is a hematologic malignancy notorious for its high relapse rate and development of

drug resistance, in which cell adhesion-mediated drug resistance plays a critical role. This study integrated four RNA

sequencing datasets (CoMMpass, GSE136337, GSE9782, and GSE2658) and focused on analyzing 1706 adhesion-

related genes. Rigorous univariate Cox regression analysis identified 18 key prognosis-related genes, including KIF14,

TROAP, FLNA, MSN, LGALS1, PECAM1, and ALCAM, which demonstrated the strongest associations with poor

overall survival (OS) in MM patients. To comprehensively evaluate the impact of cell adhesion on MM prognosis, an

adhesion-related risk score (ARRS) model was constructed using Lasso Cox regression analysis. The ARRS model

emerged as an independent prognostic factor for predicting OS. Furthermore, our findings revealed that a heightened

cell adhesion effect correlated with tumor resistance to DNA-damaging drugs, protein kinase inhibitors, and drugs

targeting the PI3K/Akt/mTOR signaling pathway. Nevertheless, we identified promising drug candidates, such as

tirofiban, pirenzepine, erlotinib, and bosutinib, which exhibit potential in reversing this resistance. In vitro,

experiments employing NCIH929, RPMI8226, and AMO1 cell lines confirmed that MM cell lines with high ARRS

exhibited poor sensitivity to the aforementioned candidate drugs. By employing siRNA-mediated knockdown of the

key ARRS model gene KIF14, we observed suppressed proliferation of NCIH929 cells, along with decreased adhesion

to BMSCs and fibronectin. This study presents compelling evidence establishing cell adhesion as a significant

prognostic factor in MM. Additionally, potential molecular mechanisms underlying adhesion-related resistance are

proposed, along with viable strategies to overcome such resistance. These findings provide a solid scientific foundation

for facilitating clinically stratified treatment of MM.

Introduction

Multiple myeloma (MM) is the second most common
hematological malignancy and is characterized by the
excessive proliferation of plasma cells in the bone marrow
[1]. To date, MM remains incurable in most patients, with
drug resistance driving relapse. Cell adhesion-mediated drug
resistance (CAM-DR) is a major clinical problem that
prevents successful treatment of MM [2].

Cell adhesion encompasses interactions between cells
and the extracellular matrix (ECM), as well as between cells
themselves. In MM, this adhesion effect predominantly

occurs between MM cells and bone marrow stromal cells, as
well as ECM proteins within the bone marrow
microenvironment [3]. Previous research underscores the
pivotal role of cell adhesion in various facets of MM,
including disease onset, the occurrence of minimal residual
disease (MRD), tumor dormancy, extramedullary
dissemination (to the lungs, liver, pleura, and peritoneal
fluid), drug resistance, and the modulation of the bone
marrow immune microenvironment [4–6]. Additionally,
studies suggest that MM may induce heightened osteoclast
activity through adhesion and interaction, consequently
driving more osteolytic events and exacerbating myeloma-
associated bone disease.

Cell adhesion is integral throughout the entirety of MM
development, emphasizing its paramount importance in
disease progression. In recent years, an increasing number
of cell adhesion-related molecules and pathways have been

*Address correspondence to: Ting Niu, niuting@wchscu.cn
Received: 08 July 2023; Accepted: 23 October 2023;
Published: 20 March 2024

ONCOLOGY RESEARCH echT PressScience
2024 32(4): 753-768

Doi: 10.32604/or.2023.043647 www.techscience.com/journal/or

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:niuting@wchscu.cn
https://www.techscience.com/journal/OR
https://www.techscience.com/
http://dx.doi.org/10.32604/or.2023.043647
https://www.techscience.com/doi/10.32604/or.2023.043647


found to exhibit abnormal expression in MM pathogenesis.
Consequently, targeted inhibitors or modulators developed
in this context have garnered significant attention. Integrins
are heterodimeric membrane glycoprotein receptors that
facilitate the interaction between the extracellular matrix
and cell-cell adhesion molecules. Specifically, α4β1 (VLA-4)
and α4β7 have been established to exert a substantial
influence on MM cell adhesion, migration, homing,
invasion, and drug resistance. Notably, studies by Vandyke
et al. and Groen et al. have demonstrated upregulated
expression of N-cadherin on MM cells in approximately
50% of newly diagnosed MM patients [7]. The adhesion
pathway involving SDF-1 (CXCL12) and its receptor
CXCR4, expressed on MM cells, has been extensively
investigated in MM homing. The CXCR4 inhibitor
AMD3100 and the anti-CXCR4 antibody MAB171 impede
the homing of MM cells to bone marrow niches, making
them potential agents for MM treatment [8]. CD38, a
receptor involved in regulating cell adhesion, migration, and
signal transduction, plays a pivotal role in the bone marrow
microenvironment of MM. Daratumumab is the first
therapeutic monoclonal anti-CD38 antibody approved by
the Federal Drug Agency (FDA) for the treatment of MM
both as a single agent and in combination with lenalidomide
or bortezomib [9]. Additionally, immunomodulatory drugs
(IMiDs) such as lenalidomide, bortezomib, and natalizumab
are prominent examples of drugs that interfere with cell
adhesion and have been developed for MM treatment
[4,10]. Thus, the exploration of the role and interplay of cell
adhesion molecules in multiple myeloma provides valuable
insights into potential therapeutic targets for overcoming
clinical drug resistance.

While numerous studies have highlighted the
significance of individual cell adhesion in the progression of
MM, a comprehensive investigation in this area is lacking.
In the current study, we conducted a comprehensive
analysis of 1706 cell adhesion-related genes (ARGs) to assess
their prognostic value in MM using multiple datasets.
Additionally, we developed an adhesion-related risk (ARR)
model to predict patient outcomes. Moreover, we explored
drug sensitivity among different ARR groups and predicted
candidate drugs to overcome CAM-DR. Furthermore, we
validated our bioinformatic findings in vitro using MM cell
lines. Our study not only revealed novel molecular
mechanisms underlying cell adhesion but also presented
opportunities for the development of personalized
therapeutic strategies in MM.

Materials and Methods

Public data acquisition and preprocessing
The RNA-seq transcripts per million (TPM) data of 775 newly
diagnosed MM (NDMM) patients from the multiple myeloma
research foundation (MMRF) CoMMpass cohort were
downloaded from the GDC data portal (https://portal.gdc.
cancer.gov/projects/MMRF-COMMPASS/). Two external
independent datasets, GSE2658 containing 410 NDMM
patients and GSE136337 containing 422 NDMM patients,
were downloaded from the GEO database and quantitated
by Affymetrix Human Genome U133 Plus 2.0 Array.

Another independent dataset of GSE9782 containing 264
MM patients was downloaded from the GEO database and
quantitated by Affymetrix Human Genome U133A Array.
The summarized clinical and laboratory profiles of patients
within the CoMMpass, GSE136337, and GSE9782 datasets
are presented in Suppl. Table S1.

Adhesion-related gene collection
A total of 1706 adhesion-related genes were collated from
Gene Ontology Biological Process (GOBP) and Kyoto
Encyclopedia of Genes and Genomes (KEGG).

Univariate and multivariate Cox analysis
Univariate Cox analysis was conducted to screen and validate
significant prognostic adhesion-related genes. Forest plots
reporting the p value, HR, and 95% CI were drawn using R
language.

Risk scores were analyzed using both univariate and
multivariate Cox proportional hazards models to assess
whether they were independent prognostic factors. We
considered factors with hazard ratios (HRs) > 1 to be
prognostic risk factors and those with HRs < 1 to be
prognostic protective factors.

Construction of an adhesion-related risk model
The 18 common adhesion-related genes correlated with overall
survival in four datasets were identified by an online tool
generating a Venn diagram (http://bioinformatics.psb.ugent.be/
webtools/Venn). Then, these 18 candidate genes were used to
construct a multigene signature for predicting overall
survival (OS) prognosis. The CoMMpass dataset was
designated as the training set to construct the prognostic
model, while the other three GEO datasets were designated as
the test sets to verify the result of the training set. Finally, 12
adhesion-related genes were identified to construct the risk
model by least absolute shrinkage and selection operator
(LASSO) Cox regression analysis using the R package “glmnet”
[11]. Using the linear combination of gene expression
weighted regression coefficients, we obtained the adhesion-
related risk score formula: risk score = (exp MSN*0.155) −
(exp PECAM1*0.096) + (exp HTR2C*0.040) + (exp
GTPBP4*0.186) + (exp LGALS1*0.055) − (exp ALCAM*0.053)
− (exp MERTK*0.029) + (exp KIF14*0.326) + (exp
TENM1*0.042) − (exp JUN*0.025) + (exp FLNA*0.111) +
(exp TROAP*0.211). Patients were divided into low-and high-
risk groups based on their median risk score. Kaplan‒Meier
(KM) survival curves and time-dependent receiver operating
characteristic (ROC) analysis were performed to evaluate the
prognostic value of the adhesion-related risk score using the
“survival”, “survminer” and “timeROC” packages. Risk curves
and scatter plots were generated to show the risk score and
vital status of individuals.

Establishment of the nomogram
Following collation with clinical information, the
clinicopathologic features of 612 patients in the CoMMpass
dataset and 416 MM patients in the GSE136337 dataset
were employed to construct the prognostic nomogram.
Then, the nomograms and calibration curves were plotted
with the “rms” package.
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Interaction network
To further explore the interactome of 18 prognostic adhesion-
related genes, the “igraph” and “reshape2” R packages were
used to calculate Pearson correlation coefficients and build
the gene coexpression network. In addition, the online tool
STRING (http://string-db.org/) was applied to construct the
protein‒protein interaction network of those 18 genes at the
protein level.

Functional enrichment analysis
Gene set enrichment analysis (GSEA) and gene set variation
analysis (GSVA) were performed to obtain the biological
significance correlated with the adhesion-related risk score.
Briefly, GSEA was performed on the entire group of
transcriptomes by using GSEA software (http://software.
broadinstitute.org/gsea/). Gene sets with p values < 0.05
were considered statistically significant and were then
plotted by the “ggplot2” R package. GSVA was implemented
to estimate each gene set variation in every patient by using
the “GSVA” and “GSEABase” R packages. The differences in
biological pathways between high-and low-risk patients were
determined by the “limma” R package, and an adjusted
p value < 0.05 was considered statistically significant.

FunRich software was used to identify the primary
molecular function of the genes included in the risk model.

Prediction of chemotherapy sensitivity
Based on the Genomics of Drug Sensitivity in Cancer (GDSC)
v2 (https://www.cancerrxgene.org/) data portal, the drug half
inhibitory concentration (IC50) values of each sample were
evaluated using the calcPhenotype algorithm of the
“oncoPredict” R package in CoMMpass and GSE136337.
The Wilcoxon test was performed to describe the differences
in drug sensitivity between diverse risk groups.

Genes differentially expressed in the high-risk group
compared to the low-risk group were identified using the
“limma” R package. The 32 common upregulated genes and
78 common downregulated genes identified in both the
CoMMpass and GSE136337 datasets were uploaded into the
Connectivity Map (cMAP) (https://clue.io/query). Millions of
drugs were identified with similar or opposite gene-regulation
pattern inputs. The connectivity score of each drug ranged
from −1 to +1, and those drugs with values closer to −1 had
a reversible gene-drug relationship, suggesting that they could
overcome the adhesion effect in the high-risk group.

Cell culture and chemicals
RPMI8226, NCIH929 and AMO1 cells were cultured in RPMI
1640 medium with 10% fetal bovine serum (FBS, Gibco) and
1% penicillin/streptomycin (HyClone).

AZD5363 and pictilisib were purchased from Bidepharm
(Shanghai, China). Uprosertib, dabrafenib and foretinib were
purchased from Aladdin (Shanghai, China). Nutlin-3a and
selumetinib were purchased from MedChemExpress
(Shanghai, China).

Cell proliferation and apoptosis assessment
For the cell proliferation assay and determination of IC50, we
employed a Cell Counting Kit-8 (CCK-8, Yeasen, Shanghai,
China) following the manufacturer’s protocol.

Apoptosis analysis was conducted using an Annexin
V-FITC/PI Apoptosis Detection Kit (Yeasen, Shanghai,
China).

Cell transfection
KIF14 siRNAs were custom-synthesized by GenePharma
(Shanghai, China) and transiently transfected into cells
using Lipofectamine 2000 transfection reagent (Invitrogen,
CA, USA) following the manufacturer’s instructions. The
specific sequences for KIF14 siRNAs were as follows: #489
(AUAUCAAGAAUAUCACCGCTT), #3021 (AUAAUA
CUCACUGUCCCACTT), and #4950 (UUUAAGAAUU
CUGGAGCACTT).

Real-time qPCR and Western blot analysis
Total RNA was extracted from cells using the HiPure
Universal RNA Mini Kit (Magen, China). The RNA
concentration was quantified using a Nanodrop 2000
spectrophotometer (Thermo Fisher Scientific, USA).
Subsequently, the RNA was reverse transcribed into cDNA
using the TransScript All-in-One First-Strand cDNA
Synthesis SuperMix for qPCR (One-Step gDNA Removal)
Kit. The resulting cDNA served as the template for qPCR,
which was carried out using Hieff qPCR SYBR Green
Master Mix (YEASEN, Shanghai, China) on a real-time
fluorescence quantitative PCR instrument (LongGene,
Hangzhou, China). The expression levels of target genes
were normalized to GAPDH. The primer sequences can be
found in Suppl. Table S2.

Western blot analysis was conducted as previously
described [12]. The primary antibody against KIF14 was
procured from Bethyl Laboratories (A300-233A-T).

Cell adhesion assay
For the adhesion assays, we utilized soluble fibronectin (FN)
or HS-5 cells. Initially, Petri plates were coated with HS-5
cells or 40 μg/mL FN (MedChemExpress, Shanghai,
China) in 1 mL of culture medium or phosphate-buffered
saline (PBS), respectively [13]. These plates were then
incubated overnight in a 37°C incubator. Simultaneously,
NCIH929 cells were transfected with either siNC or
siKIF14#4950 using Lipofectamine 2000 overnight.
Subsequently, NCIH929 cells were labeled with 5 μM
calcein-AM (Beyotime, Shanghai, China) for 0.5 h, strictly
following the manufacturer’s instructions. Next, the PBS-
washed NCIH929 cells (2 × 105 cells/mL) were allowed to
adhere to a preestablished monolayer of HS-5 or FN.
After 6 h of adhesion, the plates underwent thorough
washing three times with PBS. Finally, images were
captured using a fluorescence microscope (Nikon, Tokyo,
Japan).

Statistical analysis
Data are expressed as the mean ± standard deviation (SD). All
experiments were independently performed in triplicate.
Statistical significance was assessed using either two-way
analysis of variance (ANOVA) or Student’s t-test, as
appropriate. GraphPad Prism 8.0 software was employed for
data analysis and visualization. A p value < 0.05 was
considered statistically significant.
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Results

Establishment of adhesion-related prognostic model
The flow chart of the study is presented in Fig. 1.

To investigate the most significant ARGs associated with
OS in MM patients, we selected 4 MM datasets with relatively
large sample sizes for prognosis analysis. Univariate Cox
regression analysis was applied to identify ARGs with
significant prognostic value (p < 0.05). As depicted in the
Venn diagram, 18 ARGs correlated with OS overlapped in
all 4 datasets (Fig. 2A). To further explore the interaction of
these 18 prognostic ARGs, we constructed a PPI network
using the STRING tool (Fig. 2B). A total of 11 ARGs were
identified in this interaction network. In addition, we
performed Pearson correlation analysis of 18 intersecting
ARGs in the CoMMpass dataset and constructed a
coexpression network with a coefficient threshold of 0.3
(Fig. 2C). To identify the prognostic value of each candidate
ARG, we reperformed univariate regression analysis of those
genes in 4 MM datasets (Fig. 2D and Suppl. Fig. S1).
Notably, KIF14, a gene encoding a member of the kinesin-3
superfamily of microtubule motor proteins, interacted
extensively with other genes and was strongly associated
with poor prognosis (HR = 2.423, p < 0.001). TROAP, a
gene encoding trophinin-associated protein, is needed for
microtubular cytoskeleton regulation, centrosome integrity,
and spindle assembly during mitosis. TROAP can facilitate
cell adhesion during embryo implantation [14]. There was a
significant interaction between KIF14 and TROAP, whether
it was determined through experimental evidence or
coexpression analysis (Figs. 2B and 2C). Although both
KIF14 and TROAP have been identified as oncogenes in
various solid tumors [15,16], their involvement in MM is
still uncertain.

FLNA, a gene encoding filamin A (FLNa), participates in
the formation of the cytoskeleton and regulates cell adhesion
and migration. By anchoring a variety of proteins in the
cytoskeleton, FLNa acts broadly on signal transduction,
proliferation, differentiation and chemoresistance [17]. In
fact, FLNa plays dual roles in cancer. Full-length FLNa
located in the cytoplasm promotes cell proliferation and
migration, while cleaved FLNa located in the nucleus
inhibits cell proliferation by negatively regulating the
synthesis of rRNA [18]. Our data indicate that FLNA
significantly correlated with poor OS in MM (HR = 1.334, p
< 0.001), which has not been reported previously. MSN
encodes moesin, which acts as a structural linker between
the plasma membrane and the actin filaments in the cell,
regulating fundamental cellular processes such as cell
morphology, adhesion, and motility. The effect of moesin
on hematologic malignancy has been poorly studied.
However, recent research suggests that moesin could be a
potential therapeutic target to address bortezomib resistance
in MM [19]. LGALS1, a gene encoding galectin-1 (Gal-1),
serves as a potential therapeutic target for cancer treatment
[20]. As reported, Gal-1 functions in diverse processes of
tumor progression, including proliferation, migration and
adhesion, immune responses, inflammation, intercellular
and cell–matrix interactions and carcinogenesis [21]. A
similar trend was found in this study: LGALS1 was

negatively correlated with MM prognosis (HR = 1.324, p <
0.001). A previous review indicated that platelet endothelial
cell adhesion molecule-1 (PECAM-1/CD31) is involved in
inhibiting apoptosis and thus contributes to resistance to
chemotherapeutic treatment in various types of tumors,
including hematologic malignancies [22]. ALCAM, also
known as CD166, is a transmembrane glycoprotein
weighing 105 kDa and belongs to the immunoglobulin
superfamily. Many previous studies have shown that
ALCAM is linked to the development of several types of
solid cancer and acute myeloid leukemia. Thus, ALCAM has
been identified as a potential therapeutic target through
monoclonal antibody or specific chimeric antigen receptor
T-cell (CAR-T cell) cancer treatment [23,24]. However, our
results showed a positive effect of PECAM1 (HR = 0.702, p
< 0.001) and ALCAM (HR = 0.745, p < 0.001) on the OS of
MM. Further research is required to validate the precise
function of these 18 candidate ARGs in MM.

To investigate the overall prognostic correlation of
ARGs, we performed Lasso Cox regression analysis of 18
prognosis-related ARGs and identified 12 genes to construct
the adhesion-related prognostic gene signature (the colored
genes in Fig. 2D). We calculated the adhesion-related risk
score (ARRS) of each patient based on the coefficient of
each gene in the risk model. Using the median ARRS of
each dataset, we divided MM patients into high- or low-risk
groups (Suppl. Fig. S2A). As shown in Suppl. Fig. S2B, the
patients with a higher ARRS tended to die more likely
during the follow-up. In addition, Kaplan‒Meier analysis
confirmed that patients with a high ARRS had significantly
shorter overall survival, which was consistent in all four
datasets (Fig. 2E). According to the findings presented
above, the ARRS is a significant adverse prognostic factor in
MM.

ARRS is an independent predictor of overall survival in MM
patients
To assess the predictive efficacy of the risk model for
prognosis, we utilized ROC analysis, as well as univariate
and multivariate Cox regression analyses with ARRS to
assess its prognostic value. In the CoMMpass dataset, the
areas under the ROC curve (AUCs) after 1, 3, and 5 years
were 0.671, 0.715, and 0.734, respectively (Fig. 3A). In both
the GSE2658 and GSE136337 datasets, the AUC consistently
exceeded 0.6, regardless of the cutoff years. However, in the
GSE9728 dataset, the AUC was above 0.6 for the first two
years but decreased to 0.53 after 3 years due to a smaller
sample size with longer follow-up periods (Fig. 3A). These
findings suggest that the ARRS has significant predictive
ability for prognosis in MM. Both single-factor independent
prognostic analysis and multivariate independent prognostic
analysis showed that ARRS, age and international staging
system (ISS) stage were independent prognostic factors in
the CoMMpass datasets (p < 0.001). Similarly, ARRS, age
and ISS stage were highly statistically significant
independent predictors of prognosis in GSE136337 (p <
0.001) (Figs. 3B and 3C).

Additionally, in univariate analysis for GSE136337,
albumin, β2-microglobulin (β2-MG), and lactate
dehydrogenase (LDH) levels, in addition to MYC-8q24, del
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FIGURE 1. Flow chart of bioinformatics analysis for adhesion-related genes associated with MM prognosis. Initially, we collected cell
adhesion-related genes from the GO and KEGG databases, resulting in 1706 genes. Through independent prognostic analysis, we
identified 18 key genes associated with prognosis across four datasets. To understand their interactions and relationship with prognosis,
we performed independent prognostic analysis, PPI network analysis, and coexpression network analysis. Subsequently, we constructed a
prognostic model for cell adhesion-related genes using Lasso Cox regression analysis, ensuring its reliability and accuracy through various
validation methods. Based on the adhesion-related risk score (ARRS) model, we developed a nomogram tool for disease prognosis
prediction and confirmed its accuracy. Following this, we stratified patients into high-and low-ARRS groups using the ARRS values. We
conducted molecular pathway enrichment analysis and drug sensitivity analysis for both groups while also predicting potential drugs with
the ability to reverse adhesion effects. Finally, we employed MM cell lines to validate the predicted drug sensitivities and employed siRNA
to knockdown the key model gene KIF14 to investigate its role in tumor progression and adhesion.
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(1p), del(1q), and X1q plus chromosomal abnormalities, were
identified as independent prognostic factors for the OS of MM
patients. However, in a multivariate analysis, none of these
factors remained significant. More interestingly, among all

the clinical factors considered, ARRS had the highest hazard
ratio values (HR = 2.872 to 3.904), indicating that it is the
strongest predictor of a worse clinical outcome in MM. In
general, the ARRS can serve as an independent and

FIGURE 2. Identification and construction of the adhesion-related gene prognostic model. (A) Venn diagram showing the number of
prognostic adhesion-related genes overlapping in the CoMMpass, GSE136337, GSE9782 and GSE2658 datasets (plotted using http://
bioinformatics.psb.ugent.be/webtools/Venn/). (B and C) Protein‒protein interaction (PPI) network (B) and coexpression network (C) of 18
adhesion-related genes that were significantly associated with prognosis in all four datasets. (D) Forest plot showing the univariate Cox
regression results of 18 adhesion-related genes in the CoMMpass dataset. (E) Kaplan‒Meier (KM) survival curves comparing overall
survival between low-and high-risk patients in the CoMMpass, GSE136337, GSE9782 and GSE2658 datasets.
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powerful prognostic predictor, which is even more robust
than classical predictors for predicting survival in MM.

Construction of a prognostic nomogram incorporating the
ARRS and clinical parameters
To develop a useful prognostic tool that integrates the ARRS
with other potential prognostic factors, we constructed

nomograms using the CoMMpass and GSE136337 datasets.
Nomograms are valuable for quantitatively assessing patient
prognosis, providing clinicians with a reliable basis for
clinical decision-making. As shown in Suppl. Fig. S3A,
ARRS contributed the most to prognosis, even more than
ISS stage and other clinical features in the CoMMpass
nomogram. Additionally, calibration curves for 1-, 3-, 5-,

FIGURE 3. Validation of the predictive value of the 12 adhesion-related gene-based risk model. (A) Time-dependent ROC curves for the
adhesion-related risk prediction model in the CoMMpass, GSE136337, GSE9782 and GSE2658 datasets. (B and C) Forest plots showing the
univariate (B) and multivariate Cox regression (C) analyses of risk score and clinical features in relation to overall survival in the CoMMpass
and GSE136337 datasets.
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and 10-year OS showed high consistency between the
nomogram predictions and actual observations (Suppl.
Fig. S3B). Similarly, in the GSE136337 dataset, ARRS
accounted for the highest proportion of total points in the
nomogram (Suppl. Fig. S3A). The accuracy of the
nomogram was also validated by calibration curves (Suppl.
Fig. S3B). As more clinical features were collected in the
GSE136337 dataset, older age, higher β2-MG levels, higher
LDH levels, and later ISS stages were associated with worse
survival rates. Additionally, the occurrence of chromosomal
abnormalities, including MYC-8q24, del(1p), del(11q), del
(13q), del(17p), X1qplus, and t(14,16), was associated with
poor prognosis. Overall, we successfully constructed
nomograms for predicting survival probabilities at various
time points in MM patients.

Investigation of risk-related KEGG pathways by GSVA and
GSEA
In our study, we constructed a risk model based on ARGs that
calculated the risk score by multiplying the log2-transformed
normalized gene expression with a negative or a positive
coefficient. Only 12 genes were taken into account for the
calculation. However, ARRS values may not consistently
correspond to the extent of the cells’ adhesion capability. To
determine this, we used Funrich to assess the primary
molecular function of the 12 genes included in the model.
The results demonstrated that cell adhesion was the most
prominent function of these genes, which confirmed our
initial hypothesis (Suppl. Fig. S4A). Next, we employed
GSEA to identify signaling pathways related to cell adhesion
in MM. As shown in Suppl. Fig. S4B, the cell adhesion and
GAP junction pathways (GJs) were significantly enriched in
the high-ARRS group compared to the low-ARRS group.
These results suggest that the high-ARRS group exhibited
higher levels of cell adhesion, particularly in GJ activation.
GJs, which are composed of connexins, enable the direct
transfer of ions and small molecules (Ca2+, glutamate, ATP,
or NAD+) between cells. Connexins are widely expressed in
human cells, functioning as electrical communicators in
excitable cells, such as neurons. In addition, connexins
mediate the exchange of small metabolites and second
messengers to regulate cell proliferation and differentiation
and the maintenance of tissue homeostasis [25,26]. In
addition to intercellular channels, the intercellular domains
of connexins can also interact with other proteins, including
components of the cytoskeleton and cell signaling pathways
[27]. Accumulating investigations have shown that GJs are a
double-edged sword in cancer therapy. On the one hand,
GJs can promote the cytotoxicity of various
chemotherapeutic drugs and induce the widespread
bystander effect of radiotherapy. On the other hand, GJs can
provide some substances to sustain cancer dormancy and
may adversely affect the efficacy of anticancer drugs and
cause cellular resistance [28]. However, the exact role of GJs
in MM is not yet clear. In our study, we were the first to
elucidate that high-ARRS populations had a higher
biological effect of cell adhesion, resulting in worse
prognosis compared to low-risk populations in MM.

To investigate the critical mechanisms or pathways that
contributed to the prognostic differences between high- and

low-ARRS MM patients, we applied GSVA and GSEA
enrichment analysis. Both GSVA and GSEA were performed
for each subgroup of genes in various signaling pathways.
However, GSEA was performed between the high- and low-
ARRS groups, and GSVA calculated the gene set signatures
in each patient first, which required further statistical
analysis to define the differences between groups.
Consistently identified by GSVA and GSEA, the cell cycle,
spliceosome, DNA replication, base excision repair,
mismatch repair, homologous recombination and P53
signaling pathways were significantly enriched in high-
ARRS MM patients in the CoMMpass dataset (Fig. 4). The
results obtained from the GSE136337 dataset contributed to
the same conclusion (Suppl. Fig. S5). The dysregulation of
the cell cycle is a prevalent hallmark of cancer, characterized
by uncontrolled cell proliferation. Remarkably, the
expression levels of cell cycle transcripts have demonstrated
substantial potential in predicting drug sensitivity [29].
Furthermore, base excision repair, mismatch repair and
homologous recombination are critical components of DNA
damage response (DDR) pathways, which protect cells
against exogenous or endogenous DNA damage.
Cytogenetic abnormalities are the main hallmark of MM.
Most of the drugs currently used to treat MM have direct
genotoxic activity (i.e., melphalan, doxorubicin,
cyclophosphamide) or interfere with the DNA repair
machinery (protease inhibitors or IMiDs). Once the DDR
pathways are overactivated, the efficiency of cytotoxic
therapy is considerably reduced [30,31]. In addition, the
upregulation of the P53 signaling pathway may contribute
to excessive activation of DDR [32]. Therefore, we
hypothesized that DDR-mediated chemoresistance may be
part of the reason for the shorter survival time in the high-
ARRS group than in the low-ARRS group.

Evaluation of the therapeutic response in different adhesion-
related risk groups
Building upon previous prognostic and pathway enrichment
analyses, our study demonstrated that the high-ARRS group
exhibited inferior survival outcomes compared to the low-
ARRS group, which could be attributed to the
hyperactivation of DNA damage response pathways and
other survival pathways. To further assess the sensitivity of
MM patients with diverse ARRS to various therapeutic
compounds, the oncoPredict package was applied to
calculate the IC50 of agents in the GDSC v2 database. In the
CoMMpass dataset, 87 of 156 total predicted drugs had
higher IC50 values in the high-ARRS group than in the low-
ARRS group, and the rest of the predicted drugs remained
constant in diverse groups. The top 30 drugs with the most
significant IC50 differences are shown in the heatmap. In
the GSE136337 dataset, 29 of 156 total predicted drugs
expressed higher IC50 values in the high-ARRS group than
in the low-ARRS group. After analyzing the common drugs
that showed significant differences in drug response between
the CoMMpass and GSE136337 datasets, we identified six
types of PI3K/Akt/mTOR signaling pathway inhibitors
(AZD2014, AZD5363, AZD6482, pictilisib, uprosertib, and
VSP34) that exhibited higher resistance in the high-ARRS
group than in the low-ARRS group (Fig. 5A). Additionally,
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we found that oxaliplatin, a DNA alkylating agent causing
DNA damage, was less effective in the high-ARRS group
than in the low-ARRS group. In addition, many targeted
agents were found to be resistant in the high-ARRS group,
including dabrafenib (a selective BRAF inhibitor), foretinib
(a multikinase inhibitor), mirin (an MRN-ATM pathway
inhibitor), Nutlin-3a (−) (an MDM2 antagonist and p53
activator), SB216763 (a GSK-3 inhibitor) and selumetinib (a
MEK 1/2 inhibitor). BRAF mutations are detected in ~7%–

15% of all cancers, including hairy cell leukemia (79%–
100%), melanomas (40%–70%), papillary thyroid cancers
(45%), ovarian cancers (35%), and multiple myeloma (4%).
Although the FDA granted accelerated approval to
dabrafenib for the treatment of tumors harboring a
BRAFV600 mutation, dabrafenib has shown limited efficacy
in hematological malignancies in clinical trials, unlike in
other solid tumors [33,34]. Our study revealed for the first
time that high cellular adhesive effects may mediate adverse

FIGURE 4. GSVA and GSEA enrichment analysis of the activation status of biological pathways in distinct adhesion-related risk groups.
(A) Heatmap visualizing the enrichment scores of gene set variation analysis (GSVA) in the CoMMpass cohort. (B) Bubble plot showing
the significantly enriched KEGG pathways in the high-risk group compared to the low-risk group identified by gene set variation analysis
(GSVA) in the CoMMpass cohort.
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FIGURE 5. Analysis, prediction, and validation of drug sensitivity in different ARRS groups. (A) Heatmaps visualizing the drug efficiency
(IC50) in various risk patients evaluated by the “oncoPredict” R package based on the genomics of drug sensitivity in cancer (GDSC) v2.
The color scale indicates the log2-transformed IC50. IC50, half-maximal inhibitory concentration. (B) Venn diagrams showing
significantly upregulated and downregulated genes in high-risk patients compared to low-risk patients in the CoMMpass and GSE136337
datasets. (C) Volcano plot showing drugs with negative or positive gene-regulation patterns predicted using the connectivity map (cMAP)
by inputting 32 upregulated and 78 downregulated genes identified in (B). (D) Chemical structures of the first four negative drugs in C.
(E) Histogram depicting the distribution of ARRS values across 30 MM cell lines utilizing expression data sourced from the Cancer Cell
Line Encyclopedia (CCLE) datasets. (F) Assessment of cell viability in NCIH929, RPMI8226, and AMO1 cell lines in response to candidate
drugs associated with CAM-DR. (G) Heatmaps illustrating the drug efficacy (IC50) in diverse adhesion-related risk MM cell lines.

762 QIAN HU et al.



reactions to dabrafenib. In a phase II clinical trial conducted in
2016, selumetinib administered in relapsed and refractory
MM only achieved a response rate of 5.6%; therefore, it is
not recommended as a monotherapy for the clinical
treatment of MM [35]. Our study suggests that treatment
failure of selumetinib may be related to cell adhesion.
Overall, the above results suggest that MM patients in the
high-ARRS group may be resistant to protein kinase
inhibitors, DNA damaging drugs, and PI3K/Akt/mTOR
signaling pathway targeted drugs compared to low-ARRS
MM.

To provide novel strategies for drug tolerance and poor
prognosis in high-ARRS MM patients, we applied cMAP
database to screen candidate drugs with opposite or similar
expression patterns to high-ARRS MM. First, we
summarized the common upregulated and downregulated
genes in the high ARRS group compared to the low ARRS
group in the CoMMpass and GSE136337 datasets (Fig. 5B).
Using those 32 common upregulated genes and 78
downregulated genes as input, we identified some potential
drugs with negative scores for high-ARRS MM therapy
(Fig. 5C). The structures of the top four predicted drugs are

shown in Fig. 5D. Interestingly, tirofiban is an antiplatelet
drug that inhibits platelet aggregation by inhibiting the
surface membrane of platelet αIIb/β3 integrin. As reported,
integrin αIIb/β3 participates in tumor cell proliferation and
metastasis, and whether targeting αIIb/β3 benefits MM
patients remains unclear [36,37]. Pirenzepine is a
cholinergic antagonist. The content of cholinergic system
compartments is altered in many cancers and correlates
with patient survival in some cancers [38]. There is
substantial epidemiological evidence to support the notion
that occupational exposure to cholinergic compounds
(namely, pesticides) is linked to an elevated risk of
developing MM [39]. Whether pirenzepine can prevent the
pathogenesis of MM caused by pesticides and be applied in
high-ARRS MM therapy deserves further investigation. Both
erlotinib and bosutinib are orally administered tyrosine
kinase inhibitors (TKIs). The FDA has approved erlotinib
for treating non-small cell lung cancer and pancreatic
cancer and bosutinib for first-line treatment of chronic
myeloid leukemia [40–42]. In addition, erlotinib has been
demonstrated to be beneficial for patients suffering from
MDS or AML [43]. Despite the lack of direct clinical

FIGURE 6. KIF14 knockdown suppresses proliferation and alters the adhesion of NCIH929 cells. (A) Validation of KIF14 knockdown in
siKIF14#4950-transfected cells using qPCR analysis. (B) Representative western blot assessing KIF14 protein levels following transfection
with siKIF14#4950 and siNC control in NCIH929 cells. (C) Cell proliferation curve displaying normalized OD450 values at 24-h
intervals. (D) Images illustrating representative HS-5 monolayer morphotypes and siNC-or siKIF14#4050-transfected cells adhering to
HS-5 cells. (E) Left flowchart depicting the adhesion assay procedure with fibronectin (FN), generated with BioRender (https://biorender.
com). Right fluoromicrographs showing FN-adhered siNC-or siKIF14#4950-transfected NCIH929 cells. *p < 0.05, ***p < 0.001.
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evidence, our study has identified potential drugs for the
treatment of high-ARRS MM patients, which warrants
further investigation in the design of clinical trials.

Assessment of drug sensitivity disparities in MM cell lines with
diverse ARRS values
To further investigate the relationship between ARRS and
drug sensitivity in vitro, we initially obtained the gene
expression profiles of 30 multiple myeloma (MM) cell lines
from the Cancer Cell Line Encyclopedia (CCLE) database.
Subsequently, we calculated the ARRS scores for each cell
line using the ARRS formula. As depicted in Fig. 5E,
NCIH929 exhibited the highest ARRS score among all cell
lines, whereas RPMI8226 and AMO1 displayed significantly
lower ARRS values. Consequently, we selected NCIH929
cells with high ARRS and RPMI8226, along with AMO1,
which had a low ARRS, for further investigation. We
assessed their responsiveness to drugs predicted to be
tolerated in high-ARRS patients through oncoPredict analysis.

Subsequently, we exposed the three cell lines to a gradient
of concentrations of seven anticancer drugs, including
pictilisib, AZD5356, urosertib, nutlin-3a, selumetinib,
foretinib, and dabrafenib, for a 72-h treatment period. The
results indicated that, with the exception of AZD5356,
NCIH929 exhibited the poorest response compared to the
other two cell lines among the six drugs (Fig. 5F). IC50
values were calculated based on dose-response curves, and
their standardized values were visualized in a heatmap,
providing a clearer assessment of NCIH929’s relative
resistance compared to the other two cell lines (Fig. 5G).
Based on these findings, we have preliminarily confirmed in
vitro that MM cell lines with a high ARRS are more tolerant
to both protease inhibitors and inhibitors targeting the
PI3K/Akt/mTOR signaling pathway.

Role of KIF14 in cell proliferation, apoptosis and adhesion in
MM
Based on our previous coexpression network and Lasso Cox
regression analysis, we identified the KIF14 gene as playing
a significant role in MM cell adhesion. To investigate its
function, we utilized siRNA to silence KIF14 expression in
NCIH929 cells. Among the three siRNA sequences targeting
KIF14, only siKIF14#4950 effectively reduced both the gene
and protein expression levels (Figs. 6A and 6B). Cell
viability assays demonstrated that KIF14 knockdown led to
a marked inhibition of NCIH929 cell proliferation (Fig. 6C).
However, Annexin V-FITC and PI staining revealed no
substantial increase in apoptosis or cell death (Suppl.
Fig. S6). Previous studies have reported varying effects of
KIF14 knockdown on apoptosis and proliferation inhibition,
suggesting a context-dependent response based on gene
silencing efficiency and cell cycle phase [44–46]. Our
findings observed that KIF14 primarily inhibits MM cell
proliferation but not apoptosis, consistent with its known
role in cytoplasmic division and chromosome dynamics.

Moreover, research on solid tumors has shown that
KIF14 knockdown can suppress tumor invasion and
migration [44,47]. We observed similar effects in MM cells,

where KIF14 knockdown significantly reduced adhesion to
both bone marrow stromal cells (HS-5) and fibronectin-
coated surfaces (Figs. 6D and 6E). Notably, KIF14, a
molecular motor protein involved in intracellular transport,
has been implicated in regulating cell adhesion by
modulating the expression and membrane localization of
cadherin 11 [47]. While studies on KIF14’s role in MM cell
adhesion are limited, our results highlight its importance in
this context. In summary, our study demonstrates that
KIF14 knockdown inhibits cell proliferation and adhesion in
NCIH929 cells, shedding light on its crucial role in MM
pathology. These findings provide valuable insights into
potential therapeutic strategies targeting KIF14 in MM.

Discussion

Through bioinformatics analysis, our study identified 18
prognosis-related ARGs and successfully constructed an
ARRS model using 12 of these genes, which independently
predicts the prognosis of MM patients. Remarkably, the
ARRS model outperforms conventional clinical parameters
in predictive accuracy. In-depth analysis of the
transcriptome data of patients in the high-and low-ARRS
groups revealed that elevated ARRS may be associated with
increased DNA damage repair capacity and activation of the
P53 signaling pathway, leading to resistance to DNA-
damaging drugs and inhibitors targeting the PI3K/AKT
signaling pathway. Importantly, several of these candidate
drugs were subsequently validated through in vitro cell
experiments. Furthermore, our study predicts potential
antitumor drugs that can reverse cell adhesion effects,
providing new strategies to address CAM-DR in clinical
settings. Additionally, our research provides pioneering
evidence of KIF14’s pivotal role in suppressing MM
proliferation and inhibiting adhesion, offering crucial
insights for therapeutic interventions.

The progression of MM is heavily influenced by the bone
marrow (BM) microenvironment. Research has demonstrated
that the BM microenvironment is a critical factor in the
development and progression of MM. MM cells interact
with various adhesion molecules and the ECM within the
BM, supporting mechanisms related to MM pathogenesis,
drug resistance, and cell migration [48]. During the clonal
evolution of MM, it is initiated by mutations associated with
T-cell-dependent B-cell activation. Subsequently, MM cells
home to the BM through the interaction of the MM
receptor CXCR4 with the chemokine SDF1α. Within the
BM microenvironment, MM cells interact with various
components, including BM stromal cells (BMSCs) and ECM
proteins such as fibronectin, collagen, osteopontin,
hyaluronan, and laminin, which facilitate MM survival,
proliferation, migration, and drug resistance through the
MEK/MAPK, JAK/STAT, and PI3K/Akt pathways [49,50].
Furthermore, the interaction between MM cells and cancer-
associated fibroblasts (CAFs) via adhesion molecules such as
CXCL12/CXCR4 and integrins is essential for promoting
CAFs’ tumor-supporting functions. Recent studies have
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identified cell adhesion as a significant marker of
extramedullary myeloma [51].

Our research highlights the importance of cell adhesion
in the survival prognosis of MM. Elevated cell adhesion
effects in our study influenced the activation of the DNA
replication process in MM. Dysregulated cell adhesion may
lead to altered cell cycle regulation, genomic instability, and
increased DNA damage, as reported in previous research
[52]. CAM-DR is particularly relevant in hematologic
malignancies, such as MM. Adhesion molecules, such as
VLA-4, play a crucial role in CAM-DR. The interaction
between VLA-4 and vascular cell adhesion molecule-1
(VCAM-1) mediates binding between multiple myeloma
cells and BMSCs, contributing to the survival of multiple
myeloma cells via the activation of the PI3K/AKT pathway
and CAM-DR [53,54]. In line with the above, our drug
sensitivity prediction results revealed that high-ARRS MM
exhibits significantly poor sensitivity to PI3K/AKT pathway-
targeted drugs, as well as lower sensitivity to DNA-
damaging agents compared to the low-ARRS group.
Therefore, we recommend analyzing and testing the cell
adhesive effects in patients with MM in the future. For MM
patients with high cell adhesion, it is advisable to avoid
using DNA damaging drugs or PI3K/AKT pathway
inhibitors whenever possible. Furthermore, we look forward
to conducting further animal and clinical experiments to
validate the candidate drugs useful in high-ARRS MM,
which will provide CAM-DR patients with more treatment
options.

MM exhibits significant heterogeneity in both biological
and clinical contexts, and currently lacks a universally
accepted risk stratification tool. The widely utilized ISS is
primarily based on levels of albumin and β2-microglobulin.
In 2016, the Revised International Staging System (R-ISS)
was introduced, combining tumor burden (ISS) with disease
biology. However, cases characterized by the t(4;14)
translocation and abnormal gain(1q) experience a notable
decrease in survival rates. The impact of advanced ISS
staging, high-risk IgH translocation, and 1q gain on five-
year survival rates in diagnosed patients is no longer
statistically significant [55]. These findings suggest that there
are still numerous unknown prognostic factors influencing
the ultimate outcome of the disease. Overreliance on
cytogenetic abnormalities for prognostic assessment may
pose certain challenges, indicating a need for improvement
in the current prognostic evaluation systems. In our study,
we constructed an ARRS model that independently predicts
the prognosis of MM patients. Furthermore, we integrated
the ARRS, ISS, and other clinical parameters into a
nomogram, demonstrating a high level of accuracy in
predicting survival outcomes for MM patients. Therefore,
the prognostic stratification tool we provide may help
address the shortcomings of current prognostic analysis and
evaluation systems, offering a more in-depth
characterization of disease biology and prognosis.

A previous study conducted a bioinformatics-based
analysis to identify cell adhesion genes closely associated
with the diagnosis and prognosis of MM [56]. They

screened MM-related differentially expressed genes using
the GSE6477 dataset, comprising 147 MM patients and 15
healthy individuals. Functional enrichment analysis revealed
a pivotal role of cell adhesion mechanisms in MM
pathogenesis. Through PPI network analysis, 12 adhesive
genes were identified as potential hub genes, confirming
their diagnostic value for MM. Notably, ITGA9 and LAMB1
showed significant associations with disease-specific survival
in MM. However, this study lacked validation across
multiple databases and primarily relied on molecular
interactions rather than direct disease associations.
Additionally, no specific diagnostic or prognostic tools
related to cell adhesion were constructed. In contrast, our
study focused on elucidating the role of cell adhesion effects
in MM prognosis. We employed a Lasso regression model
to construct the cell adhesion-related risk model, known for
variable selection and regularization to enhance prediction
accuracy and model interpretability [57]. This approach
provides a broader context by considering the coordinated
actions of multiple genes within a functional module,
offering deeper insights into the underlying biology and
potential therapeutic targets. Consequently, our research
encompassed a wider array of datasets and examined the
function of cell adhesion with a more stringent selection
process and comprehensive perspective. However, our study
does have limitations. It is based on publicly available data
from online databases, and there is a lack of validation using
large-sample data from local clinical centers.

Our study is the first to comprehensively analyze the role
of cell adhesion-related genes in the prognosis of MM using
bioinformatics approaches. This finding revealed that high
cell adhesion effects may serve as adverse prognostic factors
in MM. Furthermore, our investigation identified potentially
ineffective drugs in patients with high adhesion effects and
proposed candidate strategies for MM treatment. Thus, our
findings furnish a theoretical basis for stratified and
personalized treatment in MM.
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