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Abstract: Background: The heterogeneity of prognosis and treatment benefits among patients with gliomas is due to

tumor microenvironment characteristics. However, biomarkers that reflect microenvironmental characteristics and

predict the prognosis of gliomas are limited. Therefore, we aimed to develop a model that can effectively predict

prognosis, differentiate microenvironment signatures, and optimize drug selection for patients with glioma. Materials

and Methods: The CIBERSORT algorithm, bulk sequencing analysis, and single-cell RNA (scRNA) analysis were

employed to identify significant cross-talk genes between M2 macrophages and cancer cells in glioma tissues.

A predictive model was constructed based on cross-talk gene expression, and its effect on prognosis, recurrence

prediction, and microenvironment characteristics was validated in multiple cohorts. The effect of the predictive model

on drug selection was evaluated using the OncoPredict algorithm and relevant cellular biology experiments. Results:

A high abundance of M2 macrophages in glioma tissues indicates poor prognosis, and cross-talk between

macrophages and cancer cells plays a crucial role in shaping the tumor microenvironment. Eight genes involved in

the cross-talk between macrophages and cancer cells were identified. Among them, periostin (POSTN), chitinase 3 like

1 (CHI3L1), serum amyloid A1 (SAA1), and matrix metallopeptidase 9 (MMP9) were selected to construct a

predictive model. The developed model demonstrated significant efficacy in distinguishing patient prognosis,

recurrent cases, and characteristics of high inflammation, hypoxia, and immunosuppression. Furthermore, this model

can serve as a valuable tool for guiding the use of trametinib. Conclusions: In summary, this study provides a

comprehensive understanding of the interplay between M2 macrophages and cancer cells in glioma; utilizes a cross-

talk gene signature to develop a predictive model that can predict the differentiation of patient prognosis, recurrence

instances, and microenvironment characteristics; and aids in optimizing the application of trametinib in glioma patients.

Introduction

Glioma, a primary cranial malignant tumor originating from
glial cells, exhibits a global incidence rate of 4.6 to 5.7 per
100,000 individuals, with a notable increase in recent years
[1]. Gliomas are observed across all age groups, with a

higher incidence in adults, particularly among males [2]. In
2016, the World Health Organization introduced a
histological classification of gliomas, categorizing them into
grades I–IV. Initially, researchers hypothesized that glioma
grade correlated with increased malignancy and poorer
patient prognosis. However, advances in the understanding
of glioma molecular biology have revealed that the tumor
grade of patients with glioma is not an independent
prognostic factor. Individuals with the same pathological
grades may exhibit varying survival rates and prognoses
because of their dissimilar genetic backgrounds [3]. Through
extensive examination of the molecular gene profile of
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individuals with glioma, researchers have discovered that
certain molecular markers, such as isocitrate dehydrogenase
1 (IDH1) mutations and O-6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation, possess
dual functionality as both prognostic indicators and criteria
for assessing drug resistance [4,5]. Consequently, the
identification of a novel molecular biomarker for glioma is
of utmost significance as it has the potential to profoundly
influence therapeutic strategies and prognostic results.

Previous studies have suggested that various components
of the tumor microenvironment (TME), such as hypoxia,
acidosis, inflammation, and immune status, interact with one
another and play a role in the growth of glioma as well as in
influencing the response to treatment [6,7]. For instance,
Guo et al. revealed that a hypoxic microenvironment
promotes the infiltration of tumor-associated macrophages
and induces M2 polarization within glioma tissues, thereby
facilitating glioma proliferation [8]. Sinha et al. demonstrated
that the activation of inflammatory pathways, specifically the
TNFα-related pathway, in glioma cells plays a role in
regulating radiosensitivity by increasing the levels of reactive
oxygen species [9]. Wang et al. proposed that the NF-κB
inflammatory pathway enhances the transcription of PD-L1,
leading to immune evasion [10]. Numerous genes implicated
in the alteration of the TME have been shown to influence
patient prognosis. For instance, sorting nexin 20 has been
linked to immune cell infiltration and serves as a prognostic
biomarker for gliomas [11]. Additionally, hexokinase 3 has
the ability to recruit immune cells to the TME, thereby
facilitating glioma progression [12]. Therefore, the
identification of biomarkers associated with TME
characteristics could potentially aid in prognostic evaluation
and selection of appropriate therapeutic drugs.

Immune cells are integral components of the TME and
are regulated by diverse microenvironmental factors such as
hypoxia and inflammation. Their involvement in the
progression and drug resistance of glioma cells is well
established [13,14]. Consequently, this study prioritized
immune cells and sought to establish biomarkers for glioma
diagnosis and treatment selection based on the interplay
between immune and cancer cells. Our study revealed a
significant association between M2 macrophages and an
unfavorable prognosis in glioma. Additionally, we found
that the interaction between macrophages and cancer cells
played a crucial role in shaping the glioma tissue
microenvironment. Four genes involved in cross-talk,
periostin (POSTN), chitinase 3 like 1 (CHI3L1), serum
amyloid A1 (SAA1), and matrix metallopeptidase 9
(MMP9), were used to construct a predictive model for
prognosis. Moreover, this model has the potential to
differentiate between high inflammation and hypoxia–
immunosuppressive microenvironment signatures and aid
in optimizing drug selection for glioma treatment.

Materials and Methods

Acquisition of TCGA and CGGA cohorts
The gene expression matrix of glioma tissues was obtained
from The Cancer Genome Atlas (TCGA; https://portal.gdc.
cancer.gov/) and Chinese Glioma Genome Atlas (CGGA;

http://www.cgga.org.cn/). The TCGA cohort was used to
investigate primary biomarkers and develop a primary risk
model, therefore it was designated as the training cohort.
The CGGA cohort was employed to conduct a secondary
validation of the effects of the risk model and was
designated as the testing cohort. The TCGA and CGGA
datasets, containing 662 and 313 glioma patients,
respectively, were included in this study. Only patients with
complete clinical information were included. Prior to
analysis, probe names were converted to gene symbols, and
batch normalization was performed on the gene expression
matrices. Genes with more than 50% missing values were
excluded from the analysis.

Calculation of the levels and effects of immune cells on glioma
patient survival
CIBERSORT, an R package developed by Chen et al. [15], uses
a deconvolution algorithm to measure 22 cell fractions from
gene expression matrices of tissues. The gene expression
profile was represented as a level matrix of 22 immune cells.
To determine changes in cell types, one-way analysis of
variance combined with Tukey’s test was employed for
surviving patients, patients who had died with overall
survival (OS) time ≥14 months (above median survival),
and patients who had died with OS time <14 months (lower
than median survival) [16]. The relationship between the 22
immune cell types and survival of patients with glioma was
determined using log-rank Kaplan–Meier (KM) analysis.
Statistical significance was set at p < 0.05.

Differentially expressed genes (DEGs) analysis
The Limma package was used to assess differentially expressed
genes (DEGs) between glioma tissues characterized by high
and low M2 macrophage levels in the R software
environment. DEGs were identified using a cut-off criterion
of log2 fold change (FC) ≥ 1 and adjusted p < 0.05. The
volcano plot displayed alterations in gene expression for all
genes, whereas the heatmap plot specifically highlighted
DEGs.

Single cell RNA (scRNA) sequencing analysis
The scRNA sequencing cohort GSE103224 was obtained from
the Gene Expression Omnibus (GEO) dataset (https://www.
ncbi.nlm.nih.gov/gds) and the data were analyzed using the
Seurat package. Initially, high-quality cells meeting the
criteria of 200 < nFeature < 6000 and mitochondria (MT)
content < 3 were selected for further analyses. A subset
comprising 2000 genes exhibiting the highest variability was
chosen for analysis. Principal component analysis (PCA)
was subsequently employed, leading to the identification of
15 distinct PCA signatures. The selection of the PCA
number was contingent upon a notable disparity in
standardized variance between the cutoff thresholds and the
adjacent thresholds. These signatures were subsequently
used to conduct cell clustering with a resolution parameter
of 0.5. Cell annotation was performed using CellMarker 2.0
(http://bio-bigdata.hrbmu.edu.cn/CellMarker/) by employing
the top ten signature genes associated with each cell cluster.
Next, the cell clusters were consolidated, and genes with
high abundance in each cell type were chosen using a
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criterion of expression in 25% of the cell type and a 1.25-fold
change relative to the expression levels in other cells. Cell
communication was examined using the scConnect software
package.

Construction and verification of a predictive model
The prognostic value of genes in patients with glioma in
TCGA was analyzed using univariate Cox regression
analysis, and the cut-off value was set at p < 0.05 to
determine significant. Significant genes were analyzed to
remove collinear genes using LASSO analysis. Based on the
Akaike information criterion (set as 2426.12), an optimal
prognostic risk index was constructed to divide patients
with glioma into high- and low-risk groups after calculating
the coefficient using multivariate Cox regression analysis.
KM analysis was used to analyze the survival differences
between high- and low-risk groups in both TCGA and
CGGA cohorts, and p < 0.05 was set as the threshold. The
prognostic effectiveness of the predictive model for 3-year
survival was analyzed by receiver operator characteristic
curve (ROC), while area under the curve (AUC) ≥ 0.70 was
set as significant.

Nomogram construction
Data from patients with glioma in TCGA and CGGA were
merged. Information on age, sex, grade, 1p/19q co-deletion,
MGMT methylation, IDH1 mutation, and risk score of each
patient with glioma was used to conduct multivariate Cox
regression analysis, which was then integrated and
visualized as a nomogram. The checkpoints of the
nomogram were set at 1, 3 and 5-years to confirm its
predictive efficiency.

Tissue collection and immumohistochemical staining (IHC)
Sixty glioma tissue samples were procured from the Affiliated
Hospital of Guizhou Medical University (Guiyang, China)
following approval from the Human Ethics Committee of
Guizhou Medical University (approval number: 2023-272).
Written informed consent was obtained from all the
participants, who did not receive chemotherapy or
radiotherapy before tissue collection during surgery. After
the surgical procedure, all patients received standard
temozolomide (TMZ) regimens (150–200 mg/m2 given
once daily on days 1–5 every 4 weeks; combined with
radiotherapy for 4 weeks). Of the total cohort, 48
individuals experienced recurrence within one year of TMZ
treatment, while 18 individuals did not exhibit recurrence.
The expression levels of POSTN, CHI3L1, SAA1, MMP9,
carbonic anhydrase 9 (CA9), interleukin 2 (IL-2), and
interleukin 6 (IL-6) in glioma samples collected during
surgery were reviewed using IHC. IHC was performed as
described in our previous study [17], using the following
antibodies: anti-POSTN (1:4000; Cat no. 66491-1-Ig,
Proteintech, Wuhan, China), anti-CHI3L1 (1:200; Cat
no. 12036-1-AP, Proteintech), anti-SAA1 (1:200; Cat no.
ab190802, Abcam, USA), anti-MMP9 (1:100; Cat no.
10375-2-AP, Proteintech), CA9 (1:50; Cat no. 11071-1-AP,
Proteintech), IL-2 (1:100; Cat no. 26156-1-AP, Proteintech)
and IL-6 (1:200; Cat no. 21865-1-AP, Proteintech)
antibodies.

ESTIMATE and tumor immune dysfunction and exclusion
(TIDE) analysis
The landscape of glioma tissues, including stromal, immune,
and estimate scores in gliomas, was analyzed using R
software with the ESTIMATE algorithm. The differences in
stromal score, immune score, and ESTIMATE score
between the high- and low-risk groups were determined by
the unpaired t-test with a cut-off of p < 0.05. The online
TIDE database (http://tide.dfci.harvard.edu/) was used to
measure the dysfunction score, exclusion score, TIDE score,
and response rate of the gliomas. The differences in
dysfunction score, exclusion score, and TIDE score in the
high- and low-risk groups were analyzed by unpaired t-test
with a cut-off of p < 0.05, while differences in immune
checkpoint blockade (ICB) response rate were analyzed by
the chi-square test with a cut-off of p < 0.05.

Gene set variation analysis (GSVA)
A gene set of 50 hallmark pathways of cancers were accessed
from Gene Set Enrichment Analysis (GSEA) database (http://
www.gsea-msigdb.org/gsea/index.jsp) via applying an index
word as “h.all.v7.4. symbols.gmt”. The GSVA package
(version 1.40.1) in the R environment was used to calculate
the signature of the pathways in each glioma sample
according to the rank ordering of genes.

Drug score calculation
OncoPredict is an R algorithm developed by Maeser et al. [18]
that predicts in vivo anti-tumor drug responses. The
sensitivity of gliomas to 198 drugs was calculated using the
OncoPredict script by matching the gene expression matrix
of each glioma sample to the cytotoxic effects of drugs in
cancer cells recorded in the Genomics of Drug Sensitivity in
Cancer and the gene expression information of cancer lines
recorded in the Broad Institute Cancer Cell Line
Encyclopedia. A high drug score indicates a low sensitivity
of patients with glioma to drugs.

Cell culture and qRT-PCR experiment
Normal human astrocytes (NHA) and glioma cell lines (U87,
U251, U118, A172, T98G, SF295, LN229, and SF126) were
procured from ATCC (Manassas, VA, USA) and cultured in
RMPI-1640 medium supplemented with 10% fetal bovine
serum (FBS). All cells were cultured in a controlled
environment at a temperature of 37°C with 5% CO2. All cells
were appraised by STR and performed mycoplasma testing to
eliminate latent contamination. Briefly, the cells were lysed
using TRIZOL reagent (Yeasen, Shanghai, China) to extract
total RNA. The Hifair� III 1st Strand cDNA Synthesis
SuperMix (Yeasen, Shanghai, China) and TB green (Yeasen,
Shanghai, China) were utilized for reverse transcription and
PCR amplification, respectively. Relative expression of the
target genes was normalized to that of ACTB. The primers
employed in this study were as follows: POSTN-forward, 5′-
CTCATAGTCGTATCAGGGGTCG-3′; POSTN-reverse, 5′-A
CACAGTCGTTTTCTGTCCAC′; CHI3L1-forward, 5′-GTG
AAGGCGTCTCAAACAGG-3′; CHI3L1-reverse, 5′-GAAG
CGGTCAAGGG-CATCT-3′; SAA1-forward, 5′-TGCCTGGG
CTGCAGAAGTGA-3′; SAA1-reverse, 5′-TGATCAGCCAG
CGAGTCCTC-3′; MMP9-forward, 5′-TGTACCGC-TATGG
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TTACACTCG-3′; MMP9-reverse, 5′-GGCAGGGACAGTTG
CTTCT-3′; ACTB-forward, 5′-CATGTACGTTGCTATCCA
GGC-3′; ACTB-reverse, 5′-CATGTACGTTGCTATCCAGGC-3′.

Cell proliferation detection
Glioma cell proliferation was determined using the CCK-8,
EDU and 3D sphere formation assays. For the CCK-8 assay,
total of 5 × 103 cells was suspended in 100 μL medium and
placed in a 96-well plate. After culturing for 48 h with or
without 10 nM trametinib, 10 μL of CCK-8 reagent was
added to each well and incubated for 2 h. The absorbance of
each well was measured at 450 nm wavelength. EDU
experiments were performed according to the
manufacturer’s instructions (Click-It EdU Imaging Kits)
provided by the manufacturer (Invitrogen, USA). In the 3D
sphere formation experiment, a total of 500 glioma cells
were suspended in 100 μL culture medium and placed in
ultra-low adsorption petri dishes (Invitrogen, USA). After a
period of 20 days with or without 10 nM trametinib, the
condition of the spheres was documented.

Statistical analysis
All statistical analyses were performed using SPSS software
(version 20.0). An unpaired t-test was used to determine
differences between groups. Statistical significance was set at
p < 0.05.

Results

IL-8, POSTN, CHI3L1, SAA1, PLA2G2A, TREM1, IBSP and
MMP9 expression are elevated in glioma tissues with high
level M2 macrophages
Initially, we focused on the immune cell signatures of gliomas.
Consequently, the gene expression profile of glioma tissues
from TCGA database was transformed into a matrix
consisting of 22 immune cell types using the CIBERSORT
algorithm (Fig. 1A). Notably, our analysis revealed that M2
macrophages exhibited the highest abundance among the 22
immune cell types within glioma tissues (Fig. 1A).
Furthermore, we observed a negative correlation between
M2 macrophages and plasma cells, follicular helper T cells,

FIGURE 1. Expression of IL-8, POSTN, CHI3L1, SAA1, PLA2G2A, TREM1, IBSP and MMP9 is elevated in glioma tissues with high level M2
macrophages. (A) The gene expression matrix of glioma tissues in TCGA was transformed into expression levels of 22 immune cells, through
CIBERSORT. (B) Co-expression relationship between immune cells. (C) Expression in naïve B cells, plasma B cells, CD4 naïve T cells,
monocyte cells, CD8 T cells, regulatory T cells, M2 macrophages and neutrophil in surviving patients, deceased patients with OS ≥ 14
months and deceased patients with OS < 14 months. (D) The effects of the naïve B cells, plasma B cells, CD4 naïve T cells, monocyte
cells, CD8 T cells, regulatory T cells, M2 macrophages and neutrophil on the survival rate of patients with glioma in TCGA were analyzed
via Kaplan–Meier survival analysis. (E) Volcano plot exhibiting the DEGs in glioma tissues between groups with a high and low
infiltration of M2 macrophages. (F) Heatmap plot exhibiting the upregulated genes in glioma tissues between group with a high and low
infiltration of M2 macrophages. (G) The protein-protein interaction network indicated the relationships between up-regulated genes.
**p < 0.01.
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and activated NK cells in glioma tissues (Fig. 1B).
Furthermore, our findings indicated that there was a higher
presence of naïve B cells, plasma B cells, CD4 naïve T cells,
and monocytes in both surviving and deceased patients with
an overall survival (OS) of 14 months or more compared to
deceased patients with an OS of less than 14 months.
Conversely, the numbers of CD8 T cells, regulatory T cells,
M2 macrophages, and neutrophils decreased (Fig. 1C). We
subsequently employed KM analysis to examine the impact

of these eight cell types on the survival of patients with
gliomas. The results revealed that the levels of naïve B cells,
plasma B cells, CD4 naïve T cells, and monocytes were
inversely associated with unfavorable prognosis in patients
with glioma, whereas the levels of CD8 T cells, regulatory T
cells, M2 macrophages, and neutrophils were positively
correlated with poor prognosis (Fig. 1D). Notably, M2
macrophages exhibited the highest hazard ratio (HR = 2.42,
95% CI = 1.85–3.15) for survival in patients with glioma

FIGURE 2. IL-8, POSTN, CHI3L1, SAA1, PLA2G2A, TREM1, IBSP and MMP9 are cross-talk genes between macrophages and cancer cells.
(A) Feature, count, hemoglobin (HB), mitochondria (MT), and ribosome level in each cell from GSE103224 cohort. (B) The 2000 genes
with the highest frequency of variation from GSE103224 were identified. (C) PCA signatures were used to perform cell cluster analysis.
(D) A total of 22 cell clusters were identified in GSE103224. (E) A total of four cell types including TAM, endothelial cells, cancer cells
and oligodendrocytes were identified after cell annotation. (F) tSNE plots show the distribution of MAG (oligodendrocyte biomarker),
MBP (oligodendrocyte biomarker), APOLD1 (endothelial biomarker), RGS5 (endothelial biomarker), FCGBP (TAM signature) and CD163
(TAM signature). (G and H) Cell communication analysis was performed to analyze the importance and role of TAM, endothelial cells, cancer
cells and oligodendrocytes in the TME. (I) Reactome pathway enrichment analysis for top100 signature of cancer. (J) Reactome pathway
enrichment analysis for top100 signature of TAM. (K) Cell-type location for expression of IL-8, POSTN, CHI3L1, SAA1, PLA2G2A,
TREM1, IBSP and MMP9.
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(Fig. 1D). Subsequently, our investigation centered on the
examination of gene expression disparities between glioma
tissues exhibiting high and low levels of M2 macrophages
(Suppl. Table 1). A total of eight up-regulated genes, namely
TREM1, IBSP, SAA1, IL-8, MMP9, PLA2G2A, POSTN, and
CHI3L1, were found in the glioma tissues with elevated M2
macrophages, employing a threshold of |LogFC| ≥ 1 and an
adjusted p value < 0.05 (Figs. 1E and 1F). Interestingly,
expression levels of all eight genes were significantly
correlated with one another (Fig. 1G). Therefore, these eight
genes were set as M2-related genes and used for further
analysis.

IL-8, POSTN, CHI3L1, SAA1, PLA2G2A, TREM1, IBSP and
MMP9 are cross-talk genes for macrophages and cancer cells
Although IL-8, POSTN, CHI3L1, SAA1, PLA2G2A, TREM1,
IBSP, and MMP9 levels were elevated in glioma tissues with
high levels of M2 macrophages, their cell location remained
unclear. Therefore, to analyze cell location, a single-cell RNA
sequencing cohort (GSE103224) was utilized. Initially, the
nFeature, nCount, hemoglobin (HB) percentage,
mitochondrial (MT) content, and ribosome content were
analyzed in each cell (Fig. 2A). Subsequently, only high-
quality cells that met the criteria of 200 < nFeature < 6000
and MT content < 3 were selected for further analysis
(Fig. 2A). After selecting the 2000 genes with the highest
gene variance (Fig. 2B), the PCA signature of these 2000
genes was calculated. The results indicated that 15 PCA
signatures exhibited high variance and were suitable for cell
clustering (Fig. 2C). Subsequently, these 15 PCA signatures
were used to perform cell clustering, which led to the
identification of 22 cell clusters (Fig. 2D). Based on the gene
signature, these 22 cell clusters were annotated as four
distinct cell types: tumor-associated macrophages (TAM),
cancer cells, endothelial cells, and oligodendrocytes (Fig. 2E).
To validate the precision of the annotation, we examined the
distribution of cell-specific biomarkers, which revealed that
all biomarkers were exclusively localized within their
respective cell types (Fig. 2F). Subsequently, we analyzed the
intercellular communication within these cells, identifying
TAM as the most significant contributor (Fig. 2G). Notably,
a substantial portion of TAM-mediated communication
involved interactions between TAM and both cancer cells
and oligodendrocytes (Fig. 2G). Specifically, in the cancer cell
cross-talk, we observed that cancer cells assumed a pivotal
role as senders, whereas TAM functioned as crucial receivers
and influencers (Fig. 2H). We extracted the top 100 cancer
cell and TAM signatures (Suppl. Table 2). We found cancer
cell signatures were enriched in “nervous system
development”, “LICAM interactions”, “formation of tubulin
folding”, “activation of AMPK downstream”, “cooperation of
prefoldin and tric cct”, “Cyclin D associated events in G1”,
“defective CHST3, CHST14 and CHSY1” and “dermatan
sulfate bio-synthesis” pathways (Fig. 2I). The TAM
signatures were enriched in pathways “innate immune
system,” “neutrophil degranulation,” “signaling in
interleukins,” “G alpha in signaling events,” “peptide ligand
binding receptors,” “IL-10 signaling,” “antigen processing
cross presentation,” “chemokine receptors binding
chemokines,” “RHO GTPases activate NAPDH oxidases” and

“IRAK4 deficiency TLR2” (Fig. 2J). Analysis of the
distribution of IL-8, POSTN, CHI3L1, SAA1, PLA2G2A,
TREM1, IBSP, and MMP9 revealed that POSTN, CHI3L1,
SAA1, and PLA2G2A were primarily expressed in cancer
cells, with secondary expression observed in TAM (Fig. 2K).
Conversely, TREM1 and IBSP exhibited primary expression
in TAM and secondary expression in cancer cells (Fig. 2K).

Furthermore, the overall abundances of IL-8 and MMP-9
were low, with a higher prevalence of expression observed in
both TAM and tumor cells (Fig. 2K). Hence, we hypothesized
that these eight genes may serve as pivotal mediators in the
interplay between TAM and cancer cells. Consequently, all
these genes were designated as cross-talk genes between
TAM and cancer cells, and were subsequently subjected to
further analysis.

Predictive model constructed with POSTN, CHI3L1, SAA1 and
MMP9 has prognostic value for patients with glioma
Given the significant impact of cross-talk between TAM and
cancer cells on the TME of glioma tissues, our study aimed
to develop a predictive model for the prognosis of patients
with glioma. To achieve this, we employed univariate Cox
regression analysis, which revealed a negative correlation
between the expression of all eight cross-talk genes and the
survival of patients with glioma (Fig. 3A). Subsequently, we
employed LASSO analysis to eliminate collinearity among
the genes, resulting in the selection of five genes (POSTN,
CHI3L1, SAA1, TREM1, and MMP9) for further analyses
(Figs. 3B and 3C). Multivariate Cox regression analysis
indicated that POSTN and CHI3L1 were positively
associated with poor prognosis of gliomas (Fig. 3D).
Subsequently, a predictive model (risk score = 0.09 ×
POSTN + 0.16 × CHI3L1 + 0.04 × SAA1 + 0.04 × MMP9)
was developed based on their respective coefficient values.

The prognostic value of this predictive model was assessed
in both the train cohort (TCGA) and the test cohort (CGGA).
Based on the assessment of POSTN, CHI3L1, SAA1, and
MMP9 expression levels in patients with glioma, the risk
score was computed for each patient, leading to the
classification of patients into high-risk and low-risk
categories; the cut-off to determine high and low risk was set
as the median risk score obtained from TCGA cohort
(Fig. 3E). In both the TCGA and CGGA cohorts, patients
with glioma classified as high-risk demonstrated a higher
incidence of mortality (Fig. 3F). Furthermore, patients with
high-risk gliomas exhibited a shorter survival duration than
those classified as low-risk (Fig. 3G). ROC analysis revealed
that the model exhibited diagnostic values of 0.890 and 0.828
for predicting 3-year survival in the TCGA and CCGA
cohorts, respectively (Fig. 3H).

Our analysis revealed that the high-risk group from
TCGA and CGGA cohorts consisted of 14.7%, 36.2%, and
49.1% of patients in stages II, III, and IV, respectively,
whereas the low-risk group comprised 53.1%, 36.6%, and
10.3% of patients in stages II, III, and IV, respectively
(Suppl. Table 3). Subsequently, multivariate Cox regression
analysis was performed to assess the potential independence
of the predictive model as a factor for survival of patients
with glioma. This analysis incorporated information
regarding tumor grade, age, sex, 1p/19q co-deletion status,
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IDH1 mutation status, MGMT methylation status, and risk
score. Evidence suggested that there is a positive
relationship between 1q/19p co-deletion and MGMT
methylation status and OS, while tumor grade, age, and risk
score were negatively correlated with OS (Fig. 3I). The
findings also indicate that these factors can independently
predict the prognosis of patients with gliomas. To aid
healthcare professionals in making more informed clinical
judgments, a nomogram was constructed using information
on risk score, grade, 1q/19p co-deletion, age, MGMT
methylation, IDH1 mutation, and sex of patients with

glioma (Fig. 3J). This nomogram demonstrated a diagnostic
value with a C-index of 0.896 (Fig. 3K). Taken together, our
evidence indicates that the predictive model constructed
using POSTN, CHI3L1, SAA1 and MMP9 expression had
significant prognostic value for patients with glioma.

The predictive model has significant diagnostic value for
predicting recurrence after TM) treatment
Patients with glioma exhibit a diverse array of genetic
mutations, including IDH1 mutation, MGMT promoter
methylation, and 1p/19q co-deletion [19]. These genetic

FIGURE 3. The predictive model, constructed from POSTN, CHI3L1, SAA1 andMMP9 expression, demonstrates significant prognostic value
for patients with glioma. (A) Univariate Cox regression analysis for the eight cross-talk genes between TAM and cancer cells. (B and C) LASSO
analysis was used to remove homologous cross-talk genes between TAM and cancer cells. (D) Multivariate Cox regression analysis were used to
analyze significant cross-talk genes between TAM and cancer cells and to construct a predictive model. (E) Patients with glioma in TCGA and
CGGA cohorts were placed into high and low risk groups according to the predictive model. (F) TCGA data revealed that the high-risk group
had 190 deaths (red dots) and 141 survivors (green dots), whereas the low-risk group had 55 deaths and 276 survivors. For the CGGA cohort,
the high-risk group had 95 deaths and 11 survivors, while the low-risk group had 123 deaths and 84 survivors. (G) Patients with glioma in
TCGA and CGGA cohorts in the high-risk group exhibited a lower survival rate. (H) The diagnostic values of the predictive model for
survival for patients with glioma in TCGA and CGGA cohorts were 0.890 and 0.828. (I) Multivariate Cox regression analysis for age, sex,
tumor grade, IDH1 status, MGMT promoter status, 1p/19q co-deletion and risk score in patients with glioma. (J and K) A nomogram was
constructed using the age, sex, tumor grade, IDH1 status, 1p/19q co-deletion, MGMT promoter status, and risk score.
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mutations have been associated with various clinical
characteristics, such as recurrence and drug resistance, in
patients with glioma. Notably, our study revealed a
significant correlation between IDH1 wildtype genotype
(Fig. 4A), 1p/19p co-deletion (Fig. 4B), and MGMT
promoter methylation status (Fig. 4C) in patients with
glioma and a high-risk score. These findings provide
compelling evidence that our model can accurately predict
the genetic mutation status of patients with gliomas.

As the presence of the 1p/19q co-deletion and MGMT
promoter methylation are indicative of the sensitivity of
patients to TMZ [20], we investigated the value of the
model in predicting TMZ sensitivity in patients with glioma.
By IHC, we observed elevated expression levels of POSTN,
CHI3L1, SAA1, and MMP9 in tissues obtained from
patients who experienced recurrence within one year of
TMZ treatment (Figs. 4D–4F)

Notably, the predictive values of POSTN, CHI3L1, SAA1,
and MMP9 for recurrence after TMZ treatment were 0.721,
0.776, 0.769, and 0.696, respectively (Fig. 4G). We calculated
the risk value by incorporating the IHC scores of individual
genes into the prediction model formula. Notably, we
observed elevated risk scores in glioma tissues obtained
from patients who experienced recurrence within one year
of TMZ treatment (Fig. 4F). Furthermore, the diagnostic
value of the risk score was 0.911, which surpassed that of

each signature gene (Fig. 4G). These findings strongly
suggest that our model has substantial diagnostic potential
for predicting cases of recurrence following TMZ treatment.

The predictive model has significant diagnostic value for
distinguishing high hypoxia and high inflammation
microenvironments in glioma tissues
We used GSVA to analyze the molecular signatures of glioma
tissues in high- and low-risk groups. It was found that 17
pathways including “E2F targets,” “MTORC1 signaling,”
“ROS pathway,” “epithelial-mesenchymal transition,”
“angiogenesis,” “hypoxia,” “interferon gamma response,”
“glycolysis,” “interferon alpha response,” “TNFA signaling
via NF-kappaB,” “apoptosis,” “IL2-STAT5 signaling,”
“coagulation,” “complement,” “inflammatory response,”
“IL6-JAK-STAT3 signaling” and “allograft rejection” were
more activate in the glioma tissues in the high-risk group in
comparison to those in the low-risk group (Figs. 5A and
5B), while four pathways, “WNT-β-catenin signaling,”
“hedgehog signaling,” “pancreas beta cells” and “KRAS
signaling DN” were more inactivate (Figs. 5A and 5B). Most
of the pathways that exhibited higher activation in the high-
risk group demonstrated cross-talk between inflammation
and hypoxia. To validate the findings obtained from the
bioinformatic analysis, we conducted IHC assays for CA9 (a
biomarker of hypoxia and glycolysis [21]), IL-2, and IL-6

FIGURE 4. The predictive model has significant diagnostic value for predicting recurrence after TMZ treatment. (A) Patient numbers with
IDH1 mutations in low-risk and high-risk glioma groups. (B) Patient numbers with 1p/19q co-deletion in low-risk and high-risk glioma
groups. (C) Patient numbers with MGMT promoter methylation in low-risk and high-risk glioma groups. (D–F) High levels of POSTN,
CHI3L1, SAA1 and MMP9 expression were found in glioma tissues from patients who experienced recurrence within one year after TMZ
treatment. R: recurrence; NR; non-recurrence. (G) Diagnostic value of single genes and risk score to predict recurrence within one year
after TMZ treatment. *p < 0.05; **p < 0.01.
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proteins in glioma tissues obtained from our research cohort.
The glioma tissues were categorized into high- and low-risk
groups based on the risk score calculation (Fig. 4F). The
high-risk group displayed elevated expression levels of CA9,
IL-2, and IL-6 in the glioma tissues (Figs. 5C and 5D).
Taken together, we consider that the predictive model has
significant diagnostic value for distinguishing between high
hypoxia and high inflammation microenvironments in
glioma tissues.

The predictive model has significant diagnostic value for
distinguishing an immunosuppressive TME in glioma tissues
Subsequently, a comparative analysis of the immunological
characteristics of low- and high-risk glioma tissues was
conducted. An estimation algorithm revealed that glioma
tissues from the high-risk group exhibited increased stromal,
immune, and ESTIMATE scores (Fig. 6A). Furthermore,
glioma tissues obtained from high-risk patients
demonstrated a diminished score for microsatellite
instability (MSI) in comparison to those obtained from low-
risk patients (Fig. 6B). Additionally, we analyzed the
relationship between the risk score and immune reaction
process according to a previous study [22]. Our study
revealed that the risk score was predictive for unsuccessful
anti-tumor immune response stages, encompassing the
liberation of cancer cell antigens, initiation and activation
processes, and recruitment of CD4 and CD8 T cells
(Fig. 6C). Furthermore, a positive correlation was observed
between the risk score and levels of cancer-associated
fibroblasts (Fig. 6D). We also demonstrated that the high-
risk group exhibited elevated levels of dysfunction (Fig. 6E),
exclusion (Fig. 6F), and TIDE scores (Fig. 6G) within

glioma tissues, suggesting a diminished potential for
immunotherapy efficacy. In conclusion, the predictive model
has substantial diagnostic utility in discerning the
immunosuppressive tumor microenvironment in glioma
tissues.

The predictive model can act as indication for optimizing the
use of trametinib
In this study, we employed OncoPredict to examine variations
in drug sensitivity between high- and low-risk glioma groups.
The findings revealed that the top five drugs exhibiting high-
risk score sensitivity in patients with glioma were SCH772984,
trametinib, ruxolitinib, AZD5582, and gemcitabine.
Conversely, the top five drugs demonstrating low-risk score
sensitivity in patients with glioma were vorinostat, linsitinib,
NVP-ADW742, daporinad, and ABT737 (Fig. 7A). Unlike
other drugs, trametinib has progressed to phase II clinical
trials of glioma treatment and has demonstrated significant
variations in treatment outcomes among patients [23,24].
Consequently, our objective was to investigate whether this
predictive model could serve as an indicator to optimize
trametinib utilization. The expression levels of POSTN,
CHI3L1, SAA1, and MMP9 were assessed in various glioma
cell lines (U87, U251, U118, A172, T98G, SF295, LN229,
and SF126) using qRT-PCR. Our findings revealed that all
these markers were elevated in glioma cells compared to
normal glial cells (NHA; Fig. 7B). After substituting gene
expression into the model formula, the cells were artificially
divided into two groups based on the calculated risk value: a
high-risk group consisting of U87, U251, U118, and A172
cells, and a low-risk group consisting of T98G, SF295,
LN229, and SF126 cells (Fig. 7B). To ensure accuracy, we

FIGURE 5. The predictive model has significant diagnostic value for distinguishing high hypoxia and high inflammation microenvironments in
glioma tissues. (A and B) GSVA analysis showed the activation and inactivation of pathways in the glioma tissues in the high-risk group. (C and
D) IHC was performed in glioma tissues to detect the expression of CA9, IL-2 and IL-6 in the high- and low-risk groups. *p < 0.05; **p < 0.01.
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compared the gene expressions of POSTN, CHI3L1, SAA1,
and MMP9 in these glioma cells using the CCLE database
and confirmed that the classification was consistent (Fig. 7C).

Subsequently, we used the CCK-8 method to assess the
nonspecific toxicity and inhibitory ability of trametinib in
NHA and glioma cells. The findings of this study revealed
that trametinib exhibited no nonspecific cytotoxicity
towards normal astrocytes (NHA) within a concentration
range of 40 nM (Fig. 7D). Moreover, the IC50 values of
trametinib were below 10 nM in glioma cells belonging to
the high-risk group (U87, U251, U118, and A172), whereas
the IC50 values ranged from to 30–70 nM in glioma cells
from the low-risk group (T98G, SF295, LN229, and SF126)
(Fig. 7E). These findings indicate that glioma cells in the
low-risk group exhibited a lack of sensitivity to trametinib.
The administration of a high dose of trametinib
demonstrated a notable inhibitory effect on the low-risk
group cells but also induced significant toxicity in NHA cells.

Subsequently, U87 cells from the high-risk group and
LN229 cells from the low-risk group were selected for
further analysis. Using the EDU assay, we observed that a
concentration of 10 nM trametinib effectively reduced the

EDU positive rate in U87 cells, whereas it did not have the
same effect in LN229 cells (Figs. 7F and 7G). Moreover,
using a 3D spheroid model, we demonstrated that 10 nM
trametinib effectively suppressed the proliferation of U87
cells under 3D conditions. However, this inhibitory effect
was not observed in LN229 cells (Figs. 7H and 7I).
Collectively, these results suggest that the predictive model
can be used to optimize the use of trametinib.

Discussion

Glioma, a prevalent primary brain tumor in adults, is associated
with a poor prognosis. Despite the implementation of various
treatments, such as immunotherapies, chemotherapies, and
targeted therapies, their efficacy is hindered by the
heterogeneous TME characteristics of glioma [25,26].
Consequently, understanding and controlling the intricate
interplay between the diverse constituents of the TME may
help in the diagnosis and treatment of gliomas.

Immune cells play a crucial role in the glioma TME, as
they can be selectively recruited or activated by various
factors present in the TME, including hypoxia, acidosis, and

FIGURE 6. The predictive model had significant diagnostic value for distinguishing an immunosuppressive TME in glioma tissues. (A) Stromal
score, immune score and ESTIMATE scores in high- and low-risk group glioma tissues. (B) MSI score in high- and low-risk group glioma tissues.
(C) Relationship between risk score and anti-cancer immune processes. (D) Relationship between risk score and levels of CAF cells. (E–G)
Dysfunction, exclusion and TIDE scores in high- and low-risk groups. **p < 0.01.
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inflammatory factors. Subsequently, these immune cells engage
in cross-talk with tumor cells, thereby influencing a range of
malignant behaviors exhibited by tumor cells such as
proliferation, invasion, and drug resistance [27,28].
Furthermore, immune cells possess the ability to respond to
the microenvironment, potentially exacerbating hypoxia and
inflammation [13,14]. Based on the aforementioned
information, our initial focus was directed towards
immune cells and immune cell-related genes within the
glioma microenvironment, with the aim of identifying genes
that could serve as markers for glioma. In the present
study, we observed that M2 macrophages exhibited the
highest abundance among immune cells within the
microenvironment of glioma tissues, and this abundance was
positively correlated with poor prognosis. Additionally, we
identified eight genes, namely IL-8, POSTN, CHI3L1, SAA1,
PLA2G2A, TREM1, IBSP, and MMP9, that were upregulated
in glioma tissues with high levels of M2 macrophages.

Cellular communication is a multifaceted and intricate
process wherein cross-talk can be facilitated through diverse
mechanisms such as mRNA transfer, ligand-receptor
interactions, and the release of secretory factors [29,30].
Single-cell sequencing is a valuable approach to investigate
the genomic and transcriptomic profiles of individual cells.
When coupled with a range of analytical techniques, it

enables the elucidation of intricate modes of communication
between cell populations within tumor tissues, as well as the
identification of key mediators of this communication [31].
To gain deeper insight into the functions of the
aforementioned eight genes, we performed scRNA
sequencing. Our findings indicate that these genes are
predominantly expressed in both TAM and tumor cells,
suggesting their potential significance in facilitating
intercellular communication between tumor cells and TAM.

The genes POSTN, CHI3L1, SAA1, and MMP9 were
screened to establish a predictive model, which exhibited a
significant correlation with glioma prognosis and served as
independent prognostic factors. Previous studies have
constructed prediction models based on other signatures in
gliomas, such as ferroptosis- and pyroptosis-related genes
[32,33]. However, the prognostic value (AUC) of most
prediction models ranged from 0.65 to 0.75. In contrast, the
prognostic value of the prediction models constructed in our
study exceeded 0.80 for prognosis. This may be one of the
strengths of our model, and we believe that the model can
serve as a significant biomarker to predict the prognosis of
gliomas.

Multiple genetic alterations in glioma tissues, such as
IDH1 mutations, 1p/19q co-deletion, and MGMT promoter
methylation, serve as significant indicators of prognosis and

FIGURE 7. The predictive model can be used to optimize the use of trametinib. (A) OncoPredict was used to determine drug sensitivity and
resistance in patients with high- and low-risk gliomas. (B) The expression of POSTN, CHI3L1, SAA1, and MMP9 was detected in NHA, U87,
U251, U118, A172, T98G, SF295, LN229, and SF126 cells using qRT-PCR. (C) Expression of POSTN, CHI3L1, SAA1, andMMP9 in U87, U251,
U118, A172, T98G, SF295, LN229, and SF126 cells in the CCLE data. (D) The nonspecific toxicity of trametinib for NHA was detected by CCK-
8 at 48 h. (E) The inhibitory effects of trametinib on U87, U251, U118, A172, T98G, SF295, LN229, and SF126 cells were detected by CCK-8 at
48 h. (F and G) EDU assays were used to detect the inhibitory effects of 10 nM trametinib in U87 and LN229 cells. The white bar mean 20 μm.
(H and I) A 3D spheroid model was used to detect the inhibitory effects of 10 nM trametinib on U87 and LN229 cells. **p < 0.01; ns, not
significant.

USING MULTI-OMICS ANALYSIS TO EXPLORE DIAGNOSTIC TOOL AND OPTIMIZE DRUG THERAPY 1931



drug responsiveness [19]. In clinical practice, the combination
of the 1p/19q co-deletion and MGMT promoter methylation
is considered the “gold standard” for assessing the sensitivity
of gliomas to TMZ. Gliomas lacking both the 1p/19q co-
deletion and MGMT methylation commonly exhibit TMZ
resistance [20]. Therefore, we present the second advantage
of our predictive model, which can reflect the mutational
status of gliomas, wherein high-risk patients exhibit a lower
frequency of IDH1 mutation, 1p/19q co-deletion and
MGMT methylation.

Moreover, our study revealed that the expression levels
of four genes (POSTN, CHI3L1, SAA1, and MMP9) were
significantly elevated in glioma samples obtained from
patients who experienced recurrence within one year after
TMZ treatment, along with an increased risk score.
Previous studies have extensively documented the
dysregulation and oncogenic properties of POSTN, CHI3L1,
SAA1, and MMP9 in various cancer types, including
gliomas. POSTN encodes an extracellular matrix protein
that plays a crucial role in tissue regeneration and
development [34]. Additionally, the protein encoded by
POSTN contributes to the maintenance of stemness and
promotes metastasis [35]. The POSTN-encoded protein in
gliomas serves as an inducer of M2 macrophage
recruitment, thereby inducing an immune-suppressive TME
and facilitating the proliferation of glioma cells [36]. The
CHI3L1-encoded protein, belonging to the glycoprotein
family, is secreted by macrophages during inflammation an
tissue remodeling [37]. Steponaitis et al. conducted a study
revealing elevated mRNA levels of CHI3L1 in glioma tissues
compared to adjacent tissues, and this increased CHI3L1
expression was found to be associated with poor prognosis
in patients with glioma [38]. A previous study indicated
that cancer cells secrete CHI3L1 into the TME and recruit
M2 macrophages for reprogramming [39]. SAA1 encodes an
apolipoprotein within the serum amyloid A family that is
highly expressed in response to inflammation and tissue
damage [40]. Zhang et al. showed that the suppression of
SAA1 can effectively reduce the mobility of glioma cells and
enhance their sensitivity to TMZ [41]. MMP9 encodes a
secreted protein that plays a role in the degradation of the
extracellular matrix [42]. Previous studies have indicated
that MMP9 can be secreted by M2 macrophages within the
glioma tissue microenvironment, thereby promoting cellular
invasion [43]. In summary, previous research has
established the significance of these four genes as
biomarkers of gliomas.

Previous research has demonstrated that the induction of
an immunosuppressive environment in glioma tissues is
facilitated by both hypoxia and activation of inflammation-
related pathways. This is achieved by the recruitment of
circulating macrophages and their subsequent polarization
to the M2 phenotype [44,45]. These findings suggest that
cross-talk between glioma cells and macrophages can
provide insights into the characteristics of the
microenvironment. In accordance with this, our study
revealed that the predictive model we developed, based on
the interaction of cross-talk genes between TAM and glioma
cells, exhibited the capability to discern the TME

characterized by elevated hypoxia, inflammation, and
immunosuppression.

In our analysis of drug sensitivity in patients with glioma
or cells categorized as high- or low-risk, we identified that the
high-risk group showed sensitivity to trametinib. Trametinib,
an orally effective mitogen-activated protein kinase (MEK)
inhibitor, inhibits various cancer cells by reducing
phosphorylated MEK levels [46,47]. Furthermore, trametinib
has been observed to effectively penetrate the blood-brain
barrier and exert an anti-tumor effect in the target area, as
evidenced by several phase II clinical studies conducted on
gliomas. However, the efficacy of trametinib in patients
varies with outcomes ranging from complete response to
disease progression [48,49]. Unfortunately, there is currently
a lack of established indications for the appropriate use of
trametinib. The predictive model developed in this study
may serve as a tool for optimizing the selection of suitable
candidates for trametinib treatment.

Conclusion

In conclusion, our study demonstrated a noteworthy correlation
between M2 macrophages and an unfavorable prognosis in
glioma, highlighting the significant impact of cross-talk
between macrophages and cancer cells on the composition of
the microenvironment in glioma tissues. The predictive model
constructed using four genes involved in macrophages and
cancer cells, namely POSTN, CHI3L1, SAA1, and MMP9,
holds promise in distinguishing high inflammation-hypoxia-
immunosuppression microenvironment signatures and helps
optimize trametinib selection for glioma treatment.

Our findings align with existing knowledge, as we
observed a strong association between these biomarkers and
TMZ resistance, as well as their substantial diagnostic
potential in predicting recurrence following TMZ treatment.
Moreover, our study demonstrated that the predictive model
incorporating all four biomarkers exhibited superior
diagnostic efficacy compared with individual biomarkers.
This may be another advantage of our prediction model,
indicating that it can act as a biomarker to optimize the
application of TMZ in patients with gliomas. However, our
study has certain limitations that must be acknowledged.
First, although all patients in our validation set underwent
radiation therapy, the sample size was insufficient to
ascertain the effect of varying radiotherapy doses and sites
on the outcomes. Furthermore, our investigation focused
solely on molecular phenotypes without incorporating
models that integrate clinical staging with molecular
phenotypes. Hence, in the subsequent phase, we intend to
implement two strategies: firstly, incorporating a larger
cohort of patients who have undergone conventional TMZ
treatment and categorizing them into distinct radiation dose
groups to investigate the potential utility of the identified
genes as indicators for relapse in varying radiation dose
groups; secondly, enrolling a more diverse population of
glioma patients at different stages and evaluating the
diagnostic efficacy of our prognostic model for each stage,
while ensuring the comparability of baseline clinical
characteristics.
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