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Abstract: Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent cancers worldwide. The main

risk factors are consumption of tobacco products and alcohol, as well as infection with human papilloma virus. Approved

therapeutic options comprise surgery, radiation, chemotherapy, targeted therapy through epidermal growth factor

receptor inhibition, and immunotherapy, but outcome has remained unsatisfactory due to recurrence rates of ~50%

and the frequent occurrence of second primaries. The availability of the human genome sequence at the beginning of

the millennium heralded the omics era, in which rapid technological progress has advanced our knowledge of the

molecular biology of malignant diseases, including HNSCC, at an unprecedented pace. Initially, microarray-based

methods, followed by approaches based on next-generation sequencing, were applied to study the genetics,

epigenetics, and gene expression patterns of bulk tumors. More recently, the advent of single-cell RNA sequencing

(scRNAseq) and spatial transcriptomics methods has facilitated the investigation of the heterogeneity between and

within different cell populations in the tumor microenvironment (e.g., cancer cells, fibroblasts, immune cells,

endothelial cells), led to the discovery of novel cell types, and advanced the discovery of cell-cell communication

within tumors. This review provides an overview of scRNAseq, spatial transcriptomics, and the associated

bioinformatics methods, and summarizes how their application has promoted our understanding of the emergence,

composition, progression, and therapy responsiveness of, and intercellular signaling within, HNSCC.

Introduction

Head and neck squamous cell carcinoma (HNSCC) represents
a major health burden worldwide, affecting predominantly
males (ratio 4:1) [1]. It is the seventh most common cancer,
leading to approximately 325,000 annual deaths globally [2].
In high-income countries, the most common HNSCC
subsites comprise the oral cavity, oropharynx, hypopharynx,
and larynx. Well-recognised risk factors include consumption
of tobacco products and/or alcohol, betel nut chewing, and
human papilloma virus (HPV) infection [3,4]. Oral dysbiosis,
Candida albicans infection, and bacterial genera such as
Fusobacterium, Capnocytophaga, Prevotella, Treponema, and

Peptostreptococcus may also contribute to the development of
HNSCC [5,6]. HPV+ disease, triggered by infection with
high-risk variants such as HPV-16 or HPV-18, is mainly
confined to the oropharynx, and responsible for the rise of
HNSCC incidence in high-income countries in recent
decades [2,7]. HPV+ oropharyngeal SCC (OPSCC) has a
more favorable prognosis compared to HPV− OPSCC
irrespective of the treatment modality applied [7,8].

A multidisciplinary approach involving head and neck
surgeons, radiation oncologists, and medical oncologists is
essential for the optimal management of patients with
HNSCC. Surgery, radiotherapy, and systemic therapy are
regarded as the standard of care treatment options depending
on the subsite and disease stage [9]. However, despite
curative intent multi-modality treatment of locally advanced
(stage III/IV) HNSCC and the development of novel
compounds, recurrence rates remain high (approximately
40%–50%) and second primaries are observed at a constant
rate of 2%–3% per year [10,11]. The only oncoprotein-
targeting drug approved for HNSCC is the epidermal growth
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factor receptor (EGFR) antibody cetuximab, which was
certified based on a phase III trial more than a decade ago
[12]. More recently, the role of cetuximab plus radiotherapy
has been challenged, since it was inferior to chemoradiation
(CRT) with cisplatin in HPV+ OPSCC patients [13,14].

The advent of immune checkpoint inhibitors (ICI) such
as pembrolizumab, nivolumab, and avelumab, which target
the interactions between programmed cell death protein 1
(PD-1) and programmed death-ligand 1 (PD-L1) and
PD-L2, opened new possibilities for combination therapies
that might improve the outcomes of patients with locally
advanced HNSCC. However, the primary endpoints of
several phase III studies comparing standard-of-care CRT to
CRT plus ICI were not met [15–17]. The difference in
24-month event-free survival between CRT plus
pembrolizumab vs. CRT alone (63.2% vs. 56.2%) in the
KEYNOTE-412 study did not reach significance, but
subgroup analysis suggested benefits in patients with PD-L1
combined positive score ≥1 and ≥20% [16]. Promising
results were also reported for neoadjuvant and peri-
operative ICI, but so far only from smaller trials [18,19].

Among patients suffering from recurrent/metastatic disease
not amenable to local salvage therapy, for whom ICI is approved,
outcome remained poor with a median overall survival (OS)
between 12 and 14 months in KEYNOTE-048, the trial that
showed superiority over the former standard of care
containing a platinum drug, 5-fluorouracil, and cetuximab
(EXTREME regimen) [20]. Generally, only a minority of

patients at this stage responded to pembrolizumab and
achieved long-term survival. The overall response rate in the
total patient population was approximately 17% and 36% for
pembrolizumab or pembrolizumab plus chemotherapy,
respectively, and 5-year OS was only around 20% for the
latter group [20,21]. In summary, primary and secondary
resistance to ICI is common, resulting in disease progression.

A multitude of studies has explored the mutational basis
of HNSCC, the deregulation of gene expression and signaling
pathways, and the composition and functions of the tumor
microenvironment (TME), with the goal of developing
biomarkers for therapy responsiveness as well as novel drug
targets, yet, as described above, so far with limited clinical
impact. Among the key impediments to the translation of
oncological research results into therapeutic applications are
intra-tumoral heterogeneity (ITH), i.e., the composition of
tumors of cells with different patterns of genetic and
transcriptional aberrations, and plasticity, i.e., the ability of
tumor cells to change between different transcriptional and
functional states [22–24]. In recent years, methods allowing
the assessment of gene expression patterns of (dissociated)
single cells, or of small groups of cells in their original
spatial context, have been developed and greatly improved
the resolution of studies exploring ITH, the TME, and intra-
tumoral cell-cell communication. This review summarizes
what has been learned from the application of such
advanced omics techniques to the investigation of HNSCC
(Fig. 1 and Table 1).

FIGURE 1. Outline of key topics of this review, encompassing the application of scRNAseq and spatial transcriptomics to explore various
aspects of HNSCC biology. Figure created with BioRender.com.
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scRNAseq and Spatial Transcriptomics: A Methods
Overview

In modern translational oncological research, genome-wide
screens aiming to identify either genetic alterations like
mutations or copy number variations (CNVs) or
differentially expressed genes have yielded fundamental
insights into the molecular landscapes of tumors. At the
beginning of the omics era, microarray-based approaches
were used for these purposes, but have lost their significance
in recent years due to the development of next-generation
sequencing methods. Technological advances in analysing
whole genomes/exomes, methylomes, and transcriptomes in
a time- and cost-effective manner facilitated the
establishment of large, publicly accessible repositories
hosting genetic, epigenetic, gene expression, and clinical
data from thousands of patients with a variety of different
tumors, e.g., the Gene Expression Omnibus and The Cancer
Genome Atlas (TCGA) data collections [25]. However, bulk
next-generation sequencing cannot address in which cell
type deregulation of a gene occurs, whether it is uniform in
all cells of this type, and whether it is even due to
upregulation in a specific cell type or rather reflects a shift
in cell type composition. This underscores the importance
of single-cell analyses, which offer the ability to capture the
spectrum of cellular diversity, identify novel cell types, track
developmental lineages, and illuminate the complex
interplay of cells within tissues. Spatial methods further
enhance this perspective by pinpointing the exact location of
these cells within their biological context.

Various technologies have been established to analyze
the transcriptome at single-cell resolution, including Drop-
seq [26], the Chromium platform (10× Genomics) [27,28],
Switching Mechanism at 5′ end of RNA Template
Sequencing (SMART-seq2) [29], Cell Expression by Linear
amplification and Sequencing (CEL-seq) [30], QUARTZ-seq
[31], and Massively parallel RNA Single-cell sequencing
(MARS-seq) [32]. Each of these technologies has its own
advantages and limitations and is suitable for certain
applications.

Drop-seq and the 10× Genomics Chromium platform
are based on microfluidic technology. The standard 10×
single-cell gene expression experiment allows for the
analysis of transcriptomes from up to 10,000 single cells
(20,000 in a recently released high-throughput variant). In
this process, individual cells are enclosed in microscopic
droplets of a water-oil emulsion. Each droplet also contains
a gel bead carrying the reagents for complementary DNA
(cDNA) synthesis, including a primer equipped with a
unique barcode. When the cell and the gel bead meet in the
emulsion, the cell is lysed and cellular RNA is released. The
RNA molecules then hybridize with the primers on the gel
bead and are converted into cDNA. Once this step is
completed, the droplets are dissolved, followed by cDNA
amplification, library preparation and sequencing. The
resulting sequencing data contain the individual barcodes,
which allow the sequences to be assigned to specific cells
using bioinformatic methods.

Unlike the Chromium platform, SMART-seq2 allows the
capture of full-length transcripts, making it a valuable
technique for studying splice variants and alternative
transcripts [29,33]. However, the number of cells examined
is significantly lower compared to the 10× Genomics
technology. CEL-seq uses linear amplification of mRNA to
determine gene expression profiles [30]. With this method,
individual cells are isolated, e.g., by microfluidics, and
extracted mRNA is bound to primers that contain both an
oligo(dT) sequence and a cell-specific barcode sequence.
The mRNA is converted into cDNA followed by linear
amplification through in vitro transcription, which leads to
less distortion in gene expression compared to exponential
amplification. The resulting RNA serves as input for
sequencing library preparation. Other single-cell RNA
sequencing (scRNAseq) approaches that also utilize in vitro
transcription for linear amplification are QUARTZ-seq [31]
and MARS-seq [32].

Overall, the choice of scRNAseq method strongly
depends on the specific requirements of the experiment.
While Chromium and Drop-seq are ideal for large-scale,
high-throughput projects, SMART-seq2, CEL-seq and
QUARTZ-seq are better suited for applications that require
high sensitivity and gene coverage [34]. However, scRNAseq
methods fall short of retaining the original spatial
positioning of the cells within the tissue context. This gap is
filled by spatial transcriptomics, which preserves the spatial
information of gene expression and enables the analysis of
cellular behavior and interactions within the native tissue
architecture [35]. Several methods are available for spatial
transcriptomics [36]. In the Visium process (10×
Genomics), tissue sections are mounted on a glass slide
harbouring a grid of oligonucleotides that contain a
sequencing handle needed for PCR amplification, a location-
specific barcode, and an oligo(dT) sequence. Tissue sections
are permeabilized and RNA is hybridized to probe pairs
recognizing adjacent sequences in their respective target
transcripts. Bound probe pairs are ligated, captured via the
oligo(dT) portion of the array-bound oligonucleotides,
amplified, and used for sequencing library preparation
[27,28]. In the GeoMx procedure (NanoString), a tissue
sample fixed on a glass slide is stained with antibodies (for
protein assay) or probes (for RNA assay) that are linked to
photocleavable oligonucleotides. Pre-designed assays for
targets like immune response proteins or specific transcript
sets are available. From digital images of the tissue sample,
regions of interest (ROIs) are selected for UV exposure,
which prompts the release of oligonucleotides from the
antibodies/probes. The subsequent quantification of these
oligonucleotides provides a measure of the relative
abundance of their corresponding targets within the
analyzed ROIs [37].

Bioinformatics Tools for the Analysis of scRNAseq Data

Along with scRNAseq technology, bioinformatics tools to
analyze the resulting data have been developed. The R
package Seurat and the Python-based tool Scanpy [38–40]
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both provide functions for quality control, data normalization,
clustering, dimension reduction, and data visualization.
Various other R packages can be integrated into the Seurat
pipeline for the prediction of CNVs, automated cell type
annotation, as well as for exploring relationships between
cells connected through pseudotime differentiation
trajectories. CNVs are a defining feature of tumor cells and
can be detected by CAISIC [41], CaSpER [42], or InferCNV
[43], which assumes that genes located in regions with
CNVs will also display alterations in their RNA expression
levels. Several tools are available for cell type annotation
[44–57]. SingleR [58] and CellAssign [59] facilitated cell
type identification based on reference datasets from pure
cell types and known marker gene sets, respectively.
Garnett, on the other hand, classifies cells by a user-defined
hierarchy of cell types and marker genes for each cell type
[60]. Cellular trajectory analysis, or lineage tracing, maps
the developmental pathway of a cell along a maturation
pathway [61]. Pseudotime analysis, an integral part of this
process, provides a way to order cells along these
developmental pathways based on incremental alterations of
their transcriptional profiles from a starting point (e.g., a
naïve T-cell) to an end point (e.g., a cytotoxic T-cell). A
variety of computational tools including Monocle [62],
TSCAN [63], and Slingshot [64] have been developed to
conduct these analyses [65–71] (Fig. 2).

scRNAseq can also be used to develop hypotheses of
how cells interact with each other through signaling

molecules [72–81]. CellPhoneDB uses a permutation-based
statistical method to analyze the potential interactions
between cell types based on the average expression of
known ligand-receptor pairs and calculates whether any
given pair of cells, each expressing either a ligand or the
corresponding receptor, are more likely to interact than
would be expected by chance [76]. NicheNet constructs an
interaction network representing potential cell-cell
communications by analyzing ligand production in sender
cells, receptor expression in receiver cells, and the predicted
downstream genes in the receiver cells [77]. CellChat aims
at identifying potential intercellular communication based
on signaling pathway activity [78] (Fig. 2).

Cell Type Composition and Cell-Cell Communication in
HNSCC

In the first study to apply scRNAseq to HNSCC, primary
tumor samples from 18 treatment-naïve patients with oral
squamous cell carcinoma (OSCC) as well as five partially
matched lymph node (LN) metastases were investigated
[82]. Non-malignant cells formed eight clusters comprising
T-cells, B-cells, macrophages, dendritic cells, mast cells,
endothelial cells, fibroblasts, and myocytes, respectively.
T-cells sub-clustered into conventional helper T-cells (CD4+

Tconv), regulatory T-cells (Tregs), CD8+ T-cells, and
exhausted CD8+ T-cells, with the relative size of the latter

FIGURE 2. Overview of aspects that can be investigated by scRNAseq, including cell clustering and cell type annotation, differential gene
expression, cell differentiation, and cell-cell communication, along with the respective bioinformatic tools used to unravel these processes.
Figure created with BioRender.com.
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group varying considerably between patients. Fibroblasts
comprised the subclusters myofibroblasts, cancer-associated
fibroblasts (CAFs), and resting fibroblasts [82]. In contrast
to non-malignant cells, whose respective gene expression
patterns were largely consistent across different tumors,
malignant cells, identified based on the expression of
epithelial markers and the presence of inferred CNVs,
clustered in a patient-specific manner. Confirming the
heterogeneity of tumor cells, of 60 signatures defining
malignant cell subsets, only seven were present in more
than one tumor. Specifically, an expression program related
to extracellular matrix and epithelial-mesenchymal
transition (EMT) was found in 7/10 patients included in
this part of the analysis [82]. This signature was referred to
as partial EMT, or p-EMT, signature, because expression of
most of the key EMT transcription factors was undetectable
(yet inferred based on the expression of their target genes in
a re-analysis of these data [83]). The p-EMT signature was
also expressed in a subset of cells from the OSCC cell line
SCC-9 and associated with decreased proliferation and
increased invasiveness. Immunohistochemistry showed that
cells co-expressing p-EMT markers localized to the leading
edge of primary tumors, while cells positive for epithelial
differentiation markers were situated in the tumor core. The
expression patterns of ligands and receptors, together with
in vitro experiments, suggested that CAFs signaling through
the TGF-β pathway promoted expression of the p-EMT
program in cancer cells. High p-EMT scores in bulk RNA
expression data from the TCGA cohort were associated with
advanced tumor grade, lymphovascular invasion, and LN
metastases [82]. Finally, the scRNAseq data, along with
deconvolution of bulk expression data from the TCGA
HNSCC cohort, confirmed the existence of the previously
defined basal, classical, and atypical subtypes of HNSCC,
while the mesenchymal subtype was more likely to reflect a
higher proportion of fibroblasts than a gene expression
program intrinsic to tumor cells [25,82].

Subsequent studies on two patients each with laryngeal
squamous cell carcinoma (LSCC) [84] and hypopharyngeal
squamous cell carcinoma (HPSCC) [85], as well as on
18 patients with HNSCC from various subsites and with
variable HPV status [86], confirmed the presence of the
major cell type clusters reported in the above-described
OSCC study [82]. Moreover, the pan-HNSCC study
identified a fibroblast subcluster expressing elastic fiber
differentiation genes, a cell type not previously reported in
HNSCC, but confirmed by deconvolution of the TCGA
data. The corresponding signature, as well as a signature
characterizing CAFs, was associated with shorter survival
among HPV+ patients within the TCGA cohort [86]. The
same study also corroborated the previously reported [82]
patient-specific clustering of malignant (keratin-expressing,
CNV-bearing) cells, with higher similarity among cells from
patients sharing the same HPV status [86]. Similar to the
observations in OSCC, keratinocyte-like cells were located in
the tumor core of LSCC, and the expression of the
respective marker genes correlated with longer survival in
the TCGA data set [84]. Proliferative tumor cells, on the

other hand, were located at the tumor edge, and the
expression of their marker genes correlated positively with
tumor grade [84]. In HPSCC, ligand-receptor analyses,
immunohistochemistry, and cell culture experiments
suggested a tumor-promoting role for the TGF-β family
member BMP4, produced by CAFs and activating BMPR2
on cancer cells [85].

Even though not uncontroversially, cancer stem cells are
considered as the source of cancer cell renewal and therapy
resistance [24,87]. Some studies have therefore attempted to
investigate HNSCC stem cells through single-cell
transcriptomics. As an example, Johansson et al performed
scRNAseq on organoids formed by stem cell-containing
Sox2+ keratinocytes, which had been collected from mice
with 4-nitroquinoline-1-oxide-induced oral carcinomas or
control mice. This revealed a single cluster with a high
StemID score in the control organoid, but several clusters
with a substantially lower score in the cancer organoid [88].
In an integrated analysis of the cells from the tumor and
control organoid, the stem-like cells from the two types of
organoid clustered separately. Genes pertaining to p53
signaling, apoptotic signaling, and cell cycle arrest were up-
regulated in the control stem-like cluster, while HIF-1α
signaling, glycolysis, extracellular matrix organization,
epithelial cell proliferation, and cell motility were enriched
among the genes highly expressed in the cancer stem-like
cluster [88].

Primary scRNAseq data are usually made publicly
available upon publication of their original analysis and
provide a rich resource of information that can be used as a
basis for, or a complement to, independent investigations. As
an example, Xiao et al. [89] focussed on the activity of
metabolic programmes in the above described OSCC
scRNAseq dataset [82]. Of 80 metabolic pathways, over 70
showed differential activity between different cell types,
indicating that metabolic activity was mainly determined by
cell type. The largest number of metabolic pathways was
upregulated in malignant cells. Also, CAFs were more
metabolically active than myofibroblasts, featuring enhanced
glycolysis and production of inflammatory mediators [89].
Principal component analysis followed by gene set enrichment
analysis revealed that mitochondrial activity, represented by
oxidative phosphorylation and the tricarboxylic acid cycle, was
the main determinant of metabolic heterogeneity between
malignant cells. Glycolysis, oxidative phosphorylation, and
hypoxia signatures were significantly correlated to each other
in both malignant and non-malignant cells, suggesting that
tumor-related metabolic reprogramming does not consist of a
switch between glycolysis and mitochondrial respiration, but
rather, oxygen deprivation up-regulates both of these
processes, potentially fostering competition of cells for limited
resources [89].

In another high-profile study based on the reuse of
publicly available scRNAseq data, ITH was investigated in
1,163 tumor samples from 77 different studies representing
24 tumor types [90]. From 5,547 transcriptional programs
that varied between malignant cells of individual tumors, 41
meta-programs characterizing ITH were distilled. ITH of
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seven meta-programs, related to cell cycle, stress, hypoxia,
interferon responses, EMT, and MYC targets, was frequent
in most cancer types, 21 meta-programs were shared only
between a subset of cancer types, and the variability of the
remaining meta-programs was tumor-type specific [90].
Interestingly, most malignant meta-programs resembled
meta-programs of non-malignant epithelial cells, suggesting
that transcriptional ITH reflects the heterogeneity of the
tissue from which the tumors emerged [90].

The Tumor Immune Microenvironment

The immune system is one of the major lines of defense of
the human body against malignant cells. Accordingly,
immunotherapy, e.g., through modified immune cells or
through ICI-mediated re-activation of endogenous immune
responses muted by the tumor, has advanced to become one
of the most successful therapeutic strategies in oncology
[91]. Nevertheless, and albeit approved for HNSCC, ICI is
successful only in a minority of patients with this cancer
type [16,20,21]. Therefore, several articles have specifically
investigated the HNSCC tumor immune microenvironment
through scRNAseq on sorted cell populations, e.g., CD45+

hematopoietic cells or CD3+ T-cells. Some studies included
adjacent normal tissue, peripheral blood leukocytes, and/or
non-tumorous tonsils in addition to tumor tissue.

Due to their key role in antitumor immunity and
immunotherapy, many analyses focussed on (cytotoxic)
T-cells. The T-cell population of tumor tissue contained a
substantially higher proportion of CD8+ cells than that of
adjacent normal tissue (71 vs. 52%) [92]. A smooth
differentiation trajectory connected peripheral blood (PB)-
derived to tumor infiltrating CD8+ T-cells, but CD8+ T-cells
from both PB and non-malignant tonsils were present in
different subclusters from their tumor infiltrating
counterparts [93]. Naïve-like, cytotoxic, pre-dysfunctional,
terminally dysfunctional/exhausted, and cycling cells were
identified as major CD8+ T-cell subsets [86,94], and all
except for the naïve-like subsets were present in higher
proportions in the TME compared to adjacent normal tissue
and PB [92–95]. Single-cell T-cell receptor sequencing
(scTCRseq) further revealed that expanded clonotypes
(defined by a clonal size of at least two, and up to 162 cells)
were more frequent within tumors than in adjacent normal
mucosa, and most abundant among exhausted T-cells [94].
Enhanced expression of the exhaustion marker PD-1 in
OSCC-infiltrating vs. normal-tissue lymphocytes was
confirmed by immunohistochemistry. The transcription
factor thymocyte selection-associated high-mobility group
box (TOX) was identified as potential regulator of immune
checkpoint genes based on scRNAseq data, and its
experimental overexpression in primary CD8+ T-cells
indeed increased their expression of checkpoint genes and
diminished their proliferation and cytotoxic activity towards
PD-L1 positive HNSCC cell lines in vitro [92].

Within the CD4+ T-cell population, Tregs were strongly
enriched in tumors compared to adjacent normal tissue,
further corroborating the immunosuppressive nature of the

TME [92–95]. Correspondingly, signatures associated with
exhausted CD8+ cells and with CD4+ Tregs were associated
with shorter OS in the TCGA HNSCC data set [92,95].

Evaluation of potential routes of cell-cell communication
revealed a massive increase of putative receptor-ligand
interactions among tumor infiltrating leukocytes (TILs) vs.
hematopoietic cells from PB and non-malignant tonsils [93].
Furthermore, macrophages were predicted to represent the
main source of PD-L1 for interaction with PD-1 on CD8+

T-cells in eight of twelve patients, and epithelial cells in only
two of them. Flow cytometry and multispectral fluorescence
microscopy confirmed high PD-L1 expression on
macrophages as well as their apposition to T-cells. This
supported clinical observations that ICI responsiveness was
best predicted by a combined PD-L1 score considering both
tumor cells and macrophages [16,86].

Woolaver et al. developed a mouse model reflecting the
variability of immune responses towards HNSCC:
orthotopic (intrabuccal) transplantation of the KrasG12D

Smad4−/− SCC cell line A223 into wildtype C57BL/6 mice
initially led to tumor growth in all animals, but was
followed by spontaneous regression in 20%–30% of them
[96]. CD8+ T-cells in regressing tumors were more
abundant, more activated, and less exhausted than those in
progressing tumors. Supporting the key role of cytotoxic
T-cells in the spontaneous regression of tumors in this
model, CD8−/− mice were unable to eradicate such tumors,
and regressor mice re-challenged with A223 cells cleared
tumors rapidly and efficiently [96]. scTCRseq revealed
clonal expansion among TILs, but not spleen cells, from
both progressors and regressors, and few TCR clonotypes
that were shared between samples, suggesting tumor antigen
recognition in all recipients, and a highly individualized
immune response to these tumors despite their limited
genetic heterogeneity [96]. In combined V(D)J- and
scRNAseq experiments on CD8+ T-cells from three
progressors and three regressors, spleen cells dominated the
naïve, and TILs the activated cell clusters. TILs from
regressors appeared more activated than those from
progressors. Specific analysis of the top clonotypes
confirmed better activation, stronger cytotoxic ability, and
more memory-like states in regressors vs. progressors [96].

Hypothesizing that the humoral arm of anti-tumor
immunity could offer therapeutic opportunities with the
potential to complement current CD8+ T-cell focussed
immunotherapies, Ruffin et al. focused their analyses on B-
and CD4+ Tconv cells [97]. scRNAseq data from CD45+

cells from the tumors and PB of 27 patients with HNSCC of
variable HPV status and from healthy tonsils (in part from
the public domain [93]) uncovered 10 clusters of CD4+

Tconv cells and 11 clusters of B-cells. Two of the latter were
formed by germinal center (GC) B-cells, displaying overlap
between TIL-Bs and B-cells from healthy tonsils. In the
TCGA dataset, both a high B-cell infiltrate and a high
enrichment for GC B-cells were associated with longer
progression-free survival. Immunohistochemistry
demonstrated that B-cells predominantly infiltrated tertiary
lymphoid structures (TLS), which were enriched in HPV+
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compared to HPV− HNSCC. The numbers of CD4+ T-cells
and TIL-Bs in TLS were strongly correlated, and in TLS
with GC, but not in TLS without GC, TIL-Bs interacted
with each other and with CD4+ Tconv, suggesting that TLS
with GCs play a key role in humoral anti-tumor immunity.
Accordingly, intra-tumoral TLS with GC correlated with
increased survival in HNSCC [97].

To address the controversial contribution of natural
killer (NK) cells to tumor control, Moreno-Nieves et al.
performed scRNAseq on innate lymphoid cells (ILCs),
which they isolated as CD56+ and/or CD127+ cells from the
primary tumors, LN metastases, and PB of eight HNSCC
patients [98]. Among intra-tumoral NK-related cell subsets,
intraephithelial ILC cluster 1 (ieILC1) had the greatest
cytolytic activity, while NK-2 cells were dysfunctional
according to gene expression patterns. Pseudotime analysis
suggested that these two cell types represented the end
points of two different differentiation trajectories of
circulating NK cells. In coculture with HNSCC cells, IL-15
and TGF-β promoted upregulation of the ieILC1 markers
CD49a and CD103 in a subset of circulating NK cells, while
cells that remained CD49a− resembled NK-2 cells. In
response to tumor cells or other stimuli, in vitro
differentiated ieILC1-like cells degranulated more, produced
more interferon γ and tumor necrosis factor α, and killed
tumor cells more effectively than NK-2 like cells. Moreover,
upon subcutaneous co-injection with HNSCC cells into
immunocompromised mice, in vitro differentiated CD49a+

cells controlled tumor growth significantly more effectively
than their CD49a− counterparts. Thus, among ILC/NK cells
in the TME, ieILC1 cells were suggested to have the greatest
antitumor activity [98].

Differences between HPV− and HPV+ HNSCC Deciphered
by scRNAseq

HPV infection is one of the major risk factors for the
development of HNSCC [4]. Even though the HPV-16 E6
and E7 proteins are essential for maintaining malignancy,
therapies targeting these proteins have achieved only modest
success, indicating a need for improvement [4]. In a recent
study, Puram et al. [99] discovered remarkable diversity in
OPSCC concerning both CNVs and HPV gene expression,
indicating an HPV-induced genomic instability. They and
others noted significant variability in HPV expression across
different tumors and even within genetic subclones of the
same tumor [86,99]. Intriguingly, a subset of cells within
HPV+ tumors, termed HPVoff, displayed no detectable
HPV expression but nevertheless showed high levels of the
surrogate marker CDKN2A (p16). HPVoff cells were
associated with decreased cell cycle anomalies and decreased
evasion from senescence, potentially leading to increased
treatment resistance and invasion capabilities. They may
resume growth and reactivate HPV expression post-
treatment, thus representing key players in recurrent HPV+

tumors [99].
By investigating associations between HPV and the TME,

HPV+ tumors were found to contain larger proportions of

NK/T-cells and GC TIL-B cells, but a diminished presence
of Tregs, fibroblasts and macrophages, as compared to
HPV− tumors [86,93,97,100–103]. Eberhardt et al.
uncovered not only a high fraction of HPV-specific CD8+

T-cells in the TME, but among them also a unique subset of
stem-like cells with considerable proliferative potential
[104]. Distinguished by the concurrent expression of the
inhibitory receptor PD-1 and the transcription factor
TCF-1, these stem-like CD8+ T-cells triggered proliferation
of effector-like T-cells in response to PD-1 pathway
disruption in preclinical models [104]. Alongside these
findings, another HPV-specific CD8+ T-cell subset
characterized by the expression of the NK cell marker
CD161 was characterized [105]. Jiang et al. identified a
unique subpopulation of macrophages, TCR+ macrophages,
in both HPV− and HPV+ HNSCCs [102]. These
macrophages were associated with enhanced phagocytosis
and potentially improved prognosis of HNSCC patients, but
their functionality may be limited in HPV− HNSCC due to
immune response inactivation [102].

Using a 3D organotypic epithelial raft model, Bedard
et al. discovered a keratinocyte subpopulation that was
expanded and reprogrammed by HPV [106]. These cells
(termed HPV-induced differentiation-dissonant epithelial
nonconventional cells; HIDDEN) formed a distinct
compartment in the infected epithelium and persisted from
neoplastic lesions to outright cancer. ELF3/ESE-1 was
identified as a key regulator whose depletion in HPV+

epithelium greatly reduced HIDDEN cell biomarker
expression and compartment formation [106].

Advanced Omics Methods to Investigate the Role of the
Oral Microbiota in OSCC

In addition to viral infection, bacterial and fungal microbiota
play a role in the development and progression of HSNCC
through production of mutagenic substances, modulation of
inflammation and immune responses, and the promotion of
epithelial cell proliferation and EMT [6]. Therefore,
advanced omics methods have been employed to deepen the
understanding of the role of the oral microbiota in HNSCC.
GeoMx digital spatial profiling of 77 proteins associated
with anti-tumor immunity in eight OSCC samples revealed
that bacteria resided in microniches characterized by
immunosuppression, reduced vascularization, and a highly
transformed phenotype [107]. To be able to simultaneously
assess the expression of human genes and the presence of
bacterial genera at the single-cell level, invasion-adhesion-
directed expression sequencing (INVADEseq) was
developed by including a primer targeting a conserved
region of bacterial 16S rRNA in the 10× Genomics 5′ library
preparation protocol. Control experiments with human
cancer cell lines revealed that bacterial infection induced not
only transcriptional programmes related to anti-bacterial
immune responses, but also EMT- and metastasis-
promoting genes [107]. Application of INVADEseq to fresh
tumor tissue from seven patients with OSCC indicated that
the intra-tumoral microbiota was dominated by the genera
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Fusobacterium and Treponema, which were primarily
associated with aneuploid epithelial cells highly expressing
cancer progression-related signaling pathways, and with
monocyte-derived macrophages. Thus, cell-associated intra-
tumoral microbiota could drive inter-cellular heterogeneity
within immune and epithelial cell populations, and enhance
the malignancy of tumor cells [107].

Tumor Development, Progression, and Metastasis

The development and progression of HNSCC was investigated
by scRNAseq of normal tissue, precancerous oral leukoplakia,
primary tumors, and metastatic tumors from lymph nodes,
gathered from a total of 23 patients [100]. Some epithelial
cells in leukoplakia showed CNVs as well as expression of
various tumor-related genes similar to malignant cells,
suggesting that CNV-driven expression of TP63 and ATP1B3
in leukoplakia plays a critical role in the progression to
HNSCC [100]. Another study that examined matched
normal, dysplastic, and tumor cells from OSCC biopsies
observed a gradual increase in the expression of genes
involved in pathways such as EMT and mTORC1 [108].
Notably, the study also identified VEGFA as a cancer
initiating factor [108]. Moreover, various subtypes of
fibroblasts were described to support malignant
transformation [100,108,109]. Trajectory analyses showed
that fibroblasts in leukoplakia were closer to those in
cancerous tissue than those in normal tissue, indicating that
they may already have acquired CAF features [100]. Collagen
(specifically COL1A1) from fibroblasts induced the
expression of LAIR2 (CD306), a soluble collagen receptor that
activates pro-inflammatory processes, in leukoplakia Tregs,
thus creating a favorable microenvironment for tumor
progression [100]. Further, COL1A1-CD44 and LGALS7B-
CXCL8 ligand-receptor interactions between fibroblasts and
malignant cells were identified as factors that promote
HNSCC progression [100].

By examining seven pairs of primary tumors and cervical
LN metastases from HNSCC patients using scRNAseq and
scTCRseq and trajectory analysis, a distinct subpopulation of
pre-metastatic cells, driven by actionable pathways including
AXL and AURK, was uncovered [110]. In addition, a
subpopulation within the primary tumor exhibiting high
EMT scores, deregulated oxidative phosphorylation, and
immune evasion was found. In the TCGA dataset, patients
with similar gene expression profiles had significantly poorer
outcomes [110]. CD8+ T-cell clones displayed different
trajectories leading to SOX4-mediated T-cell dysfunction,
with one path showing a progressive loss of naïve markers
and gain of dysfunctional markers [110].

Treatment Resistance

Primary and secondary resistance occurs with all forms of
therapy and is the main reason of cancer-related death
[23,111]. Thus, a comprehensive understanding of the
underlying mechanisms is crucial for improving treatment
strategies and prolonging survival of cancer patients. In this

context, single-cell analyses were performed to elucidate
how cells react to chemotherapy, radiotherapy, targeted
therapy, and ICI therapy in HNSCC [94,112–120].

Osman et al. investigated cisplatin resistance in a human
HNSCC cell line by scRNAseq and found p53 signaling, cell
cycle, senescence, platinum resistance, and FoxO signaling
to be activated in cisplatin resistant cells [112]. Further, an
epigenetically primed subpopulation, driven by NRF2, a
protein involved in regulation of anti-oxidative stress
response and epigenomic changes, was identified, potentially
linking cellular oxidative stress response and cisplatin
resistance [112]. Among eight patients with HPSCC,
responsiveness to a therapy comprising taxol, cisplatin,
5-fluorouracil, and cetuximab was associated with a higher
number of infiltrating immune cells both before and after
therapy as determined by scRNAseq and multiplex
immunohistochemistry [118]. Using a cell type
deconvolution strategy on a bulk RNAseq dataset from 44
patients, along with classifier training, treatment response
could be predicted based on sets of non-malignant cell
subtypes that were categorized as either “tumor-suppressive”
or “tumor-promoting” [118].

Utilizing a 31-gene signature reflecting radiation
sensitivity in a cell line model, Li et al. re-analyzed a publicly
available scRNAseq dataset to study the heterogeneity of
sensitivity to radiation in OSCC cells [82,121]. The atypical
subtype was associated with sensitivity to radiation, and
within the classical and basal subtypes gene co-expression
modules related to radioresistance (primarily cell division
and cell cycle regulation) were identified [121]. Moreover,
increased immune checkpoint interactions were seen in
radioresistant tumors, theoretically suggesting a basis for
combining radiotherapy and immune checkpoint blockade in
treating HNSCC. However, this approach has so far not
proven successful in clinical studies [15–17].

CDK4/6 inhibitors have been approved for the treatment
of breast cancer and are under consideration for a variety of
other tumors [122]. In HNSCC, promising results were seen
when administering CDK4 inhibitors to HPV−, but not
HPV+ patients [123]. Cheng et al. analyzed 14 paired
HNSCC and adjacent normal samples and discovered a
proliferative exhausted CD8+ T-cell (P-Tex) cluster,
beneficial to the survival outcomes of HPV+ HNSCC
patients [94]. CDK4 levels in these cells were as high as in
cancer cells, suggesting that treatment failure in HPV+

HNSCC patients could be due to the unintended inhibition
of beneficial P-Tex cells by CDK4 inhibitors.

Several studies utilized scRNAseq to analyze response to
ICI therapy. In mouse models, successful anti-PD-1 or anti-
CTLA-4 therapy enhanced the differentiation of T-cells into
more activated states [113]. ICI-resistant tumors were
infiltrated with high numbers of tumor associated
macrophages (particularly of the immunosuppressive M2
type) supported by expression of CSF1 and VEGF by tumor
cells [113,124]. In the human context, Obradovic et al.
assessed whether CAF-related or other TME subpopulations
may regulate clinical responses to nivolumab by scRNAseq
of four tumors from patients with advanced-stage HNSCC
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before and after ICI treatment [114]. Of five distinct CAF
clusters, two emerged as predictive of nivolumab response,
while a third was associated with immunosuppression [114].

A recent article provides insights into the role of TILs,
specifically CD8+ T-cells exhibiting a tissue-residency
program (Trm), in the response to neoadjuvant ICI through
scRNAseq and scTCRseq on TILs from 19 OSCC patients
post-treatment, with pre-treatment biopsies available for six
of them [116]. Trm cells, defined by the markers CD103
and HOBIT, were early responders to ICI. They displayed
gene expression patterns related to activation, cytotoxicity,
and effector function, but also inhibitory receptors including
PD-1, proposed to reflect regulation rather than exhaustion.
Most TCR clonotypes that expanded during treatment were
already present in the tumor prior to treatment, while
some became detectable only after treatment. Thus, early
intra-tumoral ICI responses may be primarily mediated by
pre-existing T-cells with a Trm gene program, while new
T-cell populations may be primed elsewhere and then enter
the tumor. Moreover, a high proportion of PD-1+ KLRG1-
CD8+ T-cells in PB correlated strongly with responsiveness
to neoadjuvant ICI therapy, indicating the potential
usefulness of these cells as a predictive biomarker in this
context [116]. Another study characterized CD4+ and CD8+

T-cell dynamics by scRNAseq of TILs isolated from tumor
biopsies of six HNSCC patients before and after
neoadjuvant treatment with bintrafusp alfa, a bifunctional
fusion protein consisting of a monoclonal anti-PD-L1
antibody and a TGF-β receptor extracellular domain capable
of concurrently blocking PD-1 signaling and neutralizing
TGF-β in the TME [117]. This therapy predominantly
activated exhausted CD8+ TILs, which was associated with
altered glutamine metabolism. Abrogation of TGF-β
signaling was suggested to promote the egress of exhausted
TILs to the blood after treatment, which could improve
patient outcomes [117].

Lin et al. examined a unique patient who developed three
separate HNSCCs, two of which were responsive to ICI
treatment, while the third progressed under therapy [115].
The T-cell exhaustion markers, LAG3 and PTPN6, were
expressed at higher levels in the exhausted CD8+ T-cells of
the progressing lesion as compared to the responding ones,
suggesting the upregulation of alternative inhibitory
receptors in exhausted CD8+ T-cells as a potential
mechanism of ICI resistance [115].

Insights from Large-Scale Gene Expression Profiling with
Spatial Resolution

Being able to analyze the gene expression patterns of single
cells has substantially advanced our understanding of tumor
biology. However, since the scRNAseq workflow is based on
isolation of dissipated cells, spatial information is lost. The
development of methods preserving this information is
rapidly advancing, and some examples of their application
to HNSCC are described below.

To investigate differences in gene expression patterns
between more broadly defined tumor areas, Chung et al
performed bulk RNAseq on specimens from the inner core

and invasive front of primary tumors, as well as from
metastases and adjacent normal mucosa from 21 patients
with HNSCC. Progressive enrichment of signatures
associated with EMT, inflammation, and ferroptosis was
observed from inner core to invasive front and metastatic
samples [119]. scRNAseq on three, and spatial
transcriptomics via the 10× Genomics Visium platform on
two primary HNSCC samples confirmed and refined these
data on the single-cell level and at high spatial resolution,
respectively [119]. Intersection of the genes associated with
a high ferroptosis score in the primary samples with those
induced by a sublethal dose of the ferroptosis inducer FIN56
in an HNSCC cell line revealed CD274, encoding PD-L1, as
the central hub gene [119]. Correspondingly, FIN56 induced
PD-L1, and cooperated with PD-L1 antibody to suppress
tumor formation, in a syngeneic HNSCC mouse model [119].

Stimulated Raman scattering microscopy exploits
differences between the vibrations of CH2 and CH3 bonds
and the differential abundance of such bonds in lipids and
proteins to provide detailed information on tissue
architecture in fresh frozen tissue slices. Increasing the
intensity of the excitation source facilitates the excision of
ROIs, which can be subjected to parallel extraction of high
quality DNA and RNA [125]. In a proof-of-principle study
including samples from four patients with OSCC, from
which ROIs containing ~230 cells were excised, novel gene
fusions were identified, and both DNA-derived CNV data
and transcriptomic data revealed large interpatient
variability, and even variability between different cancer
nests from the same patient [125].

Another major line of technical development concerns
the facilitation of simultaneous detection of multiple
proteins through immunological methods. As an example,
CO-DEtection by indeXing (CODEX) permits visualization
of up to 60 markers through DNA-conjugated antibodies
that are sequentially detected via complementary,
fluorescently labeled DNA probes [126]. To simplify and
objectify interpretation of the resulting data, Zhang et al.
developed cell type identification with spatial information
(CELESTA), an unsupervised machine learning algorithm
that assigns cell types based on the expression of marker
proteins and on spatial information, and applied it to
CODEX imaging with 52 markers of samples from each
four HNSCC patients with and without LN metastases
[127]. Malignant cells and Tregs were found to colocalize
more often in samples with than without LN involvement.
This was confirmed by staining for FOXP3 (Tregs) and
cytokeratin (malignant cells) on a tissue microarray from an
independent patient cohort. scRNAseq on four samples
suggested that interactions between CXCL10 and CXCR3,
expressed on malignant cells and Tregs, respectively, may
mediate their colocalization. Indeed, cancer cells with higher
CXCL10 expression more effectively stimulated migration of
CXCR3+ Tregs in a transwell experiment, and the CXCR3
inhibitor AMG487 reduced the number of Tregs recruited
to tumors in a mouse model [127].

Even though studied to a much lesser extent than TILs
and CAFs, nerves represent an important component of the
TME [128]. In HNSCC and other tumors, they play roles in
cancer-associated pain and aggressiveness. Tumors recruit
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nerves, which in turn foster the proliferation of malignant
cells. These may even invade the nerve structure, a
phenomenon called perineural invasion (PNI) [128].
Through re-analysis of publicly available scRNAseq data
[82], a gene expression module associated with PNI in the
TCGA dataset was found to correlate positively with EMT,
metastasis, and invasion, and negatively with stemness, in
malignant cells from HNSCC samples [129]. Using
immunohistochemistry for the neuronal marker protein
S100, Schmitd et al. detected PNI in 43% of 142 patients
with OSCC [130]. PNI was more prevalent in advanced
stage, larger tumors, and tumors with LN metastases.
Among PNI+ patients, the distance between nerve and
tumor cells was predictive of disease-free, disease-specific,
and overall survival [130]. Samples from eight patients with
OSCC were subjected to whole transcriptome expression
profiling using the NanoString GeoMx Digital Spatial
Profiler platform. Of 8,162 genes whose expression could be
detected, 95 were up- and 64 down-regulated in nerves close
to tumor (NC; <100 µM distance and 50% of the nerve
circumference surrounded by tumor cells) vs. nerves far
from tumor (NF; >1 mm distance) [130]. Pathway
enrichment analysis of the differentially expressed genes
suggested that NC are exposed to stress exerted by the
tumor and undergo degenerative processes. However,
differential expression of individual genes indicated that NC
may also undergo reprogramming to survival mode and
increase myelination to support nerve regeneration [130].

Concluding Remarks and Future Perspectives

Single-cell sequencing approaches represent a significant
addition to the scientific toolbox, enabling a comprehensive
understanding of tumor complexity, evolution, and
interactions between tumor cells and their microenvironment.
Despite its considerable advantages, scRNAseq faces several
challenges including costs, technical hurdles during isolation
of single cells without damage, data complexity, addressing
errors and biases within data, and the loss of spatial context
when removing a cell from tissue. The latter issue is addressed
by spatial transcriptomics, however, improvements such as
enhancing gene coverage—which also needs refinement in
scRNAseq—and spatial resolution are necessary. In
conclusion, while scRNAseq offers significant advancements
over traditional methods like immunohistochemistry or bulk
transcriptomics approaches by enabling an in-depth analysis
of individual cells, it is still a developing field with notable
challenges. Its potential to open new avenues to deeper
understand tumor biology makes it an essential tool for future
medical and scientific breakthroughs.

Acknowledgement: We thank the editors and reviewers for
their valuable comments.

Funding Statement: The authors received no specific funding
for this study.

Author Contribution: The authors confirm contribution to
this paper as follows: RW and GH, conception and design.
RW, TF, AG, and GH, draft manuscript preparation. GH

and AG, preparation of figures and tables. All authors
critically reviewed and approved the final version of the
manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: No ethics approval was required for this
study.

Conflicts of Interest: TF has received honoraria from or
served as advisor for MSD, Merck, BMS, Böhringer
Ingelheim, Roche, Pfizer, Sanofi, Janssen, Takeda, Eli Lilly,
Invios, and GSK. He has received research grants from MSD
and Merck. The other authors declare that they have no
conflicts of interest to report regarding the present study.

References

1. Cook, M., Dawsey, S., Freedman, N., Inskip, P., Wichner, S. et al.
(2009). Sex disparities in cancer incidence by period and age.
Cancer Epidemiology, Biomarkers & Prevention, 18(4), 1174–
1182. https://doi.org/10.1158/1055-9965.EPI-08-1118

2. Gormley, M., Creaney, G., Schache, A., Ingarfield, K., Conway, D.
(2022). Reviewing the epidemiology of head and neck cancer:
Definitions, trends and risk factors. British Dental Journal,
233(9), 780–786. https://doi.org/10.1038/s41415-022-5166-x

3. Hashibe, M., Brennan, P., Chuang, S. C., Boccia, S., Castellsague,
X. et al. (2009). Interaction between tobacco and alcohol use and
the risk of head and neck cancer: Pooled analysis in the
International Head and Neck Cancer Epidemiology
Consortium. Cancer Epidemiology, Biomarkers & Prevention,
18(2), 541–550. https://doi.org/10.1158/1055-9965.EPI-08-0347

4. Santegoets, S. J., Welters, M. J. P., Schrikkema, D. S., Freriks, M.
R., Kok, H. et al. (2023). The common HLA class I-restricted
tumor-infiltrating T cell response in HPV16-induced cancer.
Cancer Immunology and Immunotherapy, 72(6), 1553–1565.
https://doi.org/10.1007/s00262-022-03350-x

5. Burcher, K., Burcher, J., Inscore, L., Bloomer, C., Furdui, C. et al.
(2022). A review of the role of oral microbiome in the
development, detection, and management of head and neck
squamous cell cancers. Cancers, 14(17), 4116. https://doi.org/
10.3390/cancers14174116

6. Stasiewicz, M., Karpinski, T. (2022). The oral microbiota and its
role in carcinogenesis. Seminars in Cancer Biology, 86(3), 633–
642. https://doi.org/10.1016/j.semcancer.2021.11.002

7. Lechner, M., Liu, J., Masterson, L., Fenton, T. (2022). HPV-
associated oropharyngeal cancer: Epidemiology, molecular biology
and clinical management. Nature Reviews Clinical Oncology,
19(5), 306–327. https://doi.org/10.1038/s41571-022-00603-7

8. Sharkey Ochoa, I., O'Regan, E., Toner, M., Kay, E., Faul, P. et al.
(2022). The role of HPV in determining treatment, survival, and
prognosis of head and neck squamous cell carcinoma. Cancers,
14(17), 4321. https://doi.org/10.3390/cancers14174321

9. Machiels, J., Rene Leemans, C., Golusinski, W., Grau, C., Licitra,
L. et al. (2020). Squamous cell carcinoma of the oral cavity,
larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO
clinical practice guidelines for diagnosis, treatment and follow-
up. Annals of Oncology, 31(11), 1462–1475. https://doi.org/10.
1016/j.annonc.2020.07.011

10. Leemans, C., Tiwari, R., Nauta, J., van der Waal, I., Snow, G.
(1994). Recurrence at the primary site in head and neck
cancer and the significance of neck lymph node metastases as

12 GERWIN HELLER et al.

https://doi.org/10.1158/1055-9965.EPI-08-1118
https://doi.org/10.1038/s41415-022-5166-x
https://doi.org/10.1158/1055-9965.EPI-08-0347
https://doi.org/10.1007/s00262-022-03350-x
https://doi.org/10.3390/cancers14174116
https://doi.org/10.3390/cancers14174116
https://doi.org/10.1016/j.semcancer.2021.11.002
https://doi.org/10.1038/s41571-022-00603-7
https://doi.org/10.3390/cancers14174321
https://doi.org/10.1016/j.annonc.2020.07.011
https://doi.org/10.1016/j.annonc.2020.07.011


a prognostic factor. Cancer, 73(1), 187–190. https://doi.org/10.
1002/1097-0142(19940101)73:1<187::aid-cncr2820730132>3.0.
co;2-j

11. Sturgis, E., Miller, R. (1995). Second primary malignancies in the
head and neck cancer patient. The Annals of Otology, Rhinology
& Laryngology, 104(12), 946–954. https://doi.org/10.1177/
000348949510401206

12. Bonner, J., Harari, P., Giralt, J., Cohen, R., Jones, C. et al. (2010).
Radiotherapy plus cetuximab for locoregionally advanced head
and neck cancer: 5-year survival data from a phase 3
randomised trial, and relation between cetuximab-induced rash
and survival. Lancet Oncology, 11(1), 21–28. https://doi.org/10.
1016/S1470-2045(09)70311-0

13. Gillison,M., Trotti, A., Harris, J., Eisbruch, A., Harari, P. et al. (2019).
Radiotherapy plus cetuximab or cisplatin in human papillomavirus-
positive oropharyngeal cancer (NRG Oncology RTOG 1016): A
randomised, multicentre, non-inferiority trial. Lancet, 393(10166),
40–50. https://doi.org/10.1016/S0140-6736(18)32779-X

14. Gebre-Medhin, M., Brun, E., Engstrom, P., Haugen Cange, H.,
Hammarstedt-Nordenvall, L. et al. (2021). ARTSCAN III: A
randomized phase III study comparing chemoradiotherapy
with cisplatin versus cetuximab in patients with locoregionally
advanced head and neck squamous cell cancer. Journal of
Clinical Oncology, 39(1), 38–47. https://doi.org/10.1200/JCO.20.
02072

15. Lee, N., Ferris, R., Psyrri, A., Haddad, R., Tahara, M. et al. (2021).
Avelumab plus standard-of-care chemoradiotherapy versus
chemoradiotherapy alone in patients with locally advanced
squamous cell carcinoma of the head and neck: A randomised,
double-blind, placebo-controlled, multicentre, phase 3 trial.
Lancet Oncology, 22(4), 450–462. https://doi.org/10.1016/
S1470-2045(20)30737-3

16. Machiels, J., Tao, Y., Burtness, B., Tahara, M., Rischin, D. et al.
(2022). Primary results of the phase III KEYNOTE-412 study:
Pembrolizumab (pembro) with chemoradiation therapy (CRT)
vs placebo plus CRT for locally advanced (LA) head and neck
squamous cell carcinoma (HNSCC). Annals of Oncology,
33(33), S1399.

17. Tao, Y., Biau, J., Sun, X., Sire, C., Martin, L. et al. (2023).
Pembrolizumab versus cetuximab concurrent with
radiotherapy in patients with locally advanced squamous cell
carcinoma of head and neck unfit for cisplatin (GORTEC
2015-01 PembroRad): A multicenter, randomized, phase II
trial. Annals of Oncology, 34(1), 101–110. https://doi.org/10.
1016/j.annonc.2022.10.006

18. Uppaluri, R., Campbell, K., Egloff, A., Zolkind, P., Skidmore, Z.
et al. (2020). Neoadjuvant and adjuvant pembrolizumab in
resectable locally advanced, human papillomavirus-unrelated
head and neck cancer: A multicenter, phase II trial. Clinical
Cancer Research, 26(19), 5140–5152. https://doi.org/10.1158/
1078-0432.CCR-20-1695

19. Wise-Draper, T., Gulati, S., Palackdharry, S., Hinrichs, B.,
Worden, F. et al. (2022). Phase II clinical trial of neoadjuvant
and adjuvant pembrolizumab in resectable local-regionally
advanced head and neck squamous cell carcinoma. Clinical
Cancer Research, 28(7), 1345–1352. https://doi.org/10.1158/
1078-0432.CCR-21-3351

20. Burtness, B., Harrington, K., Greil, R., Soulieres, D., Tahara, M.
et al. (2019). Pembrolizumab alone or with chemotherapy
versus cetuximab with chemotherapy for recurrent or
metastatic squamous cell carcinoma of the head and neck
(KEYNOTE-048): A randomised, open-label, phase 3 study.

Lancet, 394(10212), 1915–1928. https://doi.org/10.1016/
S0140-6736(19)32591-7

21. Harrington, K., Burtness, B., Greil, R., Soulieres, D., Tahara, M.
et al. (2023). Pembrolizumab with or without chemotherapy in
recurrent or metastatic head and neck squamous cell
carcinoma: Updated results of the phase III KEYNOTE-048
study. Journal of Clinical Oncology, 41(4), 790–802. https://doi.
org/10.1200/JCO.21.02508

22. Mroz, E. A., Tward, A. D., Pickering, C. R., Myers, J. N., Ferris, R.
L. et al. (2013). High intratumor genetic heterogeneity is related
to worse outcome in patients with head and neck squamous cell
carcinoma. Cancer, 119(16), 3034–3042. https://doi.org/10.1002/
cncr.28150

23. Marusyk, A., Janiszewska, M., Polyak, K. (2020). Intratumor
heterogeneity: The rosetta stone of therapy resistance. Cancer
Cell, 37(4), 471–484. https://doi.org/10.1016/j.ccell.2020.03.007

24. Warrier, N. M., Kelkar, N., Johnson, C. T., Govindarajan, T.,
Prabhu, V. et al. (2023). Understanding cancer stem cells and
plasticity: Towards better therapeutics. European Journal of
Cell Biology, 102(2), 151321. https://doi.org/10.1016/j.ejcb.2023.
151321

25. Network, C. G. A. (2015). Comprehensive genomic
characterization of head and neck squamous cell carcinomas.
Nature, 517(7536), 576–582. https://doi.org/10.1038/nature14129

26. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K. et al.
(2015). Highly parallel genome-wide expression profiling of
individual cells using nanoliter droplets. Cell, 161(5), 1202–
1214. https://doi.org/10.1016/j.cell.2015.05.002

27. Stahl, P. L., Salmen, F., Vickovic, S., Lundmark, A., Navarro, J. F.
et al. (2016). Visualization and analysis of gene expression in
tissue sections by spatial transcriptomics. Science, 353(6294),
78–82. https://doi.org/10.1126/science.aaf2403

28. User Guide, CG000407 (2022). https://www.10xgenomics.com/
support/spatial-gene-expression-ffpe/documentation/workflows/
ffpe-v-1/steps/library-construction/visium-spatial-gene-expression-
reagent-kits-for-ffpe-user-guide

29. Picelli, S., Bjorklund, A. K., Faridani, O. R., Sagasser, S., Winberg,
G. et al. (2013). Smart-seq2 for sensitive full-length
transcriptome profiling in single cells. Nature Methods, 10(11),
1096–1098. https://doi.org/10.1038/nmeth.2639

30. Hashimshony, T., Wagner, F., Sher, N., Yanai, I. (2012). CEL-
Seq: Single-cell RNA-Seq by multiplexed linear amplification.
Cell Reports, 2(3), 666–673. https://doi.org/10.1016/j.celrep.
2012.08.003

31. Sasagawa, Y., Nikaido, I., Hayashi, T., Danno, H., Uno, K. D.
et al. (2013). Quartz-Seq: A highly reproducible and sensitive
single-cell RNA sequencing method, reveals non-genetic gene-
expression heterogeneity. Genome Biology, 14(4), 3097. https://
doi.org/10.1186/gb-2013-14-4-r31

32. Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F.
et al. (2014). Massively parallel single-cell RNA-seq for marker-
free decomposition of tissues into cell types. Science, 343(6172),
776–779. https://doi.org/10.1126/science.1247651

33. Hagemann-Jensen, M., Ziegenhain, C., Chen, P., Ramskold, D.,
Hendriks, G. J. et al. (2020). Single-cell RNA counting at
allele and isoform resolution using Smart-seq3. Nature
Biotechnology, 38(6), 708–714. https://doi.org/10.1038/
s41587-020-0497-0

34. Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-
Adkins, A. et al. (2017). Comparative analysis of single-Cell
RNA sequencing methods. Molecular Cell, 65(4), 631–643.E4.
https://doi.org/10.1016/j.molcel.2017.01.023

NEW PERSPECTIVES ON BIOLOGY, DISEASE PROGRESSION, AND THERAPY 13

https://doi.org/10.1002/1097-0142(19940101)73:1%3C187::aid-cncr2820730132%3E3.0.co;2-j
https://doi.org/10.1002/1097-0142(19940101)73:1%3C187::aid-cncr2820730132%3E3.0.co;2-j
https://doi.org/10.1002/1097-0142(19940101)73:1%3C187::aid-cncr2820730132%3E3.0.co;2-j
https://doi.org/10.1177/000348949510401206
https://doi.org/10.1177/000348949510401206
https://doi.org/10.1016/S1470-2045(09)70311-0
https://doi.org/10.1016/S1470-2045(09)70311-0
https://doi.org/10.1016/S0140-6736(18)32779-X
https://doi.org/10.1200/JCO.20.02072
https://doi.org/10.1200/JCO.20.02072
https://doi.org/10.1016/S1470-2045(20)30737-3
https://doi.org/10.1016/S1470-2045(20)30737-3
https://doi.org/10.1016/j.annonc.2022.10.006
https://doi.org/10.1016/j.annonc.2022.10.006
https://doi.org/10.1158/1078-0432.CCR-20-1695
https://doi.org/10.1158/1078-0432.CCR-20-1695
https://doi.org/10.1158/1078-0432.CCR-21-3351
https://doi.org/10.1158/1078-0432.CCR-21-3351
https://doi.org/10.1016/S0140-6736(19)32591-7
https://doi.org/10.1016/S0140-6736(19)32591-7
https://doi.org/10.1200/JCO.21.02508
https://doi.org/10.1200/JCO.21.02508
https://doi.org/10.1002/cncr.28150
https://doi.org/10.1002/cncr.28150
https://doi.org/10.1016/j.ccell.2020.03.007
https://doi.org/10.1016/j.ejcb.2023.151321
https://doi.org/10.1016/j.ejcb.2023.151321
https://doi.org/10.1038/nature14129
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1126/science.aaf2403
https://www.10xgenomics.com/support/spatial-gene-expression-ffpe/documentation/workflows/ffpe-v-1/steps/library-construction/visium-spatial-gene-expression-reagent-kits-for-ffpe-user-guide
https://www.10xgenomics.com/support/spatial-gene-expression-ffpe/documentation/workflows/ffpe-v-1/steps/library-construction/visium-spatial-gene-expression-reagent-kits-for-ffpe-user-guide
https://www.10xgenomics.com/support/spatial-gene-expression-ffpe/documentation/workflows/ffpe-v-1/steps/library-construction/visium-spatial-gene-expression-reagent-kits-for-ffpe-user-guide
https://www.10xgenomics.com/support/spatial-gene-expression-ffpe/documentation/workflows/ffpe-v-1/steps/library-construction/visium-spatial-gene-expression-reagent-kits-for-ffpe-user-guide
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1016/j.celrep.2012.08.003
https://doi.org/10.1016/j.celrep.2012.08.003
https://doi.org/10.1186/gb-2013-14-4-r31
https://doi.org/10.1186/gb-2013-14-4-r31
https://doi.org/10.1126/science.1247651
https://doi.org/10.1038/s41587-020-0497-0
https://doi.org/10.1038/s41587-020-0497-0
https://doi.org/10.1016/j.molcel.2017.01.023


35. Marx, V. (2021). Method of the year: Spatially resolved
transcriptomics. Nature Methods, 18(1), 9–14. https://doi.org/
10.1038/s41592-020-01033-y

36. Williams, C. G., Lee, H. J., Asatsuma, T., Vento-Tormo, R.,
Haque, A. (2022). An introduction to spatial transcriptomics
for biomedical research. Genome Medicine, 14(1), 68. https://
doi.org/10.1186/s13073-022-01075-1

37. Hernandez, S., Lazcano, R., Serrano, A., Powell, S., Kostousov, L.
et al. (2022). Challenges and opportunities for immunoprofiling
using a spatial high-plex technology: The NanoString GeoMx
((R)) digital spatial profiler. Frontiers in Oncology, 12, 890410.
https://doi.org/10.3389/fonc.2022.890410

38. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M. 3rd,
Zheng, S. et al. (2021). Integrated analysis of multimodal
single-cell data. Cell, 184(13), 3573–3587.E29. https://doi.org/
10.1016/j.cell.2021.04.048

39. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., Regev, A.
(2015). Spatial reconstruction of single-cell gene expression
data. Nature Biotechnology, 33(5), 495–502. https://doi.org/10.
1038/nbt.3192

40. Wolf, F. A., Angerer, P., Theis, F. J. (2018). SCANPY: Large-scale
single-cell gene expression data analysis. Genome Biology, 19(1),
15. https://doi.org/10.1186/s13059-017-1382-0

41. Kannan, J., Mathews, L., Wu, Z., Young, N. S., Gao, S. (2022).
CAISC: A software to integrate copy number variations and
single nucleotide mutations for genetic heterogeneity profiling
and subclone detection by single-cell RNA sequencing. BMC
Bioinformatics, 23, 98. https://doi.org/10.1186/s12859-022-
04625-x

42. Serin Harmanci, A., Harmanci, A. O., Zhou, X. (2020). CaSpER
identifies and visualizes CNV events by integrative analysis of
single-cell or bulk RNA-sequencing data. Nature Communications,
11(1), 89. https://doi.org/10.1038/s41467-019-13779-x

43. Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S.
M. et al. (2014). Single-cell RNA-seq highlights intratumoral
heterogeneity in primary glioblastoma. Science, 344(6190),
1396–1401. https://doi.org/10.1126/science.1254257

44. de Kanter, J. K., Lijnzaad, P., Candelli, T., Margaritis, T.,
Holstege, F. C. P. (2019). CHETAH: A selective, hierarchical
cell type identification method for single-cell RNA sequencing.
Nucleic Acids Research, 47(16), e95. https://doi.org/10.1093/nar/
gkz543

45. Alquicira-Hernandez, J., Sathe, A., Ji, H. P., Nguyen, Q., Powell,
J. E. (2019). scPred: Accurate supervised method for cell-type
classification from single-cell RNA-seq data. Genome Biology,
20(1), 264. https://doi.org/10.1186/s13059-019-1862-5

46. Boufea, K., Seth, S., Batada, N. N. (2020). scID uses discriminant
analysis to identify transcriptionally equivalent cell types across
single-cell RNA-seq data with batch effect. iScience, 23(3),
100914. https://doi.org/10.1016/j.isci.2020.100914

47. Zhang, Z., Luo, D., Zhong, X., Choi, J. H., Ma, Y. et al. (2019).
SCINA: A semi-supervised subtyping algorithm of single cells
and bulk samples. Genes, 10(7), 531. https://doi.org/10.3390/
genes10070531

48. Jiao, L., Wang, G., Dai, H., Li, X., Wang, S. et al. (2023).
scTransSort: Transformers for intelligent annotation of cell
types by gene embeddings. Biomolecules, 13(4), 611. https://doi.
org/10.3390/biom13040611

49. Tan, Y., Cahan, P. (2019). SingleCellNet: A computational tool to
classify single cell RNA-seq data across platforms and across
species. Cell Systems, 9(2), 207–213.E2. https://doi.org/10.1016/
j.cels.2019.06.004

50. Shao, X., Yang, H., Zhuang, X., Liao, J., Yang, P. et al. (2021).
scDeepSort: A pre-trained cell-type annotation method for
single-cell transcriptomics using deep learning with a weighted
graph neural network. Nucleic Acids Research, 49(21), e122.
https://doi.org/10.1093/nar/gkab775

51. Dominguez Conde, C., Xu, C., Jarvis, L. B., Rainbow, D. B., Wells,
S. B. et al. (2022). Cross-tissue immune cell analysis reveals
tissue-specific features in humans. Science, 376(6594), eabl5197.
https://doi.org/10.1126/science.abl5197

52. Hou, R., Denisenko, E., Forrest, A. R. R. (2019). scMatch: A
single-cell gene expression profile annotation tool using
reference datasets. Bioinformatics, 35(22), 4688–4695. https://
doi.org/10.1093/bioinformatics/btz292

53. Xu, Y., Baumgart, S. J., Stegmann, C. M., Hayat, S. (2022).
MACA: Marker-based automatic cell-type annotation for
single-cell expression data. Bioinformatics, 38(6), 1756–1760.
https://doi.org/10.1093/bioinformatics/btab840

54. Bej, S., Galow, A. M., David, R., Wolfien, M., Wolkenhauer, O.
(2021). Automated annotation of rare-cell types from single-
cell RNA-sequencing data through synthetic oversampling.
BMC Bioinformatics, 22(1), 557. https://doi.org/10.1186/
s12859-021-04469-x

55. Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O.
et al. (2015). Single-cell messenger RNA sequencing reveals
rare intestinal cell types. Nature, 525(7568), 251–255. https://
doi.org/10.1038/nature14966

56. Jindal, A., Gupta, P., Jayadeva, Sengupta, D. (2018). Discovery of
rare cells from voluminous single cell expression data. Nature
Communications, 9(1), 4719. https://doi.org/10.1038/
s41467-018-07234-6

57. Jiang, L., Chen, H., Pinello, L., Yuan, G. C. (2016). GiniClust:
Detecting rare cell types from single-cell gene expression data
with Gini index. Genome Biology, 17(1), 144. https://doi.org/10.
1186/s13059-016-1010-4

58. Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V. et al. (2019).
Reference-based analysis of lung single-cell sequencing reveals
a transitional profibrotic macrophage. Nature Immunology,
20(2), 163–172. https://doi.org/10.1038/s41590-018-0276-y

59. Zhang, A.W.,O’Flanagan, C., Chavez, E. A., Lim, J. L. P., Ceglia, N.
et al. (2019). Probabilistic cell-type assignment of single-cell RNA-
seq for tumor microenvironment profiling. Nature Methods,
16(10), 1007–1015. https://doi.org/10.1038/s41592-019-0529-1

60. Pliner, H. A., Shendure, J., Trapnell, C. (2019). Supervised
classification enables rapid annotation of cell atlases.
Nature Methods, 16(10), 983–986. https://doi.org/10.1038/
s41592-019-0535-3

61. Wagner,D. E., Klein,A.M. (2020). Lineage tracingmeets single-cell
omics: Opportunities and challenges. Nature Reviews Genetics,
21(7), 410–427. https://doi.org/10.1038/s41576-020-0223-2

62. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S. et al.
(2014). The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nature
Biotechnology, 32(4), 381–386. https://doi.org/10.1038/nbt.2859

63. Ji, Z., Ji, H. (2016). TSCAN: Pseudo-time reconstruction and
evaluation in single-cell RNA-seq analysis. Nucleic Acids
Research, 44(13), e117. https://doi.org/10.1093/nar/gkw430

64. Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J. et al. (2018).
Slingshot: Cell lineage and pseudotime inference for single-cell
transcriptomics. BMC Genomics, 19(1), 477. https://doi.org/10.
1186/s12864-018-4772-0

65. McCarthy, D. J., Campbell, K. R., Lun, A. T., Wills, Q. F. (2017).
Scater: Pre-processing, quality control, normalization and

14 GERWIN HELLER et al.

https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1186/s13073-022-01075-1
https://doi.org/10.1186/s13073-022-01075-1
https://doi.org/10.3389/fonc.2022.890410
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s12859-022-04625-x
https://doi.org/10.1186/s12859-022-04625-x
https://doi.org/10.1038/s41467-019-13779-x
https://doi.org/10.1126/science.1254257
https://doi.org/10.1093/nar/gkz543
https://doi.org/10.1093/nar/gkz543
https://doi.org/10.1186/s13059-019-1862-5
https://doi.org/10.1016/j.isci.2020.100914
https://doi.org/10.3390/genes10070531
https://doi.org/10.3390/genes10070531
https://doi.org/10.3390/biom13040611
https://doi.org/10.3390/biom13040611
https://doi.org/10.1016/j.cels.2019.06.004
https://doi.org/10.1016/j.cels.2019.06.004
https://doi.org/10.1093/nar/gkab775
https://doi.org/10.1126/science.abl5197
https://doi.org/10.1093/bioinformatics/btz292
https://doi.org/10.1093/bioinformatics/btz292
https://doi.org/10.1093/bioinformatics/btab840
https://doi.org/10.1186/s12859-021-04469-x
https://doi.org/10.1186/s12859-021-04469-x
https://doi.org/10.1038/nature14966
https://doi.org/10.1038/nature14966
https://doi.org/10.1038/s41467-018-07234-6
https://doi.org/10.1038/s41467-018-07234-6
https://doi.org/10.1186/s13059-016-1010-4
https://doi.org/10.1186/s13059-016-1010-4
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41592-019-0529-1
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1038/s41592-019-0535-3
https://doi.org/10.1038/s41576-020-0223-2
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1093/nar/gkw430
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1186/s12864-018-4772-0


visualization of single-cell RNA-seq data in R. Bioinformatics, 33
(8), 1179–1186. https://doi.org/10.1093/bioinformatics/btw777

66. Matsumoto, H., Kiryu, H. (2016). SCOUP: A probabilistic model
based on the Ornstein-Uhlenbeck process to analyze single-cell
expression data during differentiation. BMC Bioinformatics,
17(1), 232. https://doi.org/10.1186/s12859-016-1109-3

67. Welch, J. D., Hartemink, A. J., Prins, J. F. (2016). SLICER:
Inferring branched, nonlinear cellular trajectories from single
cell RNA-seq data. Genome Biology, 17(1), 106. https://doi.org/
10.1186/s13059-016-0975-3

68. Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D.,
Simonds, E. F. et al. (2014). Single-cell trajectory detection
uncovers progression and regulatory coordination in human B
cell development. Cell, 157(3), 714–725. https://doi.org/10.
1016/j.cell.2014.04.005

69. Setty, M., Tadmor, M. D., Reich-Zeliger, S., Angel, O., Salame, T.
M. et al. (2016). Wishbone identifies bifurcating developmental
trajectories from single-cell data. Nature Biotechnology, 34(6),
637–645. https://doi.org/10.1038/nbt.3569

70. La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H.
et al. (2018). RNA velocity of single cells.Nature, 560(7719), 494–
498. https://doi.org/10.1038/s41586-018-0414-6

71. Bergen, V., Lange, M., Peidli, S., Wolf, F. A., Theis, F. J. (2020).
Generalizing RNA velocity to transient cell states through
dynamical modeling. Nature Biotechnology, 38(12), 1408–1414.
https://doi.org/10.1038/s41587-020-0591-3

72. Almet, A. A., Cang, Z., Jin, S., Nie, Q. (2021). The landscape of
cell-cell communication through single-cell transcriptomics.
Current Opinion in Systems Biology, 26, 12–23. https://doi.org/
10.1016/j.coisb.2021.03.007

73. Noel, F., Massenet-Regad, L., Carmi-Levy, I., Cappuccio, A.,
Grandclaudon, M. et al. (2021). Dissection of intercellular
communication using the transcriptome-based framework
ICELLNET. Nature Communications, 12(1), 1089. https://doi.
org/10.1038/s41467-021-21244-x

74. Vahid, M. R., Kurlovs, A. H., Andreani, T., Auge, F., Olfati-Saber,
R. et al. (2023). DiSiR: Fast and robust method to identify ligand-
receptor interactions at subunit level from single-cell RNA-
sequencing data. NAR Genomics and Bioinformatics, 5(1),
lqad030. https://doi.org/10.1093/nargab/lqad030

75. Cabello-Aguilar, S., Alame, M., Kon-Sun-Tack, F., Fau, C.,
Lacroix, M. et al. (2020). SingleCellSignalR: Inference of
intercellular networks from single-cell transcriptomics. Nucleic
Acids Research, 48(10), e55. https://doi.org/10.1093/nar/gkaa183

76. Efremova, M., Vento-Tormo, M., Teichmann, S. A., Vento-
Tormo, R. (2020). CellPhoneDB: Inferring cell-cell
communication from combined expression of multi-subunit
ligand-receptor complexes. Nature Protocols, 15(4), 1484–1506.
https://doi.org/10.1038/s41596-020-0292-x

77. Browaeys, R., Saelens, W., Saeys, Y. (2020). NicheNet: Modeling
intercellular communication by linking ligands to target genes.
Nature Methods, 17(2), 159–162. https://doi.org/10.1038/
s41592-019-0667-5

78. Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R.
et al. (2021). Inference and analysis of cell-cell communication
using CellChat. Nature Communications, 12(1), 1088. https://
doi.org/10.1038/s41467-021-21246-9

79. Zhang, Y., Liu, T., Hu, X., Wang, M., Wang, J. et al. (2021).
CellCall: Integrating paired ligand-receptor and transcription
factor activities for cell-cell communication. Nucleic Acids
Research, 49(15), 8520–8534. https://doi.org/10.1093/nar/
gkab638

80. Hou, R., Denisenko, E., Ong, H. T., Ramilowski, J. A., Forrest, A.
R. R. (2020). Predicting cell-to-cell communication networks
using NATMI. Nature Communications, 11(1), 5011. https://
doi.org/10.1038/s41467-020-18873-z

81. Cherry, C., Maestas, D. R., Han, J., Andorko, J. I., Cahan, P. et al.
(2021). Computational reconstruction of the signalling networks
surrounding implanted biomaterials from single-cell
transcriptomics. Nature Biomedical Engineering, 5(10), 1228–
1238. https://doi.org/10.1038/s41551-021-00770-5

82. Puram, S. V., Tirosh, I., Parikh, A. S., Patel, A. P., Yizhak, K. et al.
(2017). Single-cell transcriptomic analysis of primary and
metastatic tumor ecosystems in head and neck cancer. Cell,
171(7), 1611–1624.E24. https://doi.org/10.1016/j.cell.2017.10.044

83. Horny, K., Sproll, C., Peiffer, L., Furtmann, F., Gerhardt, P. et al.
(2023). Mesenchymal-epithelial transition in lymph node
metastases of oral squamous cell carcinoma is accompanied by
ZEB1 expression. Journal of Translational Medicine, 21(1), 267.
https://doi.org/10.1186/s12967-023-04102-w

84. Song, L., Zhang, S., Yu, S., Ma, F., Wang, B. et al. (2020). Cellular
heterogeneity landscape in laryngeal squamous cell carcinoma.
International Journal of Cancer, 147(10), 2879–2890. https://
doi.org/10.1002/ijc.33192

85. Lin, C., Li, Y., Chu, Y., Lu, Y., Wei, Z. et al. (2023). Single-cell
discovery of the scene and potential immunotherapeutic target
in hypopharyngeal tumor environment. Cancer Gene Therapy,
30(3), 462–471. https://doi.org/10.1038/s41417-022-00567-x

86. Kurten, C. H. L., Kulkarni, A., Cillo, A. R., Santos, P. M., Roble,
A. K. et al. (2021). Investigating immune and non-immune cell
interactions in head and neck tumors by single-cell RNA
sequencing. Nature Communications, 12(1), 7338. https://doi.
org/10.1038/s41467-021-27619-4

87. Siqueira, J. M., Heguedusch, D., Rodini, C. O., Nunes, F. D.,
Rodrigues, M. (2023). Mechanisms involved in cancer stem cell
resistance in head and neck squamous cell carcinoma. Cancer
Drug Resistance, 6(1), 116–137. https://doi.org/10.20517/cdr.
2022.107

88. Johansson, E., Ueno, H. (2021). Characterization of normal and
cancer stem-like cell populations in murine lingual epithelial
organoids using single-cell RNA sequencing. Scientific Reports,
11(1), 22329. https://doi.org/10.1038/s41598-021-01783-5

89. Xiao, Z., Dai, Z., Locasale, J. (2019). Metabolic landscape of the
tumor microenvironment at single cell resolution. Nature
Communications, 10(1), 3763. https://doi.org/10.1038/
s41467-019-11738-0

90. Gavish, A., Tyler, M., Greenwald, A., Hoefflin, R., Simkin, D.
et al. (2023). Hallmarks of transcriptional intratumour
heterogeneity across a thousand tumours. Nature, 618(7965),
598–606. https://doi.org/10.1038/s41586-023-06130-4

91. Waldman, A., Fritz, J., Lenardo, M. (2020). A guide to cancer
immunotherapy: From T cell basic science to clinical practice.
Nature Reviews Immunology, 20(11), 651–668. https://doi.org/
10.1038/s41577-020-0306-5

92. Chen, J., Yang, J., Li, H., Yang, Z., Zhang, X. et al. (2021). Single-
cell transcriptomics reveal the intratumoral landscape of
infiltrated T-cell subpopulations in oral squamous cell
carcinoma. Molecular Oncology, 15(4), 866–886. https://doi.org/
10.1002/1878-0261.12910

93. Cillo, A., Kurten, C., Tabib, T., Qi, Z., Onkar, S. et al. (2020).
Immune landscape of viral- and carcinogen-driven head and
neck cancer. Immunity, 52(1), 183–199.E9. https://doi.org/10.
1016/j.immuni.2019.11.014

NEW PERSPECTIVES ON BIOLOGY, DISEASE PROGRESSION, AND THERAPY 15

https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1186/s12859-016-1109-3
https://doi.org/10.1186/s13059-016-0975-3
https://doi.org/10.1186/s13059-016-0975-3
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1038/nbt.3569
https://doi.org/10.1038/s41586-018-0414-6
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1016/j.coisb.2021.03.007
https://doi.org/10.1016/j.coisb.2021.03.007
https://doi.org/10.1038/s41467-021-21244-x
https://doi.org/10.1038/s41467-021-21244-x
https://doi.org/10.1093/nargab/lqad030
https://doi.org/10.1093/nar/gkaa183
https://doi.org/10.1038/s41596-020-0292-x
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/s41592-019-0667-5
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1093/nar/gkab638
https://doi.org/10.1093/nar/gkab638
https://doi.org/10.1038/s41467-020-18873-z
https://doi.org/10.1038/s41467-020-18873-z
https://doi.org/10.1038/s41551-021-00770-5
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1186/s12967-023-04102-w
https://doi.org/10.1002/ijc.33192
https://doi.org/10.1002/ijc.33192
https://doi.org/10.1038/s41417-022-00567-x
https://doi.org/10.1038/s41467-021-27619-4
https://doi.org/10.1038/s41467-021-27619-4
https://doi.org/10.20517/cdr.2022.107
https://doi.org/10.20517/cdr.2022.107
https://doi.org/10.1038/s41598-021-01783-5
https://doi.org/10.1038/s41467-019-11738-0
https://doi.org/10.1038/s41467-019-11738-0
https://doi.org/10.1038/s41586-023-06130-4
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.1038/s41577-020-0306-5
https://doi.org/10.1002/1878-0261.12910
https://doi.org/10.1002/1878-0261.12910
https://doi.org/10.1016/j.immuni.2019.11.014
https://doi.org/10.1016/j.immuni.2019.11.014


94. Cheng, D., Qiu, K., Rao, Y., Mao, M., Li, L. et al. (2023).
Proliferative exhausted CD8+ T cells exacerbate long-lasting
anti-tumor effects in human papillomavirus-positive head and
neck squamous cell carcinoma. eLife, 12, e82705. https://doi.
org/10.7554/eLife.82705

95. Chen, Y., Li, Z., Zhou, G., Sun, Y. (2021). An immune-related
gene prognostic index for head and neck squamous cell
carcinoma. Clinical Cancer Research, 27(1), 330–341. https://
doi.org/10.1158/1078-0432.CCR-20-2166

96. Woolaver, R. A., Wang, X., Krinsky, A. L., Waschke, B. C., Chen,
S. M. Y. et al. (2021). Differences in TCR repertoire and T cell
activation underlie the divergent outcomes of antitumor
immune responses in tumor-eradicating versus tumor-
progressing hosts. Journal for Immunotherapy of Cancer, 9(1),
e001615. https://doi.org/10.1136/jitc-2020-001615

97. Ruffin, A. T., Cillo, A. R., Tabib, T., Liu, A., Onkar, S. et al.
(2021). B cell signatures and tertiary lymphoid structures
contribute to outcome in head and neck squamous cell
carcinoma. Nature Communications, 12(1), 3349. https://doi.
org/10.1038/s41467-021-23355-x

98. Moreno-Nieves, U., Tay, J., Saumyaa, S., Horowitz, N., Shin, J.
et al. (2021). Landscape of innate lymphoid cells in human
head and neck cancer reveals divergent NK cell states in the
tumor microenvironment. Proceedings of the National
Academy of Sciences, 118(28), e2101169118. https://doi.org/10.
1073/pnas.2101169118

99. Puram, S. V., Mints, M., Pal, A., Qi, Z., Reeb, A. et al. (2023).
Cellular states are coupled to genomic and viral heterogeneity
in HPV-related oropharyngeal carcinoma. Nature Genetics,
55(4), 640–650. https://doi.org/10.1038/s41588-023-01357-3

100. Choi, J. H., Lee, B. S., Jang, J. Y., Lee, Y. S., Kim, H. J. et al.
(2023). Single-cell transcriptome profiling of the stepwise
progression of head and neck cancer. Nature
Communications, 14(1), 1055. https://doi.org/10.1038/
s41467-023-36691-x

101. Li, S., Wang, Y., Sun, R., Franceschi, D., Pan, H. et al. (2022).
Single-cell transcriptome analysis reveals different immune
signatures in HPV- and HPV+ driven human head and neck
squamous cell carcinoma. Journal of Immunological Research,
2022, 2079389. https://doi.org/10.1155/2022/2079389

102. Jiang, Y., Zhang, S., Tang, L., Li, R., Zhai, J. et al. (2022). Single-
cell RNA sequencing reveals TCR+ macrophages in HPV-
related head and neck squamous cell carcinoma. Frontiers in
Immunology, 13, 1030222. https://doi.org/10.3389/fimmu.
2022.1030222

103. Zhang, S., Wang, B., Ma, F., Tong, F., Yan, B. et al. (2021).
Characteristics of B lymphocyte infiltration in HPV+ head
and neck squamous cell carcinoma. Cancer Science, 112(4),
1402–1416. https://doi.org/10.1111/cas.14834

104. Eberhardt, C. S., Kissick, H. T., Patel, M. R., Cardenas, M. A.,
Prokhnevska, N. et al. (2021). Functional HPV-specific PD-1+

stem-like CD8 T cells in head and neck cancer. Nature,
597(7875), 279–284. https://doi.org/10.1038/s41586-021-
03862-z

105. Wei, Y., Xu, T., Li, C., Zhou, X., Qian, W. et al. (2023). CD161
characterizes an inflamed subset of cytotoxic T lymphocytes
associated with prolonged survival in human papillomavirus-
driven oropharyngeal cancer. Cancer Immunology Research,
11(3), 306–319. https://doi.org/10.1158/2326-6066.
CIR-22-0454

106. Bedard, M. C., Chihanga, T., Carlile, A., Jackson, R., Brusadelli,
M. G. et al. (2023). Single cell transcriptomic analysis of
HPV16-infected epithelium identifies a keratinocyte

subpopulation implicated in cancer. Nature Communications,
14(1), 1975. https://doi.org/10.1038/s41467-023-37377-0

107. Galeano Nino, J., Wu, H., LaCourse, K., Kempchinsky, A.,
Baryiames, A. et al. (2022). Effect of the intratumoral
microbiota on spatial and cellular heterogeneity in cancer.
Nature, 611(7937), 810–817. https://doi.org/10.1038/
s41586-022-05435-0

108. Sun, L., Kang, X., Wang, C., Wang, R., Yang, G. et al. (2023).
Single-cell and spatial dissection of precancerous lesions
underlying the initiation process of oral squamous cell
carcinoma. Cell Discovery, 9(1), 28. https://doi.org/10.1038/
s41421-023-00532-4

109. Hu, S., Lu, H., Xie, W., Wang, D., Shan, Z. et al. (2022). TDO2+

myofibroblasts mediate immune suppression in malignant
transformation of squamous cell carcinoma. Journal of
Clinical Investigation, 132(19), e157649. https://doi.org/10.
1172/JCI157649

110. Quah, H. S., Cao, E. Y., Suteja, L., Li, C. H., Leong, H. S. et al.
(2023). Single cell analysis in head and neck cancer reveals
potential immune evasion mechanisms during early
metastasis. Nature Communications, 14(1), 1680. https://doi.
org/10.1038/s41467-023-37379-y

111. Marchetti, C., de Felice, F., Romito, A., Iacobelli, V., Sassu, C.
M. et al. (2021). Chemotherapy resistance in epithelial
ovarian cancer: Mechanisms and emerging treatments.
Seminars in Cancer Biology, 77, 144–166. https://doi.org/10.
1016/j.semcancer.2021.08.011

112. Osman, A. A., Arslan, E., Bartels, M., Michikawa, C.,
Lindemann, A. et al. (2023). Dysregulation and epigenetic
reprogramming of NRF2 signaling axis promote acquisition
of cisplatin resistance and metastasis in head and neck
squamous cell carcinoma. Clinical Cancer Research, 29(7),
1344–1359. https://doi.org/10.1158/1078-0432.CCR-22-2747

113. Zhou, L., Zeng, Z., Egloff, A. M., Zhang, F., Guo, F. et al. (2022).
Checkpoint blockade-induced CD8+ T cell differentiation in
head and neck cancer responders. Journal for Immunotherapy
of Cancer, 10(1), e004034. https://doi.org/10.1136/jitc-2021-
004034

114. Obradovic, A., Graves, D., Korrer, M., Wang, Y., Roy, S. et al.
(2022). Immunostimulatory cancer-associated fibroblast
subpopulations can predict immunotherapy response in head
and neck cancer. Clinical Cancer Research, 28(10), 2094–2109.
https://doi.org/10.1158/1078-0432.CCR-21-3570

115. Lin, M., Sade-Feldman, M., Wirth, L., Lawrence, M. S., Faden,
D. L. (2022). Single-cell transcriptomic profiling for inferring
tumor origin and mechanisms of therapeutic resistance. NPJ
Precision Oncology, 6(1), 71. https://doi.org/10.1038/
s41698-022-00314-3

116. Luoma, A. M., Suo, S., Wang, Y., Gunasti, L., Porter, C. B. M.
et al. (2022). Tissue-resident memory and circulating T cells
are early responders to pre-surgical cancer immunotherapy.
Cell, 185(16), 2918–2935.E29. https://doi.org/10.1016/j.cell.
2022.06.018

117. Sievers, C., Craveiro, M., Friedman, J., Robbins, Y., Yang, X. et al.
(2023). Phenotypic plasticity and reduced tissue retention of
exhausted tumor-infiltrating T cells following neoadjuvant
immunotherapy in head and neck cancer. Cancer Cell, 41(5),
887–902.E5. https://doi.org/10.1016/j.ccell.2023.03.014

118. Zhang, Y., Liu, G., Tao, M., Ning, H., Guo, W. et al. (2023).
Integrated transcriptome study of the tumor
microenvironment for treatment response prediction in male
predominant hypopharyngeal carcinoma. Nature

16 GERWIN HELLER et al.

https://doi.org/10.7554/eLife.82705
https://doi.org/10.7554/eLife.82705
https://doi.org/10.1158/1078-0432.CCR-20-2166
https://doi.org/10.1158/1078-0432.CCR-20-2166
https://doi.org/10.1136/jitc-2020-001615
https://doi.org/10.1038/s41467-021-23355-x
https://doi.org/10.1038/s41467-021-23355-x
https://doi.org/10.1073/pnas.2101169118
https://doi.org/10.1073/pnas.2101169118
https://doi.org/10.1038/s41588-023-01357-3
https://doi.org/10.1038/s41467-023-36691-x
https://doi.org/10.1038/s41467-023-36691-x
https://doi.org/10.1155/2022/2079389
https://doi.org/10.3389/fimmu.2022.1030222
https://doi.org/10.3389/fimmu.2022.1030222
https://doi.org/10.1111/cas.14834
https://doi.org/10.1038/s41586-021-03862-z
https://doi.org/10.1038/s41586-021-03862-z
https://doi.org/10.1158/2326-6066.CIR-22-0454
https://doi.org/10.1158/2326-6066.CIR-22-0454
https://doi.org/10.1038/s41467-023-37377-0
https://doi.org/10.1038/s41586-022-05435-0
https://doi.org/10.1038/s41586-022-05435-0
https://doi.org/10.1038/s41421-023-00532-4
https://doi.org/10.1038/s41421-023-00532-4
https://doi.org/10.1172/JCI157649
https://doi.org/10.1172/JCI157649
https://doi.org/10.1038/s41467-023-37379-y
https://doi.org/10.1038/s41467-023-37379-y
https://doi.org/10.1016/j.semcancer.2021.08.011
https://doi.org/10.1016/j.semcancer.2021.08.011
https://doi.org/10.1158/1078-0432.CCR-22-2747
https://doi.org/10.1136/jitc-2021-004034
https://doi.org/10.1136/jitc-2021-004034
https://doi.org/10.1158/1078-0432.CCR-21-3570
https://doi.org/10.1038/s41698-022-00314-3
https://doi.org/10.1038/s41698-022-00314-3
https://doi.org/10.1016/j.cell.2022.06.018
https://doi.org/10.1016/j.cell.2022.06.018
https://doi.org/10.1016/j.ccell.2023.03.014


Communications, 14(1), 1466. https://doi.org/10.1038/
s41467-023-37159-8

119. Chung, C. H., Lin, C. Y., Chen, C. Y., Hsueh, C. W., Chang, Y.
W. et al. (2023). Ferroptosis signature shapes the immune
profiles to enhance the response to immune checkpoint
inhibitors in head and neck cancer. Advanced Science, 10(15),
e2204514. https://doi.org/10.1002/advs.202204514

120. Weber, P., Kunstner, A., Hess, J., Unger, K., Marschner, S. et al.
(2022). Therapy-related transcriptional subtypes in matched
primary and recurrent head and neck cancer. Clinical Cancer
Research, 28(5), 1038–1052. https://doi.org/10.1158/
1078-0432.CCR-21-2244

121. Li, G., Jiang, Y., Li, G., Qiao, Q. (2021). Comprehensive analysis
of radiosensitivity in head and neck squamous cell carcinoma.
Radiotherapy and Oncology, 159, 126–135. https://doi.org/10.
1016/j.radonc.2021.03.017

122. Goel, S., Bergholz, J. S., Zhao, J. J. (2022). Targeting CDK4 and
CDK6 in cancer. Nature Reviews Cancer, 22(6), 356–372.
https://doi.org/10.1038/s41568-022-00456-3

123. van Caloen, G., Machiels, J. P. (2019). Potential role of cyclin-
dependent kinase 4/6 inhibitors in the treatment of squamous
cell carcinoma of the head and neck. Current Opinion in
Oncology, 31(3), 122–130. https://doi.org/10.1097/CCO.
0000000000000513

124. Chen, S. M. Y., Popolizio, V., Woolaver, R. A., Ge, H., Krinsky,
A. L. et al. (2022). Differential responses to immune checkpoint
inhibitor dictated by pre-existing differential immune profiles

in squamous cell carcinomas caused by same initial oncogenic
drivers. Journal of Experimental & Clinical Cancer Research,
41(1), 123. https://doi.org/10.1186/s13046-022-02337-x

125. Chen, T., Cao, C., Zhang, J., Streets, A., Li, T. et al. (2022).
Histologically resolved multiomics enables precise molecular
profiling of human intratumor heterogeneity. PLoS Biology,
20(7), e3001699. https://doi.org/10.1371/journal.pbio.3001699

126. Goltsev, Y., Samusik, N., Kennedy-Darling, J., Bhate, S., Hale,
M. et al. (2018). Deep profiling of mouse splenic architecture
with CODEX multiplexed imaging. Cell, 174(4), 968–981.E15.
https://doi.org/10.1016/j.cell.2018.07.010

127. Zhang, W., Li, I., Reticker-Flynn, N. E., Good, Z., Chang, S. et al.
(2022). Identification of cell types in multiplexed in situ images
by combining protein expression and spatial information using
CELESTA. Nature Methods, 19(6), 759–769. https://doi.org/10.
1038/s41592-022-01498-z

128. Zahalka, A., Frenette, P. (2020). Nerves in cancer. Nature
Reviews Cancer, 20(3), 143–157. https://doi.org/10.1038/
s41568-019-0237-2

129. Zhang, Z., Liu, R., Jin, R., Fan, Y., Li, T. et al. (2019). Integrating
clinical and genetic analysis of perineural invasion in head and
neck squamous cell carcinoma. Frontiers in Oncology, 9, 434.
https://doi.org/10.3389/fonc.2019.00434

130. Schmitd, L., Perez-Pacheco, C., Bellile, E., Wu, W., Casper, K.
et al. (2022). Spatial and transcriptomic analysis of perineural
invasion in oral cancer. Clinical Cancer Research, 28(16),
3557–3572. https://doi.org/10.1158/1078-0432.CCR-21-4543

NEW PERSPECTIVES ON BIOLOGY, DISEASE PROGRESSION, AND THERAPY 17

https://doi.org/10.1038/s41467-023-37159-8
https://doi.org/10.1038/s41467-023-37159-8
https://doi.org/10.1002/advs.202204514
https://doi.org/10.1158/1078-0432.CCR-21-2244
https://doi.org/10.1158/1078-0432.CCR-21-2244
https://doi.org/10.1016/j.radonc.2021.03.017
https://doi.org/10.1016/j.radonc.2021.03.017
https://doi.org/10.1038/s41568-022-00456-3
https://doi.org/10.1097/CCO.0000000000000513
https://doi.org/10.1097/CCO.0000000000000513
https://doi.org/10.1186/s13046-022-02337-x
https://doi.org/10.1371/journal.pbio.3001699
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1038/s41592-022-01498-z
https://doi.org/10.1038/s41592-022-01498-z
https://doi.org/10.1038/s41568-019-0237-2
https://doi.org/10.1038/s41568-019-0237-2
https://doi.org/10.3389/fonc.2019.00434
https://doi.org/10.1158/1078-0432.CCR-21-4543

	New perspectives on biology, disease progression, and therapy response of head and neck cancer gained from single cell RNA sequencing and spatial transcriptomics ...
	Introduction
	scRNAseq and Spatial Transcriptomics: A Methods Overview
	Bioinformatics Tools for the Analysis of scRNAseq Data
	Cell Type Composition and Cell-Cell Communication in HNSCC
	The Tumor Immune Microenvironment
	Differences between HPV&#x2212; and HPV&#x002B; HNSCC Deciphered by scRNAseq
	Advanced Omics Methods to Investigate the Role of the Oral Microbiota in OSCC
	Tumor Development, Progression, and Metastasis
	Treatment Resistance
	Insights from Large-Scale Gene Expression Profiling with Spatial Resolution
	Concluding Remarks and Future Perspectives
	flink12
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


