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Abstract: Background: Pancreatic cancer is associated with high mortality and is one of the most aggressive of

malignancies, but studies have not fully evaluated its molecular subtypes, prognosis and response to immunotherapy

of different subtypes. The purpose of this study was to explore the molecular subtypes and the key genes associated

with the prognosis of pancreas cancer patients and study the clinical phenotype, prognosis and response to

immunotherapy using single-cell seq data and bulk RNA seq data, and data retrieved from GEO and TCGA

databases. Methods: Single-cell seq data and bioinformatics methods were used in this study. Pancreatic cancer data

were retrieved from GEO and TCGA databases, the molecular subtypes of pancreatic cancer were determined using

the six cGAS-STING related pathways, and the clinical phenotype, mutation, immunological characteristics and

pathways related to pancreatic cancer were evaluated. Results: Pancreatic cancer was classified into 3 molecular

subtypes, and survival analysis revealed that patients in Cluster3 (C3) had the worst prognosis, whereas Cluster1 (C1)

had the best prognosis. The clinical phenotype and gene mutation were statistically different among the three

molecular subtypes. Analysis of immunotherapy response revealed that most immune checkpoint genes were

differentially expressed in the three subtypes. A lower risk of immune escape was observed in Cluster1 (C1),

indicating higher sensitivity to immunotherapeutic drugs and subjects in this Cluster are more likely to benefit from

immunotherapy. The pathways related to pancreatic cancer were differentially enriched among the three subtypes.

Five genes, namely SFRP1, GIPR, EMP1, COL17A and CXCL11 were selected to construct a prognostic signature.

Conclusions: Single-cell seq data were to classify pancreatic cancer into three molecular subtypes based on differences

in clinical phenotype, mutation, immune characteristics and differentially enriched pathways. Five prognosis-related

genes were identified for prediction of survival of pancreatic cancer patients and to evaluate the efficacy of

immunotherapy in various subtypes.

Introduction

Pancreatic cancer is associated with high mortality, ranking
third in cancer-related deaths globally. The 5-year survival
rate of pancreatic cancer is 3%. The incidence of pancreatic

cancer is 1.6%, but the incidence increases due to smoking,
obesity and other related factors [1]. Exocrine pancreatic
ductal adenocarcinoma (PDAC) represents 90% of all the
pancreatic cancer cases, whereas endocrine pancreatic
carcinoma accounts for less than 5% of all the cases [2].
Diagnosis of pancreatic cancer at an early stage is
challenging due to the lack of specific clinical symptoms and
effective diagnostic methods. This cancer is characterized by
high aggressiveness, but most cases are diagnosed in the late
stage, and only 15% and 20% of the patients are eligible for
surgery at diagnosis [3].
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Surgery, chemotherapy, radiotherapy and palliative
treatment are the conventional treatment strategies for the
pancreatic cancer. Surgery is the curative treatment option
for pancreatic cancer [4]. Neoadjuvant chemoradiotherapy
effectively shrinks the tumor, thus some patients with
advanced disease can undergo surgery and achieve longer
expected survival [5]. Nevertheless, these subjects can
develop resistance to chemotherapy due to the metastatic
and aggressive nature of pancreatic cancer [6]. Therefore,
this treatment option may not be effective in most patients.
Immunotherapy has become an important treatment
strategy in addition to surgery and chemotherapy [7],
however, its efficacy against pancreatic cancer is limited
compared with other tumors due to resistance induced by
innate or adaptive immune effects [8,9]. As a result, various
treatment plans and individualized therapy have been
proposed to improve the outcomes of pancreatic cancer
patients.

Cancers were previously classified according to their
tissue of origin and clinical decisions on different treatment
plans were made based on this classification. However,
subsequent studies reported that patients with pathologically
identical tumors had different prognoses. and Subtyping of
cancers based on the similarities and differences in
biologically relevant molecular similarities and differences
can improve the conventional classification methods.
Conventional classification methods can be optimized
through accurate morphological and imaging analysis to
improve the selection of systemic treatment regimens,
individualized patient management, (primary surgery and
neoadjuvant therapy), recruitment to clinical trials based on
response prediction, and the evolution of treatment and
research [10]. A recent study reported differences in gene
expression within cells and altered interactions between
cancer cells and various components of the tumor
microenvironment (TME) [11]. Several cancer treatment
options are being optimized or emerging due to advances in
molecular typing. However, these methods have not been
fully developed for pancreatic cancer compared with other
cancers, such as breast and colon cancer. Moreover, the
clinically relevant morphological or molecular subtypes of
pancreatic cancer have not been fully elucidated [10]. A
combination of immune gene expression and tumor cell
expression analysis can provide essential information for
developing methods for pancreatic cancer treatment [12].

Chronic pancreatitis is a risk factor for pancreatic cancer,
and previous studies report a 7.2-fold higher risk for patients
with a history of pancreatitis [13–17]. The sustained activation
of the cGAS-STING pathway and its downstream effectors are
associated with chronic inflammation and progression of
cancer [18,19]. Therefore, the role of the cGAS-STING
pathway in pancreatic cancer worth an in-depth study.

Single-cell sequencing is the amplification and
sequencing of RNA or DNA extracted from a single cell.
This technique can be used to accurately determine the
genetic profile and expression status of a single cell,
providing a basis for evaluating the heterogeneity of cells
with the same phenotype [20]. In addition, this technique
can provide new clues and insights into the mechanisms of
tumorigenesis, metastasis and progression, the origin of

tumors, differentiation of tumor stem cells and resistance to
therapy. Therefore, the technique has high theoretical
potential in evaluating the molecular subtypes of pancreatic
cancer.

TME is the cellular environment around tumors,
including tumor cells, fibroblasts, mesenchymal cells, blood
and lymphatic vessels, as well as various tumor-infiltrating
immune cells and related chemokines and cytokines [21].
TME plays a critical role in tumorigenesis and progression
[22,23]. Exploring the various biological processes that occur
in TME and tumor immune microenvironment (TIME) is
essential for exploring tumor evolution mechanism and
developing new tumor immunotherapy options [24].

In this study, we comprehensively evaluated the
association between the molecular subtypes of pancreatic
cancer and immune microenvironment. In addition, the
correlation between expression of key genes and tumor
immunity was investigated. The roles of critical genes in
pancreatic cancer molecular subtypes were explored. These
findings provide insight into underlying prognostic
biomarkers related to immune infiltration of pancreatic
cancer. Further, a comparison of the pathological features of
the various molecular subtypes of pancreatic cancer was
conducted and a risk model was constructed using the
identified key genes.

Methods

scRNA data retrieval
Single-cell sequencing data (GSE154778 dataset) were
retrieved from NCBI Data GEO (http://www.ncbi.nlm.nih.
gov/geo/), and grouped into three pancreatic cancer datasets.

TCGA data retrieval and pre-processing
Data on clinical phenotypes of pancreatic cancer were
retrieved from the TCGA database (https://portal.gdc.cancer.
gov/), comprising 176 tumor samples.

CNV mutation data on the Masked Copy Number
Segment type of pancreatic cancer were obtained from
TCGA database. The CNV results were integrated using
Gistic2 software.

Mutect2 software was used to calculate the SNV
mutation information of the TCGA-PAAD gene.

GEO data retrieval and pre-processing
Five sets of microarray data were retrieved from GEO
database. The data comprised 42 tumor tissues from the
GSE28735 dataset, 63 tumor tissues from the GSE57495
dataset, 66 tumor tissues from the GSE62452 dataset, 125
tumor tissues from the GSE71729 dataset, and 79 tumor
tissues from the GSE85916 dataset.

The “limma” and “sva” packages in R were used to
eliminate the batches of each sample and the
“normalizeBetweenArrays” function were used for
standardization of the five datasets.

cGAS-sting-related pathway retrieval
The six pathways associated with cGAS-STING were obtained
based previous literature [25].
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Single-cell cluster dimension reduction analysis
The single cell data was screened and 10,232 cells were
obtained. The percentage of rRNA and mitochondria was
calculated using the “PercentageFeatureSet” function in R
and 9,292 cells were obtained.

The “log-normalization” function in R was used to
normalize the data of the three pancreatic cancer samples
downloaded from the GEO database. The highly variable
genes were identified using “FindVariableFeatures” function
in R. Batch effects were eliminated using the CCA method
in “FindIntegrationAnchors” and “IntegrateData” functions.
A dim = 35 was chosen and the cells were Clustered using
the “FindClusters” and “FindNeighbors” functions (with
resolution = 0.1) by scaling all genes using the “ScaleDate”
function and the anchors were identified through “PCA”
dimensionality reduction.

Immune cells were extracted and re-Clustered by
Resolution = 0.1, resulting in 10 subpopulations. UMAP
(Uniform Manifold Approximation and Projection)
dimensionality reduction analysis was performed on 9884
cells using the “RunTSNE” function, annotating with
classical marker.

Marker genes of the six subgroups were screened using
the “FindAllMarkers” function with a logFC of 0.5
(difference ploidy), a minpct (minimum percentage of
differentially expressed genes) of 0.5 and an adjusted p < 0.05.

Further, the proportions of these six subgroups in each
sample were determined BP enrichment analysis was
performed using the “ClusterProfiler” package.

Dysregulation of immune cells TME
The “copykat” package was used to predict “CNV” changes in
scRNA-seq immune cell data to distinguish tumor cells from
normal cells in each sample. cGAS.STING related pathways
were retrieved and the scores of malignant and non-
malignant cells were calculated using “ssGSEA” method in
“GSVA” package. The “z-score” was standardized based on
the enrichment score for each pathway.

Identification of key genes in Bulk RNA-seq
ssGSEA was performed to determine the score of cGAS.
STING-related pathways and the CD8 T score of patients in
the TCGA dataset. The genes encoding the proteins were
correlated with the cGAS.STING-related pathway score and
CD8 T score by pearson correlation analysis, respectively.
The key genes were identified using the criteria: |cor| > 0.5,
p < 0.001.

Prognostic genes were identified from the key genes
through univariate Cox analysis using the survival function
in R (p < 0.01).

Identification of pancreatic cancer molecular subtypes based on
CD8 T cells and genes associated with cGAS.STING pathways
The “Pearson” and “PAM” algorithms were employed as the
metrics distance and 500 bootstraps were performed to
identify the molecular subtypes using the
“ConsensusClusterPlus” R package. The training set
comprised 80% of the patients. Tumor tissue in the TCGA
dataset were used to classify patients based on consistent
Clustering of 26 key gene expression profiles. The optimal

number of Clusters was determined based on the cumulative
distribution function (CDF).

The “limma” and “sva” packages were used to eliminate
batch effects from the five GEO datasets. The
“normalizeBetweenArrays” function was used to re
standardize the data.

Comparison of the clinical phenotypes of molecular subtypes
The distribution of different clinical features in the TCGA
dataset were compared among the three molecular subtypes
to assess whether the clinical features differed among the
subtypes (chi-square test).

Mutational characteristics of the molecular subtypes
The SNV mutation data were obtained from the TCGA
dataset using mutect2. The first ten genes with the most
significant mutations were selected from every subtype. The
distributions of Fraction Altered, Homologous
Recombination Defects, tumor mutation burden and
Number of Segments were compared among the subtypes.

Immunologic characteristics of molecular subtypes and
differences between immunotherapy and chemotherapy
The level of infiltration of immune cells in the TCGA cohort
were evaluated to determine the differences in the immune
microenvironment of patients among various molecular
subtypes based on the levels of gene expression in immune
cells. The scores of the 22 immune cells were evaluated
using the “CIBERSORT” algorithm and “Kruskal.test” was
conducted to identify differences between the three
subtypes. “ESTIMATE” tool was utilized to evaluate the
level of immune cell infiltration. The expression levels of
immune checkpoint genes in the three subtypes were
evaluated.

We then evaluated the difference in immunotherapy
efficacy between the different subtypes. The clinical
effectiveness of immunotherapy in the molecular subtypes
was evaluated through using the “TIDE” (http://TIDE.dfci.
harvard.edu/) tool.

Pathway analysis of molecular subtypes
The pathway scores for the various molecular subtypes of the
samples were calculated using the “c2.cp.kegg.v7.5.1.symbols.
gmt” function in the “GSVA” package.

GSEA was conducted using the GSEA software with “h.
all. v7.5. symbols. gmt” as the background set.

The differences in 10 oncogenic pathways reported in
previous studies [26] were evaluated in three molecular subtypes.

Construction of risk models on the basis of key phenotypic genes
of CD8 T and cGAS.STING cells
Differential analysis for Clust1 vs. no_Clust1, Clust2 vs.
no_Clust2, and Clust3 vs. no_Clust3 was conducted using
“Limma” package in R. FDR < 0.05 and |log2(Fold Change)|
> 1 were used as the criteria.

A single-factor Cox regression analysis was conducted
using ‘survival’ package to identify differentially expressed
genes with p < 0.01.

We used lasso (Least absolute shrinkage and selection
operator, Tibshirani (1996)) regression to further compress
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this prognosis-related genes in the TCGA dataset to reduce
the number of genes in the risk model. Further we used
stepwise multifactor regression analysis based on the genes
from the lasso analysis results, starting with the most
complex model using the stepAIC method in the “MASS”
package and sequentially removing one variable to reduce
the AIC (Akaike information criterion).

The TCGA dataset was utilized as the training dataset
and risk scores were calculated separately for each sample
based on the expression levels of prognosis-related genes.
ROC analysis of the prognostic classification of the
Riskscore was carried out with the “timeROC” R package.
The prognostic classification efficiency was evaluated at 1, 3
and 5 years. At the same time, the zscore of Riskscore was
conducted, and samples with Riskscore greater than zero
were classified as high-risk group and samples with less than
zero were classified as low-risk group after zscore, and KM
survival curves were generated. To better validate the
robustness of the model, the merged GSE dataset is
validated using the same method.

Evaluation of the Riskscore using samples with different
clinicopathological features
The relationship between clinical tumor features and
Riskscore scores between the different clinical phenotypes of
the TCGA dataset were evaluated to determine its clinical
significance.

Integration of Riskscore with clinicopathological characteristics
to improve prognostic models and survival prediction
The risk scores were combined with clinical features and with
univariate and multivariate Cox regression analyses
conducted. A nomogram was constructed by combining the
Riskscore with other clinicopathological characteristics for
the risk assessment and survival prediction.

Validation of the expression levels of the selected genes through
qRT-PCR
Chondrocytes from normal human (C-7, Procell, Wuhan,
Hubei, China) and pancreatic cancer patients (panc-1,
patu8988, bxpc-3 Hoge Biotechnology Co., Ltd., Shanghai,
China) were cultured in chondrocytes containing 10% fetal
bovine serum (FBS, 10099, Thermo Fisher Scientific,
Massachusetts, USA) in DMEM/F12 medium (SH30126.01,
HyClone Technologies, Logan, USA). The relative
expression of EMP1, GIPR, SFRP1, CXCL11, and COL17A
mRNA was detected after 48 h of incubation. Primers were
designed using DNAMAN software and synthesized by
Shanghai Biotechnology Co., China. Cellular RNA was
extracted using TRIzol (Invitrogen #15596-026). cDNA was
synthesized using PrimeScriptTM RT kit with gDNA Eraser
(Takara #RR047A) and SYBR Green qPCR Mix (Beyotime
#D7260). Amplification cycle was 40 cycles using 7500 Real-
Time Polymerase Chain Reaction (RT-PCR) system. PCR
data were treated with GAPDH as an internal reference and
the relative expression in the samples was calculated using
the ΔΔCT method.

Results

Single-cell clustering and dimensionality reduction analysis
The results revealed that the amounts of mRNA and UMI
were significantly correlated, but the amount of UMI/
mRNA was not significantly correlated with the expression
level of mitochondrial genes (Suppl. Fig. S1A). A violin plot
before and after quality control of the data is presented in
Suppl. Figs. S1B and S1C.

Suppl. Fig. S1D is the sample distribution graph and the
anchor point graph of PCA. Finally, a total of 14
subpopulations were annotated using CD45 (PTPRC)
(Suppl. Fig. S1E) and immune cell subsets 0, 1, 3, 6, 7, 10
and 13 were evaluated.

The immune cells were extracted, re-Clustered, then
further evaluated to obtain 10 distinct subpopulations.
UMAP dimensionality reduction analysis was conducted for
9884 cells and the data were annotated by classical marker.
Subpopulation 6 for CD8 T cells (expressing CD3D and
GZMA). Subpopulations 1, 4 and 9 comprised B cells
(expressing MS4A1, CD19 and CD79); subpopulation 7
comprised plasma cells (expressing CD79A and JSRP1);
subpopulation 8 consisted of mast cells expressing (TPSAB1
and CPA3); subpopulation 0, 2 and 3 consisted of
macrophages (expressing CD163, CD68 and CD14);
subpopulation 6 consisted of DC (expressing CD1C and
CD1E) (Suppl. Fig. S2). A UMAP plot showing the
distribution of the three samples is presented in Fig. 1A. A
UMAP plot of the different subpopulations after Clustering
is shown in Fig. 1B. A UMAP plot of the distribution of
cells after annotation is presented in Fig. 1C.

The first five marker genes that significantly contributed
to expression in each subgroup were selected (Fig. 1D). The
findings for the marker genes are presented in
Table scRNA_marker_gene.txt.

The proportions of each sample for these 6
subpopulations were determined (Fig. 1E) and BP
enrichment analyses were performed using the
“ClusterProfiler” package (Fig. 1F).

Immunologic dysregulation in single-cell TME
In this study, 6,812 cancer cells and 10,536 normal cells were
identified. A UMAP diagram was generated using the copykat
package to distinguish between normal and tumor cells
(Fig. 2A). The proportion of non-malignant cells (diploid)
and malignant cells (aneuploid) in each sample was
evaluated (Fig. 2B).

The results showed that the correlation scores for cGAS.
STING were lower in in CD8T cells for the malignant cells
compared with the non-malignant cells (Fig. 2C).

Key genes were identified through bulk RNA-seq
A total of 964 key genes associated with cGAS.STING and CD8
T cells were obtained from the previous analysis (Fig. 3A).

Univariate Cox analysis of the 964 genes revealed that 26
genes were significantly correlated with survival of prostate
cancer patients (Fig. 3B). Pearson correlation analysis of the
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26 prognosis-related genes indicated that they were
significantly correlated with each other (Fig. 3C).

Identification of molecular subtypes based on CD8 T cells and
cGAS.SING-related genes
The optimum number of Clusters was determined based on
the cumulative distribution function (CDF). The CDF delta
area curve showed that the Clustering results were more
stable when the Cluster size was chosen as 3 (Figs. 4A and
4B), so k = 3 was used to obtain the three molecular
subtypes (Fig. 4C). Further analysis of the prognostic
features for the three molecular subtypes indicated distinct
prognostic differences among the subtypes (Fig. 4D). Clust3
had the worst prognosis, followed by Clust2, whereas Clust1

had the best prognosis. Table tcga.subtype.txt shows the
data for the TCGA dataset subtypes. Fig. 4E shows the
prognostic relational KM curves of the three subtypes in
the combined GEO cohort.

PCA was conducted after renormalization of data to view
the distribution of GEO data before and after the batch was
removed (Suppl. Fig. S3). The results showed that the data
sets of each sample after the batch removal were Clustered
together, indicating that there was no batch effect in the
merged data.

Comparison of clinical phenotypes of the molecular subtypes
The distribution of the various clinical features in the three
molecular subtypes from the TCGA dataset was compared

FIGURE 1. Clustering and dimensionality reduction analysis of single-cell data and enrichment analysis of annotated subgroups. (A) UMAP
plot of the distribution of the 3 samples, (B) UMAP plot of the 10 immune cells subpopulations, (C) UMAP plot of the cell distribution after
annotation, (D) dot plots showing the expression levels of the top 5 marker genes in the annotated subpopulations, (E) the proportion and
number of cells of the annotated subpopulations in each sample, (F) results of GO-BP enrichment analysis of the annotated subpopulations.
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to determine whether the clinical characteristics differed
among the different subtypes (chi-square test). The results
revealed significant differences in gender, tumor grade and
survival status between the three subtypes in the TCGA
dataset (Fig. 5).

Mutational characteristics of molecular subtypes
The “SNV” mutation data were obtained from TCGA
database using “Mutect2”. The top 10 genes with the most
significant mutations in each subtype are presented in
Fig. 6A. The results indicated that Fraction Altered,
homologous recombination defects, tumor mutation burden

and number of segments were significantly different
between the various subtypes (Fig. 6B).

Immunologic characteristics of the molecular subtypes and
differences between chemotherapy and immunotherapy
The scores of 22 immune cells were determined with the
“CIBERSORT” algorithm and a “Kruskal.test” was
conducted to evaluate the differences in scores among the
three subtypes (Fig. 7A). The immune cell infiltration levels
were assessed using the ESTIMATE tool (Fig. 7B). The
findings indicated that the “ImmuneScore” was highest for
the Clust2 subtype, whereas that of Clust1 was lowest. The

FIGURE 2.Distribution of malignant and non-malignant cells in single cell data and pathway scores associated with cGAS.STING. (A) UMAP
plot using the copykat package for predicting the distribution of malignant and non-malignant cells; (B) proportion of malignant and non-
malignant cells per sample; (C) cGAS.STING-related pathway scores correlated with malignant.
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expression levels of immune checkpoint genes were evaluated
in three subtypes and significant differences in expression
levels were observed between the three subtypes (Fig. 7C).

Analysis of the differences in response to
immunotherapy of the various subtypes revealed that the
TIDE score for the Clust1 subtype was lower than in Clust2
and Clust3 in the TCGA cohort (Fig. 7D). In addition, the
response level of various molecular subtypes to conventional
chemotherapeutic agents in TCGA cohort was evaluated.
The results indicated that Clust3 was more sensitive to the
chemotherapy agents compared with Clust1 and Clust2
(Fig. 7E, Wilcoxon test).

Pathway analysis of molecular subtypes
The “kruskal.test” function was used to determine the
significance of the pathway score among for the three
subtypes, and key pathways were determined using p <
0.001 (Fig. 8A).

The results showed significant enrichment of the
OXIDATIVE_PHOSPHORYLATION and PANCREAS_
BETA_CELLS pathway in Clust1 subtype, whereas IL6/JAK/
STAT3 signaling pathway was significantly downregulated
compared with the other Clusters. The IL6/JAK/STAT3
signaling pathway was significantly enriched in Clust2

subtype compared with the other Clusters, whereas the
INTERFERON_ALPHA_RESPONSE pathway was
downregulated. The INTERFERON_GAMMA_RESPONSE
pathway was significantly upregulated in Clust3
subtype, whereas PANCREAS_BETA_CELLS pathway
was downregulated compared with the other subtypes
(Figs. 8B–8D).

Further, of the differences in 10 previously reported
oncogenic pathways were evaluated among the three
molecular subtypes. The findings showed significant
differences in the evaluated pathways except he TP53 and
PI3K pathways (Fig. 8E, Kruskal test).

Identification of key genes and construction of risk models for
CD8 T cells and cGAS.STING phenotype
In this study, 15 up-regulated genes and 225 down-regulated
genes were identified by comparison of Clust1 with the
other Clusters. Further, 175 up-regulated genes, 11 down-
regulated genes were identified after comparison of Clust2
with the other two Clusters. A total of 21 up-regulated
genes and 9 down-regulated genes were identified by the
comparison between Clust3 and the other Clusters. The
details differential expression of genes are shown in
Table tcga.subtype.c1vsno_c1.txt,tcga.subtype.c2vsno_c2.txt

FIGURE 3. Screening for cGAS.STING-related genes and gene correlation analysis. (A) Venn plot of cGAS.STING-related genes and CD8 T
cell-related genes; (B) forest plot of single factor cox analysis of prognostic-related genes; (C) heat map of prognostic-related gene correlation
analysis.
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FIGURE 4. Construction of molecular subtypes. (A) TCGA cohort sample CDF curve; (B) TCGA cohort sample CDF Delta area curve, Delta
area curve of consensus Clustering, indicating the relative change in area under the cumulative distribution function (CDF) curve for each
category number k compared with k – 1. The horizontal axis represents the category number k and the vertical axis represents the relative
change in area under CDF curve; (C) heat map of sample Clustering when consensus k = 3; (D) KM curve of the relationship between the
three subtypes of TCGA; (E) prognostic KM curves of the three subtypes in the combined GEO cohort.

FIGURE 5. Clinical features of molecular subtypes. Comparison of the distribution of the clinical characteristics of the three molecular
subtypes in the TCGA dataset.
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and tcga.subtype.c3vsno_c3.txt. In this study, 348
differentially expressed genes were identified as shown in
Table com_gene.txt.

Univariate cox analysis was conducted for the 348
differentially expressed genes using the “survival” package
and 60 prognosis-related genes were selected with p < 0.01
as the cut-off.

Lasso regression was conducted to determine the
independent genes associated with the prognosis of patients
from the 60 prognosis-related genes in TCGA dataset to
construct a risk model. The trajectory of each independent
variable was evaluated as shown in Fig. 9A. The results
showed that the number of independent variable coefficients
decreased with increase in lambda variable. A 10-fold cross
validation was used for model validation and the confidence
interval under each variable was determined, confidence
intervals are shown in Fig. 9B. In this study, 13 genes were
selected as the next target genes when lambda was 0.0452.
Stepwise multivariate regression analysis was conducted
based on the 13 genes obtained from the lasso analysis.
EMP1, GIPR, SFRP1, CXCL11 and COL17A1 were
identified as the prognosis-related genes for construction of

a prognostic signature. The final five-gene signature formula
was as follows: Riskscore = 0.355 � EMP1-0.267 � GIPR-
0.242 � SFRP1 + 0.28 � CXCL11 + 0.184 � COL17A1.

We analyzed the classification efficiency of prognostic
prediction at 1, 3, 5 years, respectively, where the AUC
reached 0.7 at 1, 3, 5 years, and also zscore the Riskscore,
classify the samples with Riskscore greater than zero as high
risk group and those with less than zero as low risk group
after zscoreization, and plot KM curves, and found that they
had highly significant differences p < 0.0001 (Figs. 9C
and 9D).

To better validate the robustness of the model, we used
the merged GSE dataset to validate using the same method,
and similar results were obtained (Figs. 9E and 9F).

Comparison of Riskscore with different clinicopathologic
features
Comparisons of differences in the clinicopathological
characteristics between the Riskscore subgroups in the
TCGA cohort showed similar results (Fig. 10A). The
findings indicated that the risk score increase with increase
in clinical grade (Fig. 10B).

FIGURE 6. Genomic alterations in molecular subtypes of the TCGA cohort. (A) Somatic mutation analysis of different molecular subtypes in
the TCGA cohort; (B) comparison of homologous recombination defects, fraction altered, number of segments, and tumor mutation burden
among the different molecular subtypes of the TCGA cohort.
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Combination of Riskscore with clinicopathological
characteristics further improved the survival prediction of the
constructed model
Univariate and multivariate Cox regression analyses of the
clinical characteristics and Riskscore demonstrated that
Riskscore was the most significant prognostic factor (Figs.
11A and 11B). We combined the Riskscore with other
clinicopathologic features and established a nomogram to
quantify risk evaluation and probability of survival of
patients (Fig. 11C). Riskscore had the greatest impact on
survival prediction. Calibration curves were generated to
assess the model's prediction accuracy (Fig. 11D). The
findings revealed that the calibration and prediction curves

for three calibration points at 1, 2 and 3 years almost
overlapped with the standard curve, indicating that the
nomogram had good predictive performance. Evaluation of
the reliability of model with a decision curve analysis (DCA)
revealed that the survival prediction accuracy of the
nomogram and Riskscore was significantly higher compared
with the clinicopathological characteristics (Figs. 11E
and 11F).

qRT-PCR
We performed qRT-PCR to verify the bioinformatics results.
The experimental results showed that the mRNA expression
levels of EMP1, GIPR, SFRP1, CXCL11 and COL17A were

FIGURE 7. Immunoassay of molecular subtypes. (A) Differences in scores of the 22 immune cells among the different molecular subtypes in
the TCGA cohort; (B) differences in ESTIMATE immune infiltration between the different molecular subtypes in the TCGA cohort; (C)
differential expression of the immune checkpoint genes among the different molecular subtypes in the TCGA cohort; (D) differences in
TIDE scores among the dif ferent molecular subtypes in the TCGA cohort; (E) box plots showing the estimated IC50 for drugs in TCGA-
PAAD.
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significantly high in the pancreatic cancer cell line compared
with the controls. In this study, COL17A demonstrated the
most significant expression difference between the samples.
These findings indicate that the results obtained through
bioinformatics analysis were reliable and have potential
research value (Fig. 12).

Discussion

The treatment of pancreatic cancer is mainly based on the
histopathologic difference between its subtypes, but the
results have been unsatisfactory. Significant progress has
been achieved in the molecular typing of cancer in recent
years owing to the rapid advances in high-throughput
sequencing and single-cell sequencing. Molecular typing is
effective in elucidating the occurrence and progression of
tumors and development of individualized treatment. In this
study, we found that the correlation score of cGAS.STING
was lower in malignant cells than in non-malignant cells in
CD8T cells. As a result, 26 key genes were identified and
pancreatic cancer was grouped into three molecular
subtypes. KM survival curves of the three subtypes indicated

that Clust1 subtype had the highest prognosis compared
with the other subtypes.

The conventional treatment approaches mainly used for
pancreatic cancer include surgery, chemotherapy and
neoadjuvant chemotherapy. Most pancreatic cancer patients
are not eligible for curative surgical treatment during
diagnosis because most cases are diagnosed at advanced
stages. Immunotherapy is effective in treating pancreatic
cancer. Therefore, we analyzed the immune characteristics
of the three molecular subtypes, and the results showed that
Clust1 had the lowest ImmuneScore. TIDE scores were
lower for the Clust1 subtype compared with lust2 and
Clust3, indicating that the Clust1 subtype had a higher risk
of immune escape and had higher potential response to
immunotherapy. These findings provide potential avenues
for the treatment of pancreatic cancer. Notably, Cluster3
(C3) was more sensitive to conventional chemotherapeutic
drugs, indicating that different therapeutic regimens can be
used for the different molecular types to improve treatment
outcomes.

Differentially expressed genes between the three subtypes
were evaluated and EMP1, GIPR, SFRP1, CXCL11 and

FIGURE 8. Pathway analysis of molecular subtypes. (A) Heat map of enrichment scores of kegg-related pathways in the three subtypes; (B)
bubble plot of Clust1 activated/inhibited related pathways in the comparison of Clust1 vs. no_Clust1 subtypes; (C) comparison of Clust2 vs.
no_Clust2 subtypes middle, the bubble diagram of the pathways related to the activation/inhibition of Clust2; (D) the bubble diagram of the
pathways related to the activation/inhibition of Clust3 in the comparison of Clust3 vs. no_Clust3 subtypes; (E) different molecular subtypes in
the 10 pathways related to tumor abnormalities scoring difference.
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COL17A1 were used to establish risk prediction and
prognostic models. Analysis of the TCGA database showed
that these five genes were significantly associated with the
survival of patients. qRT-PCR showed a high expression
levels of these five genes in pancreatic carcinoma.

EMP1 is a member of peripheral myelin protein 22-kDa
(PMP22) gene family. Dysregulation of EMP1 expression is

linked to epithelial diseases, particularly human cancers.
EMP1 is mainly expressed in the early and immature
neurons [27] and glioma [28], and in sclerotic gastric
carcinoma cells [29]. EMP1 expression level can be used to
to differentiate between invasive ductal and lobular breast
carcinoma. This gene is associated with the ability of breast
cancer to metastasize in vitro [30,31]. Microarray analysis

FIGURE 9. Identification of key genes and construction of risk models. (A) Individual independent variable trajectories with Lambda; (B)
intervals of confidence under Lambda; (C) KM curves of risk models constructed from the TCGA data set of 5 genes, high or low risk;
(D) ROC curve for the risk model developed using the five genes from the TCGA dataset.; (E) the five genes in the GSE dataset were used
to build a risk model, and its KM curve is shown.; (F) ROC curve of the risk model developed using 5 genes from the GSE dataset.
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showed that EMP1 was up-regulated by Her-2 in cDNA [32].
EMP1 has also is a bio-marker for HER-2 activation in breast
cancer and is associated with lymph node metastasis in
squamous cell carcinoma of the oral cavity [33]. EMP1 is
correlated with clinical resistance to gefitinib in lung cancer
[34]. Further, it is associated with in vitro resistance to
prednisolone in leukemia cells [35]. High EMP1 expression
level is associated with a low five-year event-free survival
rate in precursor-B ALL patients [36].

Glucose-dependent insulin-stimulating peptide (GIP) is
an insulin-stimulating hormone produced in the digestive
tract and its release is induced by food intake [37]. It is a
42-amino acid peptide hormone previously associated with
the suppression of gastric acid secretion [38]. It is mainly
released in K cells of proximal small intestine (jejunum and
duodenum) [39]. The main metabolic function of GIP is
stimulating glucose-dependent pancreatic β cells to release
insulin [40]. GIPR expression is dysregulated in several

transformed endocrine tissues and may play a role in the
etiopathogenesis of hormone secretion disorders [41].

SFRP1 is a member of the cysteine-rich structural
domain of the SFRP family proteins. The cysteine-rich
structural domain mimics the Wnt binding site of the
coiled-coil receptor [42]. Proteins of the SFRP family
modulate the Wnt signaling. SFRP1 inhibits WNT-
dependent transcription and reduces intracellular β-catenin
levels [43]. Several studies report that low expression level of
SFRP1 is correlated with a poor prognosis in
cholangiocarcinoma, lung, breast as well as hepatocellular
carcinoma subjects [43–46].

Chemokine (C-X-C motif) ligand 11 (CXCL11), also
known as interferon-inducible protein 9 (IP-9) or
interferon-induced T-cell alpha chemokine (I-TAC), is a
complex cytokine with many functions in different tumors.
It is mainly expressed in the thymus, pancreas, lung, liver,
spleen and peripheral leukocytes, but low expression levels

FIGURE 10. Clinical characteristics of the Riskscore score in the TCGA cohort. (A) Clinical phenotypes of the Riskscore subgroups in the
TCGA cohort. (B) The difference in the Riskscore of various phenotypes in the TCGA cohort (Wilcox test, *p < 0.05; **p < 0.01; ***p < 0.001;
and ****p < 0.0001).
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are observed in the intestine, placenta and prostate [47].
CXCL11 promotes recruitment of activated NK, CTL and
Th1 cells in the tumor tissue in vivo [48,49]. CXCL11
increases the frequency of tumor-infiltrating lymphocytes
and inhibits tumor growth in both breast cancer and T-cell
lymphoma [49–51]. CXCL11 exhibits potent anti-tumor
activity in vivo by promoting CD8+ T lymphocyte
infiltration. CXCL11 is positively correlated with tumor-
infiltrating CD8+ T cells in mice subjected to a transgenic
administered with CXCL11-EL4 t-cell lymphoma cells. CD8
+T cell downregulation is associated with loss of CXCL11
antitumor effect in vivo. Upregulation of CXCL11
expression in EL4 cells transduced with CXCL11 promotes
infiltration of total CD8+ and CD8+ CXCR3+ T lymphocyte

and macrophages, with no impact on angiogenesis in EL4-
CXCL11 tumors. This study demonstrated that local release
of CXCL11 induces systemic tumor immunity [50,51].

Collagen XVII is an adhesive protein present in the basal
epithelium. This protein is encoded by the COL17A1 gene and
it modulates the growth and migration of cells [52]. COL17A1
is associated with a poor prognosis in some tumors [53,54].
Thangavelu et al. reported that hypomethylation and high
expression of COL17A1 are correlated with poor prognosis
in epithelial carcinoma [55]. Yan et al. observed that XVII
collagen promoted aggressiveness and recurrence of gliomas
[56]. The present findings showed a negative association
between mRNA expression and DNA methylation of
COL17A1 and a significant increase in CNV of COL17A1.

FIGURE 11. Prognostic modeling and survival prediction by Riskscore score and Nomogram. (A) Riskscore and clinical features obtained
through single-variable Cox analysis; (B) cox analysis with several variables for clinical features and Riskscore; (C) nomogram model; (D)
survival curve calibration for 1, 2, and 3 years; (E) The nomogram’s decision curve; (F) the nomogram had the highest ability to predict
patient survival compared with other clinicopathological characteristics.

FIGURE 12. Expression levels of EMP1, GIPR, SFRP1, CXCL11and COL17A in normal and pancreatic cancer cells.
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Furthermore, COL17A1 expression is modulated by CNV and
DNA methylation. GSEA was conducted to explore the
mechanism of action of COL17A1 in PC. The findings
revealed that COL17A1 was correlated with the
development of epithelial cells and the cell cycle. The
transformation from monolayer to multilayer epithelial
structures is a key marker of carcinogenesis [57], indicating
that COL17A1 is an essential factor in the development and
maintenance of multilayered epithelial structures [57]. These
findings indicate that COL17A1 is implicated in the
progression of PC by modulating the proliferation and
differentiation of epithelial cells.

The KM survival curve showed significant differences
between the molecular subtypes. The model’s accuracy in
clinical prognosis was evaluated by merging the base and
generating KM survival curves. The prognostic model was
combined with various clinicopathological characteristics to
enhance its clinical significance. The findings revealed that
that the constructed nomogram and Riskscore had the
highest survival prediction ability.

The present study was based on the retrieval and
reanalysis of samples from public databases, thus the
findings are dependent on the quality, accuracy and
completeness of the obtained samples. Furthermore, some
genes were not available in the meta-cohort because analysis
required comparison of different techniques for gene
expressions quantification. However, the effect of deletion
on subtype prediction was negligible as shown by the good
molecular characteristics of the pancreatic cancer subtypes
consistent with other previously reported subtypes. The
clinical relevance of the three molecular subtypes is based
on analysis of survival data. The treatment effect of these
subtypes was not evaluated due to lack of treatment-related
data.

Conclusion

In this study, we applied a bioinformatics approach based on
CGAS.STING to classify pancreatic cancer into three
molecular subtypes. We evaluated the differences in
immunological characteristics, immunotherapy,
chemotherapy and molecular pathways of the three
molecular subtypes. Five genes were selected and used to
build a prognostic risk model, which showed high clinical
prognostic performance.
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Table of genes differing between subtypes
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Data for TCGA dataset subtypes
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Table of differential gene
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Table of results for marker genes
scRNA_marker_gene.txt
FIGURE S1. Single cell clustering dimensionality reduction analysis.
FIGURE S2. UMAP plots of marker gene expression.
FIGURE S3. PCA analysis of each data set before and after exclusion of batches.
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