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Abstract: Lung adenocarcinoma (LUAD) is the leading cause of cancer-related deaths, accounting for over a million
deaths worldwide annually. Immunogenic cell death (ICD) elicits an adaptive immune response. However, the role of
ICD-related long noncoding RNAs (IncRNAs) in LUAD is unknown. In this study, we investigated the characteristics
of the tumor microenvironment in LUAD, the prognostic significance of ICD-related IncRNAs, and the half-maximal
inhibitory concentration (IC50) of possible chemotherapeutic drugs. We sorted prognostic IncRNAs using univariate
Cox regression and constructed a risk signature based on them. We then confirmed the model’s accuracy and
generated a nomogram. Additionally, we performed immune microenvironment analysis, somatic mutation
calculation, Tumor Immune Dysfunction and Exclusion (TIDE) analysis, and anticancer pharmaceutical IC50
prediction. Least absolute shrinkage and selection operator Cox regression identified 27 prognostic IncRNAs related to
ICD, and a unique risk signature using 10 ICD-related IncRNAs was constructed. The risk score was confirmed to be
a reliable predictor of survival, with the highest c-index score. The signature had a remarkable predictive performance
with clinical applicability and could accurately predict the overall survival in LUAD. Furthermore, the IncRNA
signature was closely associated with immunocyte invasion. We also analyzed the correlation between the risk score,
tumor-infiltrating immune cells, and prognosis and identified high immune and ESTIMATE scores in low-risk
patients. Moreover, we observed elevated checkpoint gene expression and low TIDE scores in high-risk patients,
indicating a good immunotherapy response. Finally, high-risk patients were shown to be susceptible to anticancer
medications. Therefore, our unique risk signature comprising 10 ICD-related IncRNAs was demonstrated to indicate

the characteristics of the tumor-immune microenvironment in LUAD, predict patients’ overall survival, and guide

individualized treatment.

Introduction

Lung adenocarcinoma (LUAD) accounts for approximately
40% of all lung cancer cases and causes 1.76 million deaths
worldwide annually with a less than 20% 5-year survival
rate [1,2]. Despite advancements in cancer therapy, LUAD
survival remains poor because of a lack of early prognostic
indications. Therefore, it is vital to develop a simple and
efficient prognostic model to assess a patient’s prognosis
and guide personalized therapies.

Immunogenic cell death (ICD) is a type of antitumor
immunity that alters the immunological microenvironments
of tumors by emitting warning signals, which can benefit
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immunotherapy [3,4]. A tyrosine kinase inhibitor that
induces ICD has shown excellent antitumor activity when
combined with non-ICD-inducing drugs such as cisplatin
and crizotinib. Preclinical evidence suggests that cytotoxic
agents that induce ICD (such as oxaliplatin and
cyclophosphamide) can improve immunotherapy for non-
small cell lung cancer (NSCLC) [5]. ICD enhances the
antitumor immune response by transforming dying
malignant cells into medicinal immunizations. Tumors with
a higher propensity for ICD may provoke stronger
antitumor immune responses, which can help suppress
tumor growth. Therefore, further research is essential to
investigate the potential of ICD-related anticancer therapy
for LUAD.

Long noncoding RNAs (IncRNAs) have gained attention
as a potentially crucial component of biological control [6].
For instance, the IncRNA TUC338 has been shown to
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promote lung cancer invasion by activating the mitogen-
activated protein kinase (MAPK) pathway [7]. Additionally,
KCNQIOTI is highly expressed in NSCLC and indicates a
poor patient prognosis, suggesting that it may serve as a
molecular marker for the prognosis of NSCLC [8]. Several
IncRNAs, including ferroptosis-related [9,10], m6A-related
[11], and pyroptosis-related IncRNAs [12], have been
implicated in the pathogenesis and prognosis of LUAD
patients. However, it remains unclear how ICD-associated
IncRNAs affect LUAD.

This study aimed to investigate the role of ICD-associated
IncRNAs in LUAD; a 10 ICD-associated IncRNA risk signature
was discovered that could predict outcome and describe the
tumor-immune milieu. Using this signature, a nomogram
was developed to improve prognostic accuracy. Our risk
model performed better than others in terms of predicting
overall survival (OS) and drug sensitivity. These findings
elucidate the function of ICD in LUAD and provide the basis
for developing new targeted anticancer drugs.

Materials and Methods

Raw data processing

RNA-seq profiles (FPKM) were obtained from The Cancer
Genome Atlas (TCGA) database (https://tcga-data.ncinih.gov/
tcga/) for 539 LUAD cancer samples and 59 noncancerous
samples. Clinical data were retrieved and updated on May 31,
2022. Patients whose clinical information was unavailable were
excluded from further analysis. The 34 ICD genes used in
earlier investigations were also obtained [13].

Selection of ICD-related IncRNAs

To identify ICD-related IncRNAs, the mRNA expression of
the 34 ICD-related genes was retrieved, and Pearson’s
correlation test was performed to examine the correlation
between ICD-related genes and IncRNA expression profiles.
ICD-related IncRNAs were identified as those with R > 0.4
and p < 0.001.

Construction of an ICD-related IncRNA prognostic model
Survival-associated IncRNAs were filtered using univariate
Cox regression with a p-value < 0.01. Least absolute
shrinkage and selection operator (LASSO)-Cox regression
was then performed to construct a risk prediction model to
prevent overfitting. The risk scores were calculated using the
following formula:

n
risk score = Z(coefi * expr;),

i=1
where coef; represents each IncRNA’s coefficients and expr;
represents the expression level.

Risk signature validation and nomogram establishment

The risk model’s validity and dependability were assessed
using Kaplan-Meier survival analysis. Individuals were
grouped into high- or low-risk groups based on median risk
scores, each comprising 50% of the population. The
“survminer” package was used to generate survival curves.

DONGJIE SUN et al.

Cox regression was used to examine clinical data and risk
scores to forecast OS independence. The concordance index
(C-index) and time-dependent receiver  operating
characteristic (ROC) curves were used to determine the
predictive capacity of risk scores using the “survcomp” and
“survivalROC” packages. The “rms” package was used to
create a nomogram with correction curves.

Immune infiltration analysis

The CIBERSORT method was applied to analyze the
transcriptomic data of the LUAD cohort to illustrate the
proportion of 22 tumor-infiltrating immune cells (TICs).
Next, the correlation between risk scores and TICs was
analyzed. The stromal score and immune score were
calculated using the “ESTIMATE” package.

Tumor immune dysfunction and exclusion (TIDE) analysis
TIDE scores were used to predict a patient’s responsiveness to
immunotherapy (http://tide.dfci.harvard.edu/) [14]. An
increased TIDE score suggested an elevated chance of tumor
escape from the immune response.

Mutation analysis

The “maftools” package was used to create somatic mutation
charts for high- and low-risk groups. Furthermore, we
generated survival curves across subgroups based on the
median mutation value and LUAD patients’ risk scores.

Functional enrichment analysis

Differentially expressed genes (DEGs) between risk groups
were identified (adj. p < 0.05, [log,FC| > 1). Next, functional
enrichment was applied using Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) analysis
with the “clusterProfiler” package. The “GSEA” package was
used to compare gene set alteration across risk groups (c2.
cp.kegg.v7.4.symbols.gmt).

Prediction of drug susceptibility

The half-maximal inhibitory concentration of antitumor
drugs was predicted in risk groups using the “pRRophetic”
package.

Real-time quantitative polymerase chain reaction (RT-qPCR)
analysis

We detected the mRNA expression level of LY86-AS! in
BEAS-2B, A549, and PC-9 cell lines. Total RNA (1 pg) was
isolated using the TRIzol reagent (Invitrogen, USA), and
first-strand complementary DNA was synthesized using
SuperScript III Reverse Transcriptase (Invitrogen, USA)
and oligo-dT (Promega, USA), according to the
manufacturer’s instructions. qPCR was performed using
SYBR green (Sigma, USA). The 27AACT calculation method
was performed. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) was employed as an endogenous control.

The primer sequences were as follows: LY86-ASI:
forward 5-TCAATTCAGATTTGGAGGGC-3', reverse
5-GTTGAAGTTCATCTCTTCAACC-3'; and GAPDH:

forward 5-TCAAGATCATCAGCAATGCC-3/, reverse 5'-
CGATACCAAAGTTGTCATGGA-3'.
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FIGURE 1. Flow chart of the study.

Statistical analysis

All statistical computations were performed using the R
program (version 4.1.3). For analysis of categorical data, the
Chi-square test was employed. The association between risk
scores and drug sensitivity was assessed using Spearman’s
correlation analysis. A two-sided p < 0.05 was considered
statistically significant.

Nomogram LASSO-Cox model Prognostic verification
| L — | ! :
I I
Independent » :
prognostic = = Mutation :
analysis
_Immur}e TIDE
infiltration
Immune ICD-related IncRNA signature Subgroup . .\
function survival e
Checkpoint sssss — 1C50
N Clinical
Survival X* e correlation

Results

Identification of ICD-related IncRNAs in LUAD

Fig. 1 presents the study workflow. In total, 16,876 IncRNAs
and 19,938 mRNAs were identified from the LUAD cohort.
The 34 ICD genes and correlated IncRNAs were analyzed
(Fig. 2A). In total, 2,619 ICD-related IncRNAs were
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FIGURE 2. Immunogenic cell death (ICD)-related long noncoding RNA (IncRNA) identification. (A) Correlation between ICD genes and

associated IncRNAs. (B) Heatmap of 2,619 ICD-related IncRNAs.
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FIGURE 3. Immunogenic cell death (ICD)-related long noncoding RNA (IncRNA) model construction. (A) Univariate Cox regression

analyses of ICD-related IncRNAs in lung adenocarcinoma (LUAD). (B

) Prognostic IncRNAs in LUAD. (C) Least absolute shrinkage and

selection operator (LASSO) coefficient distribution. (D) Optimized lambda determined using the LASSO regression model. (E) The
correlation of prognostic ICD-related IncRNAs and ICD genes. *p < 0.05, **p < 0.01, ***p < 0.001.

identified, of which the expressions of 890 were upregulated,
and the expressions of 193 IncRNAs were downregulated
(Jlog,(fold change)| > 1 and adjusted p < 0.05) (Fig. 2B).

Establishing a risk model for LUAD patients using 10 ICD-
related IncRNAs

Using univariate Cox regression, we identified 27 IncRNAs
associated with ICD that were substantially related to OS

(Figs. 3A and 3B). LASSO regression analysis was
performed to avoid overfitting (Figs. 3C and 3D).
Thereafter, multivariate Cox regression was used for hub
IncRNA selection and coefficient calculation of the risk
model. Finally, 10 prognostic IncRNAs associated with ICD
genes were screened out. Fig. 3E shows the association
between the 10 IncRNAs and ICD genes. Each sample’s risk
score was calculated as follows: Risk Score = AC007686.2 x
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FIGURE 4. Prognostic value of the risk signature. (A-C) The distribution of risk scores in the training, test, and The Cancer Genome Atlas
(TCGA)-lung adenocarcinoma (LUAD) cohorts. (D-F) Survival status in the training, test, and TCGA-LUAD cohorts. (G-I) Heatmaps of the
expression of ICD-related IncRNAs in the training, test, and TCGA-LUAD cohorts. (J-L) Kaplan-Meier survival curves of OS in the training,

test, and TCGA-LUAD cohorts.

(—2.0061) + AC092574.1 x (—0.3296) + LY86-AS1 x (—4.0825)
+ AC026355.2 x (-0.3458) + AC105206.3 x (0.4674) +
AL591506.1 x (1.2057) + AP000864.1 x (1.3663)
+ AC022613.1 x (0.3891) + AC016999.1 x (0.6251) +
AL590428.1 x (0.9760). Patients in TCGA-LUAD cohort
were randomized into high- or low-risk groups based on the
median risk score. Subsequently, OS in the training, test,
and the whole TCGA-LUAD cohorts were compared (Figs.
4A-4C). A higher mortality rate was observed in the high-
risk group (Figs. 4D-4F). Figs. 4G-41 show the expression
of the 10 IncRNAs in each cohort. Patients in the high-risk
group across the three cohorts showed poor prognoses (Figs.
4]-4L). Detailed clinical data are shown in Table 1, which
were not significantly biased between the training and test
sets.

Relationships between IncRNAs associated with ICD and
clinical pathological variables

Based on the heatmap, the tumor, T, and N stages were
significantly different between risk groups, whereas other
variables such as age, gender, and M stage did not differ
substantially (Fig. 5A). The distribution of observations in
the two groups according to the T stage and N stage is
shown in Figs. 5B-5D. To determine the risk scores in
subgroups, we conducted a subgroup survival analysis by
categorizing them based on age (<65 or >65 years), gender

(male or female), stages (I-II or III-IV), and T stage (T1-2
or T3-4). Figs. 5E-5L demonstrate that individuals classified
as low-risk had higher OS rates than those classified as
high-risk, across different subgroups, including sex, age
groups (<65 or >65 years), T1-T2 or T3-T4 tumor stages,
and stages I-II or III-IV.

Nomogram construction

The independent prognostic analysis, utilizing univariate and
multivariate analysis, showed that the risk score could predict
OS in LUAD patients independently (Figs. 6A and 6B). The
area under the curve (AUC) reached 0.739, 0.704, and 0.750
for one, three, and five years, respectively (Fig. 6C), and
demonstrated a higher predictive power than that of other
clinical parameters (Figs. 6D and 6E). We developed a
nomogram, including the risk score and clinical
characteristics, to predict OS in LUAD patients (Fig. 6F).
The calibration curves exhibited a strong match between
predictions and observations (Fig. 6G).

Immune features of the risk model

Immunocytes were found to differ between risk groups
(Fig. 7A), and a strong association between immune cells
was discovered (Fig. 7B). The low-risk group had more
resting dendritic cells (DCs), activated CD4+ memory T
cells, memory B cells, plasma cells, and resting mast cells.
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TABLE 1
Clinicopathologic features of LUAD patients
Features Total Test Train p value
Age
<=65 239 (47.14%) 114 (45.06%) 125 (49.21%) 0.3928
>65 258 (50.89%) 134 (52.96%) 124 (48.82%)
Unknow 10 (1.97%) 5 (1.98%) 5 (1.97%)
Gender
FEMALE 272 (53.65%) 140 (55.34%) 132 (51.97%) 0.5021
MALE 235 (46.35%) 113 (44.66%) 122 (48.03%)
Stage
Stage 272 (53.65%) 131 (51.78%) 141 (55.51%) 0.7392
Stage II 120 (23.67%) 62 (24.51%) 58 (22.83%)
Stage 111 81 (15.98%) 44 (17.39%) 37 (14.57%)
Stage IV 26 (5.13%) 12 (4.74%) 14 (5.51%)
Unknow 8 (1.58%) 4 (1.58%) 4 (1.57%)
T
T1 169 (33.33%) 79 (31.23%) 90 (35.43%) 0.3893
T2 271 (53.45%) 137 (54.15%) 134 (52.76%)
T3 45 (8.88%) 27 (10.67%) 18 (7.09%)
T4 19 (3.75%) 8 (3.16%) 11 (4.33%)
Unknow 3 (0.59%) 2 (0.79%) 1 (0.39%)
M
MO 338 (66.67%) 172 (67.98%) 166 (65.35%) 0.9431
M1 25 (4.93%) 12 (4.74%) 13 (5.12%)
Unknow 144 (28.4%) 69 (27.27%) 75 (29.53%)
N
NO 327 (64.5%) 161 (63.64%) 166 (65.35%) 0.5133
N1 95 (18.74%) 49 (19.37%) 46 (18.11%)
N2 71 (14%) 37 (14.62%) 34 (13.39%)
N3 2 (0.39%) 0 (0%) 2 (0.79%)
Unknow 12 (2.37%) 6 (2.37%) 6 (2.36%)

High numbers of CD8+ T cells, resting natural killer (NK)
cells, and MO and M1 macrophages were observed in the
high-risk group. Activated CD4+ T cells, MO and M2
phenotype macrophages, plasma cells, and resting NK cells
were negatively correlated with risk scores. In contrast,
resting DCs, plasma cells, memory B cells, and resting mast
cells were positively correlated with risk scores (Fig. 7C).
The correlations between ICD genes and risk scores are
shown in Suppl. Fig. 1. Moreover, the high-risk group had
lower immune and overall ESTIMATE scores, suggesting a
higher tumor proportion (Fig. 8A). ssGSEA revealed that
the low-risk group exhibited a more significant infiltration
of immunocytes, including Th2 cells, DCs, T helper cells,
neutrophils, mast cells, and B cells (Fig. 8B). Furthermore,
Fig. 8C shows the correlation between immune cell
proportion and survival probability. These findings suggest
that ICD-related risk scores could distinguish between

distinct aspects of TICs in LUAD, with the low-risk group
showing increased immunocyte infiltration.

Functional enrichment and genetic variations in risk groups

LUAD patients were divided into two groups using principal
component analysis (PCA) based on risk scores (Fig. 9A). In
total, 481 DEGs, primarily enriched in the humoral immune
response and cell cycle, were identified (Figs. 9B and 9C).
Furthermore, GSEA revealed that DEGs in the high-risk
group were enriched in the cell cycle, extracellular matrix
(ECM)-receptor interaction, and focal adhesion pathways
(Fig. 9D). The low-risk group was primarily associated with
asthma and systemic lupus erythematosus (Fig. 9E). To
evaluate the risk signature’s ability to predict the clinical
effectiveness of immunotherapy, we used TIDE analysis.
Our findings showed that the TIDE score of the high-risk
group was reduced (Fig. 9F), indicating an increased
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likelihood of tumor escape from immunotherapy in
individuals with lower risk. Next, we examined the
expression of immunological checkpoint genes and
discovered that PDCDI1LG2 (PD-L2), SIGLEC15, and CD274
were more highly expressed in high-risk individuals
(Fig. 9G). Finally, we identified somatic mutations; Figs. 9H
and 91 show the most frequently mutated genes, with TP53
ranking first.

Chemotherapeutics prediction

We investigated the potential therapeutic application of the
two risk groups by analyzing medication sensitivity. The
findings demonstrated that doxorubicin, gemcitabine,
paclitaxel, cisplatin, and etoposide had potential effects on
high-risk individuals (Figs. 10A-10E). Individuals at low
risk showed increased sensitivity to erlotinib (Fig. 10F),
BIRB-0796 (p38 MAPK inhibitors) (Fig. 10G), and KIN0O1-
135 (Fig. 10H). The correlation between risk scores and
sensitive drugs was also analyzed (Figs. 10I-10P). However,
BIRB-0796 is currently only used for scientific research, and
KINO001-135 has not yet been applied in public research. In

clinical practice, these two sensitive drugs have not been
administered to a group of low-risk individuals but may
have therapeutic potential.

Comprehensive analysis of LY86-AS1 and validation

We validated the mRNA expression level of LY86-AS1 in two
LUAD cell lines and the control group. The results showed
that LY86-AS1 expression was significantly downregulated
in A549 cells compared to that in BEAS-2B cells; however,
no changes in LY86-AS1 expression were seen in PC-9 cells
(Fig. 11A). Additionally, we investigated the expression level
of LY86-AS1 in the LUAD cohort and found it to be
downregulated in both unpaired (Fig. 11B) and paired
patients (Fig. 11C). Patients with high levels of LY86-AS1
had better OS than those with low levels (Fig. 11D), and
patients with high tumor and T stages had low LY86-AS1
expression (Figs. 11E and 11F). The distribution of TICs
differed between the high- and low-LY86-AS1 expression
groups (Fig. 11G). The proportions of memory B cells,
resting memory CD4 T cells, resting DCs, and resting mast
cells were low in the low-LY86-ASI1 expression group,
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whereas the proportion of MO macrophages was high in the
low-LY86-AS1 expression group. The correlation between
the expression level of LY86-AS1 and TICs was
demonstrated in Fig. 11H. Tumor microenvironment (TME)
score analysis showed that the high-LY86-AS1 expression
group had high immune scores (Fig. 111I).

Discussion

To treat LUAD, the combination of immunogenic therapy
and innovative immunotherapeutic regimens has shown
considerable potential [4]. However, access to innovative
treatments for this aggressive cancer is limited, partly
because of immunological resistance. In recent decades, the
identification of ICD has elucidated the pertinent
relationship between dying malignant cells and adaptive
immunocytes in cancer treatment [15-17]. ICD modifies the
tumor immunological microenvironment by emitting
danger signals or DAMPs, thus potentially benefiting
immunotherapy. Therefore, ICD-related biomarkers may aid

in identifying LUAD patients who could benefit from
antitumor therapy.

IncRNAs have been influential in supporting many
biological functions in LUAD etiology, and LUAD
development and progression are connected to IncRNA
anomalies [18]. However, research on ICD-related IncRNAs
for predicting LUAD survival is limited. In this study, we
demonstrate that ICD-related IncRNAs affect LUAD’s
prognosis and immunology. Furthermore, we created a
prognostic risk signature with 10 ICD-associated IncRNAs
and classified LUAD patients as high-risk or low-risk
accordingly. This risk signature demonstrated a high
predictive power for OS and could also reflect the
immunocytes infiltration and drug sensitivity of the risk
groups, which might contribute to LUAD treatment.

This study identified 10 ICD-related IncRNAs that are
associated with LUAD prognosis, including AC007686.2,
AC092574.1, LY86-AS1, AC026355.2, AC105206.3,
AL591506.1, AP000864.1, AC022613.1, AC016999.1, and
AL590428.1. Using these IncRNAs, a risk model was
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FIGURE 11. Comprehensive analysis of LY86-AS1. (A) RT-qPCR analysis of LY86-ASI in the lung adenocarcinoma (LUAD) cell lines and
control group. The expression level of LY86-ASI in unpaired (B) and paired patients (C) in TCGA-LUAD cohort. (D) OS curves of patients in
the high- and low-LY86-AS1 expression groups. Correlation between the expression level of LY86-AS1 and tumor (E) and T (F) stages. (G)
Distribution of tumor-infiltrating immune cells (TICs) in high- and low-LY86-AS1 expression groups. (H) Correlation between the expression
level of LY86-AS1 and TICs. (I) Tumor microenvironment scores of high- and low-LY86-AS1 expression groups. *p < 0.05, *p < 0.01, **p <

0.001.

constructed. The AUCs for OS prediction after one, three, and
five years were all above 0.7, demonstrating the remarkable
prediction potential of this risk signature. Furthermore, the
signature demonstrated a strong independent prognostic
ability, and the nomogram combining the risk score and

clinical features further improved prognosis prediction in
LUAD.

The heatmap depicting the correlation between ICD

genes and IncRNAs indicates that the selected IncRNAs are
linked to key genes such as BAX, NLRP3, and CASPI, which
are potential PD-1 inhibitors aiding immunotherapy.
AC026355.2, a novel immune-related molecule involved in
the immune response [19], autophagy [20], and necroptotic
process in LUAD [21], is a crucial element that influences
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the development and prognosis of LUAD. AC026355.2
expression was significantly positively correlated with
PIK3CA, TLR4, NLRP3, ENTPDI, ILIRI, IFNG, and
EIF2AK3, and negatively correlated with CALR and BAX
expression (p < 0.001, Fig. 3E). PIK3CA enhances PI3K
signaling and promotes tumor cell proliferation [22].
NLRP3  inflammasome  activation  contributes  to
inflammation and cancer development and mediates
pyroptosis in various diseases [23]. IFNG, a cytokine
interferon-gamma, is known to mediate cancer
immunoevasion [24]. CALR has been associated with
malignant transformation, tumor progression, and response
to cancer therapy [25]. As a pro-apoptotic protein, BAX is
involved in tumor progression and drug resistance [26].
Therefore, we hypothesize that AC026355.2, despite being
rarely reported, is essential for tumor growth, and further
research is necessary to determine its exact function. LY86-
AS1 is a IncRNA involved in the progression of multiple
myeloma [27], Alzheimer’s disease [28], intracerebral
hemorrhage [29], and LUAD [30]. According to our results,
LY86-AS1 expression was downregulated in LUAD cells,
and patients with low LY86-AS1 expression had poorer OS
than high-LY86-AS1 patients. Moreover, a high level of
LY86-AS1 was correlated with high immune scores,
indicating increased immune components in patients with
high LY86-AS1 expression that possibly contributes to
antitumor capacity. By enhancing our mechanistic
understanding of LUAD, the newly acquired information on
ICD-related IncRNAs may help bring a breakthrough in
therapeutic practice.

Fewer immunogenic components can lead to tumor cells
escaping antitumor immunotherapy [31]. The high- and low-
risk groups in the risk model displayed distinct TME and
TICs. Survival analysis demonstrated that the high-risk
group had worse OS based on multiple clinical features.
Conversely, the low-risk group had increased immune
scores and more immune infiltration, including B cell
infiltration. B cells have the potential to restrain tumor cells
and reduce the occurrence of metastases, thereby limiting
further tumor spread [32], which may contribute to better
OS in individuals with a low risk. In NSCLC, M2
macrophage infiltration into tumor islets leads to a poor
prognosis [33]. In this study, we found a positive correlation
between the risk score and the proportion of M2
macrophages, which may result in poor OS in patients at a
high risk. Furthermore, CIBERSORT analysis revealed
reduced levels of memory B cells and increased MO
macrophage infiltration in high-risk patients. Liu et al
discovered that tumors deficient in memory B cells or with
elevated M0 macrophages were related to a poor prognosis
of LUAD at an earlier clinical stage [34], which is consistent
with our results.

We evaluated the capability of the risk model, based on
TIDE scores, to forecast immune evasion in the two risk
groups and to further analyze its immunotherapeutic
application. The results showed that the high-risk group
exhibited decreased TIDE scores, indicating a higher
possibility of benefiting from ICI treatment, and more gene
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expression of immune checkpoints. These findings suggest
that our signature may serve as a valuable tool for evaluating
the efficacy of immunotherapy in LUAD patients. In
addition to immunotherapy, we also found that a patient’s
risk profile could predict their response to immunotherapy,
and high-risk patients responded well to first-line therapeutic
drugs for NSCLC, including doxorubicin, paclitaxel,
etoposide, cisplatin, and gemcitabine [4,35-39]. These results
indicate that chemotherapy and targeted drugs have a
significant impact on high-risk individuals, highlighting the
importance of personalized anticancer therapy. GSEA
revealed that the high-risk group exhibited significantly
higher activation of the cell cycle, focal adhesion, ECM-
receptor interaction, and spliceosome pathways than the low-
risk group. The interactions between the ECM and cellular
receptors are known to contribute to tumor growth and
metastasis [40]. Consistent with DEGs enrichment analysis,
medications that primarily target the cell cycle and DNA
replication were effective in high-risk patients, suggesting
their anticancer mechanisms. In contrast, erlotinib, which
inhibits the epidermal growth factor receptor essential in
cancer proliferation [41], was found to be more responsive in
the  low-risk  category. Additionally,  improved
immunotherapy efficacy in the high-risk group may have
contributed to patients’ successful treatment. These results
provide potential therapeutic options for LUAD patients and
could impact customized antitumor therapy.

The investigation yielded the following main results.
First, a 10 ICD-related risk signature was developed and
thoroughly investigated to predict the outcome of LUAD
patients. Second, the risk score was found to be associated
with clinicopathological traits and immune infiltration
modification, identifying targets for future therapy. Third,
sensitive drug prediction might be a promising treatment
approach for improving LUAD immunotherapy and
offering customized consequences for individualized
treatment. Despite these encouraging results, this study had
a few limitations. First, further research is required to better
understand how genes are expressed and play a predictive
function in the risk model at the protein level. Second, the
tumor-immune milieu varies geographically, and the
potential genes included in our study were limited to ICD
marker genes, restricting the risk signature’s capacity for
prognostic prediction. Finally, our study only included a
description of mechanical analysis; therefore, additional
research utilizing cellular and animal models is required to
support our findings.

Conclusions

ICD-related IncRNA risk signature could be useful for
predicting outcome and developing effective treatment
strategies for LUAD patients. Targeting ICD and ICD-
related IncRNAs could be a viable approach to overcome
multisystemic treatment failures and expand
immunotherapy. This signature may serve as a prognostic
biomarker for personalized disease outcome prediction and
assist in selecting the most effective anticancer treatment.
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