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Abstract: Background: Clear-cell renal cell carcinoma (ccRCC) is the most common malignant kidney cancer. However,

the tumor microenvironment and crosstalk involved in metabolic reprogramming in ccRCC are not well-understood.

Methods: We used The Cancer Genome Atlas to obtain ccRCC transcriptome data and clinical information. The E-

MTAB-1980 cohort was used for external validation. The GENECARDS database contains the first 100 solute carrier

(SLC)-related genes. The predictive value of SLC-related genes for ccRCC prognosis and treatment was assessed using

univariate Cox regression analysis. An SLC-related predictive signature was developed through Lasso regression

analysis and used to determine the risk profiles of patients with ccRCC. Patients in each cohort were separated into

high- and low-risk groups based on their risk scores. The clinical importance of the signature was assessed through

survival, immune microenvironment, drug sensitivity, and nomogram analyses using R software. Results: SLC25A23,

SLC25A42, SLC5A1, SLC3A1, SLC25A37, SLC5A6, SLCO5A1, and SCP2 comprised the signatures of the eight SLC-

related genes. Patients with ccRCC were separated into high- and low-risk groups based on the risk value in the

training and validation cohorts; the high-risk group had a significantly worse prognosis (p < 0.001). The risk score

was an independent predictive indicator of ccRCC in the two cohorts according to univariate and multivariate Cox

regression (p < 0.05). Analysis of the immune microenvironment showed that immune cell infiltration and immune

checkpoint gene expression differed between the two groups (p < 0.05). Drug sensitivity analysis showed that

compared to the low-risk group, the high-risk group was more sensitive to sunitinib, nilotinib, JNK-inhibitor-VIII,

dasatinib, bosutinib, and bortezomib (p < 0.001). Survival analysis and receiver operating characteristic curves were

validated using the E-MTAB-1980 cohort. Conclusions: SLC-related genes have predictive relevance in ccRCC and

play roles in the immunological milieu. Our results provide insight into metabolic reprogramming in ccRCC and

identify promising treatment targets for ccRCC.

Introduction

As the most common subtype of renal cancer, clear-cell renal
cell carcinoma (ccRCC) is diagnosed in approximately
400,000 patients each year worldwide; around one-third of
these cases are metastatic, posing a heavy burden on global
health [1–3]. High levels of metabolic reprogramming and
immune cell infiltration as well as active angiogenesis are
thought to drive ccRCC growth and progression [4–6]. Early
ccRCC can be resected through surgical treatment [7].
However, for some patients with unresectable ccRCC or

with metastatic ccRCC, treatment options remain limited
[8]. ccRCC is typically insensitive to cytotoxic therapy [9].
Tyrosine kinase inhibitors, which target the vascular
endothelial growth factor receptor pathway, have been
developed to treat ccRCC based on their angiogenic activity
[10–12]. Although immunotherapeutic drugs, such as
immune checkpoint inhibitors, are effective against ccRCC
[13], some patients develop drug resistance, resulting in
poor treatment efficiency, metastasis, recurrence, and death
[14]. Thus, there is an urgent need to identify new
prognostic biomarkers for ccRCC to guide diagnosis and
treatment.

Solute carrier (SLC) transporters mediate secondary
active transport of a variety of substances through
electrochemical gradients. Their substrates include
numerous metabolites, metal ions, amino acids, nucleotides,
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and vitamins [15–17]. The SLC transporter family consists of
52 subgroups with more than 400 members [18]. Changes in
SLC transporters in cancer are considered as potential targets
for cancer therapy because of their critical roles in
maintaining the normal metabolic functions of cells [19].
Metabolism is highly active in cancer cells [20]. SLC
transporters are often dysregulated in multiple cancer types
to meet the high metabolic needs of cancer cells [21].
Understanding the metabolic patterns of ccRCC may
provide insights into precise treatment strategies. However,
the roles of SLC transporters in ccRCC remain unclear.

Bioinformatics is an important tool for studying
biological phenomena [22] through the integration of
biological and computational sciences [23]. Bioinformatics
methods can be used understand disease mechanisms using
discrete data. Transcriptome sequencing from The Cancer
Genome Atlas (TCGA) database has been widely employed
in cancer research to identify biomarkers and understand
their roles in the tumor microenvironment.

Here, we explored the roles of SLC-related genes in
ccRCC through bioinformatics analysis. Expression, survival,
and immune microenvironment analyses were conducted to
construct an SLC-related prognostic signature. By using this
signature, patients with ccRCC can be prognostically
stratified, which has implications for treatment. A flowchart
of this study is shown in Fig. 1.

Materials and Methods

Data downloading and preprocessing
We downloaded ccRCC transcriptome data from TCGA
(https://portal.gdc.cancer.gov/). The data were searched
using the terms “kidney” (Primary Site), “TCGA” (Program
Name), “TCGA-KIRC” (Project Name), “transcriptome
profiling” (Data Category),“Gene Expression Quantification”
(Data Type), and “RNA-Seq” (Experimental Strategy). The
workflow used was fragments per kilobase of exon per
million mapped reads. Finally, 539 tumor samples and 72
normal samples were included in the study. The clinical files
for the project were also downloaded (Suppl. Table 1). The
E-MTAB-1980 cohort used for external validation was
downloaded from the Array Express database (https://ebi.
ac.uk/biostudies/arrayexpress/studies/E-MTAB-1980). This
cohort contained the transcriptome profiles and
corresponding clinical information for 101 patients with
ccRCC from Japan. We processed the data using Perl
language to access and transform the fpkm matrix file.

SLC-related gene identification and univariate Cox regression
SLC-related genes were identified using the GENECARDS
website (https://www.genecards.com/). The top 100 related
genes ranked by their relevance scores on GENECARDS
were selected for further analysis. Univariate Cox analysis

FIGURE 1. The flowchart of this work.
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was conducted using the “survival” package in R software
(version 4.1.4; The R Project for Statistical Computing,
Vienna, Austria).

Lasso regression and gene signature construction
Lasso regression was performed using the R software package
“glmnet”. The samples in TCGA database were randomly
divided into two cohorts: a training cohort and an internal
validation cohort. Receiver operating characteristic (ROC)
plots were constructed, and the area under the ROC curve
(AUC) was calculated to evaluate the model’s predictive ability.

Univariate and multivariate cox regression
The survival package was employed to calculate the survival
probability of the high- and low-risk groups, and a log-rank
test was performed to verify the survival differences between
the two groups. Multivariate and univariate Cox analyses

were performed based on the risk score and clinical
information.

Immune infiltration analysis and immune checkpoint analysis
To explore the internal correlation between our risk model
and the tumor infiltration level, we employed the immune
infiltration heatmap and correlation map for data
visualization. CIBERSORT and XCELL were used to
evaluate tumor infiltration. CIBERSORT, developed by
Newman et al., is used to estimate the abundance of
member cell types in a mixed cell population based on gene
expression data [24]. XCELL is used to identify
heterogeneous tissue cellular landscapes.

Drug sensitivity analysis and nomogram construction
The “pRRophetic” package was used to predict the drug
sensitivity of different bulk-seq samples according to the

FIGURE 2. Constructing of the prognostic signature. (A, B) Lasso regression to construct prognostic signature, the curve converged when
Lamda was eight. (C) Risk score of training cohort. (D) Risk score of internal validation cohort. (E) The correlation between risk score and
survival status of patients in training cohort. (F) The correlation between risk score and survival status of patients in internal validation cohort.
(G) Heat map of eight model genes expression in training cohort. (H) Heat map of eight model genes expression in internal validation cohort.
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transcriptome data. We employed “DynNom” R software to
create a nomogram incorporating patient risk scores and
clinical data to further analyze the prognosis of patients
with ccRCC.

Results

Univariate Cox and Lasso regression to construct SLC-related
prognostic signature
First, we performed univariate Cox regression of the 100 SLC
genes in the training cohort and identified 41 genes with
prognostic significance (Suppl. Table 2). Subsequently, Lasso
regression was performed on these 41 genes, and a
prognostic signature was developed (Figs. 2A and 2B). Risk
score = SLC25A23 × (−0.0656830321767743) + SLC25A42 ×
(−0.0766650501411658) + SLC5A1 ×
(−0.00980404711094937) + SLC3A1*(−0.0750391308399826)
+ SLC25A37 × (0.103682343486892) + SLC5A6 ×
(0.289873130489491) + SLCO5A1 × (1.75616206793574) +
SCP2 × (−0.0382914831217994). Patients in both the training
and internal validation cohorts were separated into high-
and low-risk groups according to their median risk values
(Figs. 2C and 2D). The relationships between the survival
status and risk score of patients in the two cohorts are

shown in Figs. 2E and 2F. The expression levels of the
eight model genes in the training cohort and internal
validation cohort were displayed in the form of heatmaps
(Figs. 2G–2H).

Evaluation of prognostic signature
Survival analysis was performed to explore the prognostic
value of this signature in both cohorts. In the two cohorts,
the prognosis of high-risk patients was significantly worse
than that of low-risk patients (Figs. 3A and 3B; p < 0.001).
The ROC curve for the training cohort revealed that the
AUC values in 1–5 years of the signature were 0.768, 0.765,
0.749, 0.739, and 0.759, respectively (Fig. 3C). The AUC
values for the internal validation cohort at 1–5 years were
0.692, 0.649, 0.671, 0.723, and 0.740, respectively (Fig. 3D).
We conducted subgroup analysis to explore the significance
of the signature in patients with various clinical features.
The high-risk group showed a poor prognosis among
different age groups (Figs. 4A and 4B; p < 0.01). A high-risk
value also contributed to poor prognosis in patients with
ccRCC of different sexes groups (Figs. 4C and 4D; p <
0.001). Among patients with different M stage, total stage,
and T stage, the high-risk group of patients with ccRCC
continued to show a worse prognosis (Figs. 4E–4L; p < 0.01).

FIGURE 3. Prognosis and accuracy evaluation of the signature. (A) Survival analysis in the training cohort. Patients in high-risk group had a
worse prognosis. (B) Survival analysis in the internal validation cohort. Patients in the high-risk group had a significantly worse prognosis. (C)
ROC curve of training cohort. The AUC values in 1, 2, 3, 4, and 5 years of the signature were 0.768, 0.765, 0.749, 0.739, and 0.759, respectively.
(D) The AUC values of internal validation cohort in 1, 2, 3, 4, and 5 years were 0.692, 0.649, 0.671, 0.723, 0.740, respectively (���p < 0.001).
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Independent prognostic significance of the signature
Univariate and multivariate Cox regression analyses were
performed to investigate whether our risk values and other
clinical features were independent prognostic indicators of
ccRCC. In the training cohort, univariate Cox regression
analysis showed that age (HR = 1.028, p = 0.003), grade

(HR = 2.478, p < 0.001), disease stage (HR = 1.855, p <
0.001), T stage (HR = 1.791, p < 0.001), M stage (HR =
2.374, p < 0.001), and the risk score (HR = 2.224, p < 0.001)
were independent prognostic factors for ccRCC (Fig. 5A).
Multivariate Cox regression analysis revealed that grade (HR
= 1.505, p = 0.014), age (HR = 1.026, p = 0.0160), disease

FIGURE 4. Subgroup survival analysis. (A, B) First, the high-risk group continued to have a worse prognosis in different age groups. (C, D)
The high-risk score was also a risk factor for poor prognosis in ccRCC patients in different gender groups. (E–L) Among patients with different
grades, M stage, total stage, and T stage, the high-risk group of ccRCC patients continued to have a worse prognosis (��p < 0.01, ���p < 0.001).

FIGURE 5.Univariate Cox regression and multivariate Cox regression were used to explore the independent prognostic value of risk score. (A)
Univariate Cox regression for training cohort. (B) Multivariate Cox regression for training cohort. (C) Univariate Cox regression for internal
validation cohort. (D) Multivariate Cox regression for internal validation cohort.
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FIGURE 6. Immunocorrelation analysis. (A–P) B cell memory, B cell naive, B cell plasma, B cell, cancer associated fibroblast, class-switched
memory B cell, endothelial cell, hematopoietic stem cell, mast cell activated, Monocyte, T cell CD4+ memory activated, T cell CD4+ memory
resting, T cell CD8+, T cell follicular helper, T cell NK, T cell regulatory (Tregs) were significantly related to risk score (���p < 0.001).

FIGURE 7. Drug sensitivity analysis. (A–F) Sunitinib, Nilotinib, JNK, inhibitor. VIII, Dasatinib, Bosutinib, and Bortezomib had lower IC50 in
the high-risk group (���p < 0.001).
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stage (HR = 2.159, p < 0.001), T stage (HR = 0.611, p = 0.034),
and the risk value (HR = 1.666, p < 0.001) were independent
prognostic factors for ccRCC (Fig. 5B). In the internal
validation cohort, univariate Cox regression revealed that
grade (HR = 2.08, p < 0.001), age (HR = 1.034, p < 0.001),
disease stage (HR = 1.861, p < 0.001), T stage (HR = 1.959,
p < 0.001), M stage (HR = 1.930, p < 0.001), and the risk
value (HR = 1.944, p < 0.001) were independent prognostic
factors for ccRCC (Fig. 5C). Multivariate Cox regression
revealed that stage (HR = 1.643, p = 0.05), age (HR = 1.040,
p < 0.001), and the risk value (HR = 1.392, p = 0.037) were
independent prognostic factors for ccRCC (Fig. 5D).

Analysis of immune correlation
The immune microenvironment plays an important role in
tumor progression Immunocorrelation analysis showed that
activated mast cells, B cells, cancer-associated fibroblasts,
endothelial cells, hematopoietic stem cells, monocytes, T
cells, and NK cells were significantly related to the risk value
(p < 0.001, Fig. 6).

Drug sensitivity analysis
We conducted drug sensitivity analysis to identify more
sensitive drugs for targeted treatment of ccRCC. The results
showed that sunitinib, nilotinib, JNK inhibitor VIII,

FIGURE 8. Immune landscape and immune checkpoints analysis. (A) Immune landscape of high-risk and low-risk groups. (B) Analysis of
immune checkpoint related genes. Most of the immune checkpoint related genes were up-regulated in the high-risk group (**p < 0.01, ***p <
0.001).
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dasatinib, bosutinib, and bortezomib had lower 50%
inhibitory values in the high-risk group than in the low-risk
group, indicating that these drugs may be effective for
treating ccRCC (p < 0.001, Fig. 7).

Immune landscape and immune checkpoint analysis
We determined the immune landscape to explore divergence
in the immune microenvironments between the high- and
low-risk groups to guide immunotherapy (Fig. 8). The high-
risk group exhibited higher levels of immune cell infiltration
(Fig. 8A). Analysis of immune checkpoint-related genes
showed that most immune checkpoint-related genes in the
high-risk group were upregulated, indicating that this group

may benefit more from blockade of immune checkpoints
(Fig. 8B).

Nomogram construction
We constructed a nomogram containing risk scores to further
utilize our prognostic model to assess ccRCC prognosis. We
randomly selected a patient with ccRCC. The 1-, 3-, and
5-year survival probability determined using the prognostic
model were 0.174, 0.409, and 0.598, respectively (Fig. 9).

External validation of the signature
To further evaluate the validity and applicability of our
signature, we performed external validation using the

FIGURE 9. Construction of a nomogram based on risk score. (**p < 0.01, ***p < 0.001).

FIGURE 10. External validation of the signature. (A) ROC curve of E-MTAB-1980 cohort. (B) Survival analysis in E-MTAB-1980 cohort. (�p <
0.05)
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E-MTAB-1980 cohort. In the ROC curve, the AUCs at 1, 2,
and 3 years were 0.646, 0.797, and 0.700, respectively
(Fig. 10A). The risk score of each patient was calculated
using the risk formula. The cohort was divided into high-
and low-risk groups; the survival status of the high-risk
group was significantly worse than that of the low-risk
group (p = 0.041, Fig. 10B).

Discussion

We performed a comprehensive bioinformatics analysis to
investigate the roles of SLC-related genes in ccRCC. First,
we constructed a prognostic signature for SLCs in ccRCC,
including SLC25A23, SLC25A42, SLC5A1, SLC3A1,
SLC25A37, SLC5A6, SLCO5A1, and SCP2. Our signature
also showed good diagnostic accuracy and was an
independent prognostic indicator for patients with ccRCC.
Immune correlation analysis revealed a notable correlation
between various immune cells and the risk score, which may
be important in the immune microenvironment. Drug
sensitivity analysis identified several drugs that may be
useful for treating the high-risk group, which may
contribute to the treatment stratification of patients with
ccRCC.

Renal cell carcinoma, the most common malignant
tumor of the renal system, causes approximately 150,000
deaths worldwide annually, and its incidence is steadily
increasing [25–27]. The most common subtype is ccRCC,
which accounts for approximately 85% of cases of renal cell
carcinoma [28]. Early ccRCC has a good prognosis;
however, once progression or metastasis occurs, the
prognosis is poor, with a 5-year survival rate of less than
15% [29]. Several prognostic signatures of ccRCC have been
identified. Yin et al. constructed a seven-gene signature to
stratify patients with ccRCC and evaluate their
immunotherapeutic response [30]. They discovered that the
high-risk group had an immunosuppressive phenotype with
worse prognosis, whereas the low-risk group showed a
better response to pD-1 therapy [30]. Chang et al. built a
signature containing 11 ferroptosis-related genes to assess
the prognosis of patients with ccRCC, in which patients
with high-risk values had a significantly poorer prognosis
than those with low-risk values [31]. Zhang et al. [32] built
a signature of 17 metastasis-related genes using single-cell
sequencing to assess the immune response and prognosis of
patients with ccRCC. Similarly, high-risk patients showed a
worse prognoses. However, SLC-related signatures have not
been developed for ccRCC. Our SLC-related signatures has
clinical application value in ccRCC.

The eight genes in our model were preliminarily shown
to be involved in the pathogenesis and progression of
different disease. SLC25A23 is a mitochondrial calcium
channel that mediates cell death by inducing oxidative
stress [33]. Kim et al. [34] found that SLC25A23 was
associated with the prognosis of diffuse large B-cell
lymphoma. SLC25A42 is the main CoA transporter in
mitochondria [35]. Zhao et al. [36]constructed a 20-gene
signature to assess the prognosis of lung adenocarcinoma,
in which SLC25A42 is a crucial molecule. SLC5A1 is a
sodium-sugar co-transporter [37]. Gao et al. [37] found

that SLC5A1 promotes the proliferation and invasion of
pancreatic cancer cells through the AMPL/mTOR pathway.
SLC3A1 mediates transmembrane transport of cysteine
[38], and Jiang et al. [38] found that SLC3A1 promoted
breast cancer progression. SLC25A37 is mainly expressed
in the mitochondrial intima and mediates iron ion
transport [39]. Li et al. [39] found that SLC25A37 is a poor
prognostic indicator in pancreatic cancer. SLC5A6 is an
Na+-dependent multivitamin transporter. Sun et al. [40]
found that SLC5A6 is a prognostic marker of gastric
cancer. SLCO5A1 is a peptide transporter [41]. Tang et al.
[41] suggested that SLCO5A1 is associated with prostate
cancer progression. SCP2 mediates the transmembrane
transport of cholesterol [42]. Ding et al. found that SCP2
expression was linked to the progression of pituitary
adenomas [42]. We combined these eight genes to build a
prognostic model to improve the understanding of cancer
metabolic reprogramming. Moreover, we showed that
compared to patients in the low-risk group, those in the
high-risk group were more likely to express immune
checkpoint genes, suggesting that these patients may
benefit more from immunotherapy.

Although new therapeutic schemes such as vascular and
immune checkpoint inhibitors have achieved preliminary
benefits in ccRCC, significant drug resistance persists in
many patients, leading to treatment failure [43]. Resistance
to anticancer therapies can be divided into intrinsic
(primary) resistance and acquired (secondary) resistance
[44]. However, the mechanisms underlying resistance in
ccRCC remain unclear. Several studies confirmed that
certain drug transporters in cancer cell membranes play
essential roles in the development of drug resistance [43].
Although SLC and ATP cassette transporters are important
mediators of multidrug resistance [44], their specific
functions and mechanisms of action in ccRCC remain
unknown.

We identified high-risk patients as being more sensitive
to sunitinib, nilotinib, JNK-inhibitor-VIII, dasatinib,
bosutinib, and bortezomib compared to the sensitivity of
low-risk patients to these drugs. Sunitinib is a first-line
treatment for ccRCC and an inhibitor of tyrosine kinases
[45]. Although good initial results have been achieved in
many ccRCCs, some patients respond poorly to treatment
or develop drug resistance [46]. Therefore, it is necessary to
stratify ccRCC sensitivity to sunitinib. Our study revealed
that high-risk patients were more sensitive than low-risk
patients to sunitinib, which is beneficial for precise
treatment of ccRCCs and provides a reference for the
application of several other drugs for ccRCC.

However, this study had some limitations. For example,
in vivo and in vitro experiments are needed to validate our
results. Furthermore, additional external cohorts and
samples are required to reduce bias.

Conclusions

We developed a prognostic classification method for patients
with ccRCC based on SLC25A23, SLC25A42, SLC5A1,
SLC3A1, SLC25A37, SLC5A6, SLCO5A1, and SCP2. This
signature allows for ccRCC risk assessment and prognostic
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classification, in which patients with high-risk ccRCC tend to
have a worse prognosis. Our findings can also be used to better
understand the interactions between cancer genomes and
metabolomics. In vivo and in vitro investigations are needed
to verify our findings.
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