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Abstract: Background: Breast cancer has become the most common malignant tumor in the world. It is vital to discover

novel prognostic biomarkers despite the fact that the majority of breast cancer patients have a good prognosis because of

the high heterogeneity of breast cancer, which causes the disparity in prognosis. Recently, inflammatory-related genes

have been proven to play an important role in the development and progression of breast cancer, so we set out to

investigate the predictive usefulness of inflammatory-related genes in breast malignancies. Methods: We assessed the

connection between Inflammatory-Related Genes (IRGs) and breast cancer by studying the TCGA database.

Following differential and univariate Cox regression analysis, prognosis-related differentially expressed inflammatory

genes were estimated. The prognostic model was constructed through the Least Absolute Shrinkage and Selector

Operation (LASSO) regression based on the IRGs. The accuracy of the prognostic model was then evaluated using the

Kaplan-Meier and Receiver Operating Characteristic (ROC) curves. The nomogram model was established to predict

the survival rate of breast cancer patients clinically. Based on the prognostic expression, we also looked at immune

cell infiltration and the function of immune-related pathways. The CellMiner database was used to research drug

sensitivity. Results: In this study, 7 IRGs were selected to construct a prognostic risk model. Further research revealed

a negative relationship between the risk score and the prognosis of breast cancer patients. The ROC curve proved the

accuracy of the prognostic model, and the nomogram accurately predicted survival rate. The scores of tumor-

infiltrating immune cells and immune-related pathways were utilized to calculate the differences between the low- and

high-risk groups, and then explored the relationship between drug susceptibility and the genes that were included in

the model. Conclusion: These findings contributed to a better understanding of the function of inflammatory-related

genes in breast cancer, and the prognostic risk model provides a potentially promising prognostic strategy for breast

cancer.

Introduction

Breast cancer has become the most common cancer in women
and the leading cause of cancer-related deaths globally [1].
Fortunately, the number of deaths has gradually decreased
due to the improvement in early diagnosis and prompt
treatment of breast cancer in recent years [2–4]. At present,
the choice of treatment for breast cancer depends on the
stage, and primary clinical treatment includes surgical
resection, chemotherapy, and radiotherapy [5,6]. Due to the
great heterogeneity of breast cancer, whose etiology and
pathology differ from person to person [7,8], and despite
enormous advances in surgical and systematic treatment, the
prognosis of breast cancer patients is not as good as

expected. The prognosis of breast cancer patients is currently
predicted using a variety of biomarkers [9,10]. However,
there will inevitably be deviations in the relevant prediction
methods. Therefore, it is crucial to establish tools that could
precisely predict the prognosis of breast cancer patients and
guide clinical treatment.

The relationship between inflammation and cancer is
complex and varied. Earlier studies have found that
inflammation plays an important role in tumor-associated
illnesses [11,12]. Inflammation and cancer have a wide
range of relationships that have been the subject of extensive
investigation recently. Chronic inflammation linked to
tumors frequently contributes to the malignant progression
of tumors, promotes the advancement to a metastatic stage,
and may also assist the emergence of new tumors [13,14].
Studies found that tumor-associated inflammation can speed
up the tumor’s development and progression by promoting
angiogenesis and metastasis, impairing anti-tumor immune

*Address correspondence to: Tiansong Xia, xiatsswms@163.com
Received: 24 November 2022; Accepted: 14 February 2023

ONCOLOGY RESEARCH echT PressScience
2023 31(2): 157-167

Doi: 10.32604/or.2023.027972 www.techscience.com/journal/or

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:xiatsswms@163.com
https://www.techscience.com/journal/OR
https://www.techscience.com/
http://dx.doi.org/10.32604/or.2023.027972
https://www.techscience.com/doi/10.32604/or.2023.027972


responses, and altering the sensitivity of tumor cells to
chemotherapeutic agents [15–17]. According to research by
Kay et al., large amounts of mutagenic DNA damage
frequently result from inflammation. And damaged DNA
typically causes mutations. Additionally, unrepaired DNA
damage brought on by inflammation promotes the
development of cancer by increasing mutagenesis [14]. Also,
numerous studies have shown that inflammation has been
linked to breast cancer [18,19]. Recently, a large number of
inflammatory cells have been found to be infiltrated in
breast cancer, both in the tumor matrix and around the
tumor [20]. And researchers also discovered that the levels
of pro-inflammatory markers are significantly elevated in
the stromal of human breast cancer as compared to normal
tissues [21]. For instance, tumor necrosis factor-α (TNF-α)
is a significant proinflammatory cytokine that has been
found in tumor microenvironments, it is involved in all
stages of breast cancer development and affects the
proliferation, metastasis, and recurrence of breast cancer [22].

Although related studies have confirmed that
inflammation plays an important role in the development
and metastasis of breast cancer, it is still unclear whether
inflammation and its related genes could affect the prognosis
of breast cancer, so it is necessary to identify inflammatory-
related genes associated with breast cancer to scientifically
predict the prognosis. In this study, we focused on
investigating how inflammation and its related genes affect
the prognosis of breast cancer patients. We conducted a 7
inflammation-related genes risk signature analysis by
combining high-throughput data to predict the prognosis of
breast cancer patients. And the results demonstrated that our
prognostic model could accurately predict the prognosis of
breast cancer, which may provide a new ideal and point of
reference for the clinical prediction and treatment of breast
cancer.

Materials and Methods

Patient information and database
We used the GSEA database (http://www.gsea-msigdb.org/)
and obtained a total of 200 inflammatory-related
genes (IRGs) from the gene set HALLMARK_
INFLAMMATORY_RESPONSE. The clinical data, RNA-
Seq, immune subtypes, and stemness scores based on
DNA-methylation (DNAss) and mRNA (RNAss) were
downloaded from the project TCGA-BRCA in the TCGA
datasets (https://portal.gdc.cancer.gov/). Of all patient
samples in TCGA-BRCA, 1097 cancer samples and 191
para-cancerous samples met the requirement of
corresponding complete age, gender, stage, overall survival
(OS), and survival status. These qualified samples would be
used for subsequent analysis.

Screening of differential genes and prognostic inflammatory-
related DEGs
We used the “DEseq2” package in R software (R version 4.1.3)
to screen the differentially expressed genes (DEGs) in cancer

and adjacent tissues [23]. (p < 0.05; logFC filter > 1.5) were
set as the filter conditions. Then we further performed the
univariate Cox hazards regression analysis on the obtained
IRGs, and generated candidate prognosis-related genes with
a significant difference in OS (p < 0.05) through the two-
sided log-rank tests with the ‘survival’ package in R. The
forest plot was utilized to display the p-value, 95% CI, and
hazard ratio of each variable with the ‘forest plot’ package.

Establishment and validation of IRGs-based risk assessment
model
To determine the value of inflammatory genes in evaluating
the prognosis of breast cancer, we used the LASSO-COX
univariate regression analysis to build a prognostic model
that can predict the risk of patient survival based on
candidate IRGs. Then, the Cox regression model was
established with the “glmnet” R package [24], and through
cross-validation, we successfully avoided the overfitting of
the prognostic genes. To measure the value of each IRG in
the risk assessment model, we calculated the corresponding
coefficients. The risk score is calculated using the following
formula:

Risk Score ¼
Xn

i¼0

coeffi genesð Þ � expri genesð Þ

‘Genes’ denoted each IRG, including GPR132, IFITM1,
IL12B, IL18, IRF7, KCNMB2, and TACR1; “expr” denoted
the gene expression level of IRGs normalized by Log2; “coef”
for the coefficient of IRG in the univariate Cox regression
analysis. Then the risk score for each patient was calculated.
According to the median risk scores, breast cancer patients
were divided into high-risk and low-risk groups. The
prognostic difference between the two groups was analyzed
by the Kaplan-Meier survival analysis. To verify the
prognostic value of candidate IRGs, the “time ROC” package
in R was used to calculate the area under the time-dependent
receiver operating characteristic (ROC) curve (AUC) to
evaluate prediction efficiency [25]. The higher the area under
the curve (AUC) value, the higher the accuracy of the
prediction. T-distributed stochastic neighbor embedding (t-
SNE) and principal components analysis (PCA) mapping
were used to explore the distribution in different groups
based on the expression level of genes in the model and
measure whether the survival status was well distributed.

Construction and evaluation of prognostic nomogram
IRGs were selected as an independent prognostic factor for
patients with breast cancer by univariate Cox regression
analysis (p < 0.05). Nomogram can predict the prognosis of
cancers and display the results of the risk model precisely
[26]. To research the relationship between the IRGs and
breast cancer patients, these IRGs were integrated to
establish a genomic nomogram by the “rms”,
“nomogramEx”, and “regplot” packages in R software and
to predict the 1-, 2-, and 3-year survival possibilities of each
patient [27]. Besides, we performed the univariate and
multivariate Cox Hazards regression analysis to determine
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whether IRG-based risk scores, along with other possible risk
factors such as age and TNM stage, were significant predictors
of prognosis in breast cancer.

Tumor microenvironment characteristics and function
enrichment analysis
A gene set enrichment analysis (GSEA) was performed to
illuminate the enrichment of high- and low-risk breast
cancer groups in terms of immune function. Further, using
the single-sample gene set enrichment analysis (ssGSEA)
and the relative R package was “GSVA” to quantify the
differences between the high- and low-risk groups for the
scores of tumor-infiltrating immune cells and immune-
related pathway activity [28]. Besides, the Estimation of
Stromal and immune cells in Malignant Tumors using the
Expression data (ESTIMATE) algorithm was performed to
calculate the immune score, stromal score, and ESTIMATE
score by the R package “ESTIMATE” [29].

Drug sensitivity analysis
To clarify the influence of inflammatory genes on drug
sensitivity and tolerance in the prognostic model, NCI60
drug response data from the CellMiner tool (https://discover.
nci.nih.gov/cellminer) were downloaded. This database
included 60 different cell lines derived from 9 malignancies
that must be screened when developing new anti-tumor
drugs and 262 drugs licensed by the FDA or in clinical trials

[30]. The relationship between gene expression and drug
sensitivity was utilized by the Pearson correlation test.

Statistical analysis
All statistical analyses were performed with R software
(version 4.1.3) and GraphPad Prism 7. Statistical
significance was established at a probability value of p <
0.05, and all statistical tests were two-sided. We established
a risk prognosis model through the LASSO Cox regression
algorithm. And the Kaplan-Meier survival curve was
generated by the overall survival rate in the high- and low-
risk expression groups. The ROC curve evaluated the
accuracy of the prognostic model. The univariate and
multivariate Cox regression analyses were used to evaluate
the feasibility of the risk score and whether it could be an
independent prognostic factor. Based on mRNA expression
(RNAss) and DNA methylation pattern (DNAss), the
Spearman’s test was used to evaluate the relationship
between risk scores and cancer stemness scores, while the
Pearson’s test was used to evaluate the correlation between
gene expression and drug sensitivity in the model.

Results

Identification of prognostic inflammation-related genes
To build a prognostic prediction model for breast cancer, we
obtained the human inflammatory response gene set from the

FIGURE 1. Screening of inflammation-related genes in breast cancer. (A) Venn diagram showed the 11 overlapped genes of DEGs and
prognostic genes correlated with the inflammatory responses; (B) Expression heatmap of all inflammatory differential gene expression in
breast cancer and normal tissues; (C) Forest map of hazard ratios for 11 prognosis-related inflammatory genes; (D) Correlation analysis of
signature genes. Red for a positive correlation; Blue for a negative correlation.
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GSEA database, which contained 200 inflammation-related
genes (IRGs), and further analyzed it. The expression levels
of these inflammatory genes in breast cancer tissues and
para-cancerous tissues were obtained from the TCGA
database, and 56 differentially expressed inflammatory genes
(DEGs) were screened out. A univariate Cox analysis of all
the IRGs revealed that 30 of them were related to overall
survival with p < 0.05 in the TCGA cohort (Suppl. Fig. S1).
Then, a total of 11 differently expressed inflammation-
related genes were identified by intersecting the 56 DEGs
and 30 inflammation-related genes that were displayed in
the Venn diagram (Fig. 1A). The expression of 9
upregulated genes (TACR1, IRF7, BST2, IFITM1, LAMP3,
SELL, CXCL9, IL12B, IL12B, GPR132, IL18) and 2
downregulated genes (KCNMB2, TACR1) in breast cancer
were visualized using a heatmap (Fig. 1B). 10 risk genes
(Hazard ratio > 1) and 1 protection gene (Hazard ratio < 1)
were found to be associated with breast cancer, according to
a univariate Cox regression analysis (Fig. 1C). Almost all of
the prognostic signature genes were positively correlated,
and the correlation between these genes were displayed in
Fig. 1D.

Construction and validation of a prognostic model in breast
cancer
To investigate the relationship between IRGs and prognosis in
breast cancer patients, we constructed a prognostic risk
prediction model based on the 11 univariate results through
the LASSO algorithm analysis. And the 10-fold cross-
validation was utilized to determine the optimal values of
the tuning parameter, and the results showed that the 7
IRGs were the most reliable markers (Fig. 2A). There were
no zero coefficients in the LASSP coefficients displayed in
Fig. 2B. A nomogram was constructed using 7 IRGs,
including GPR132, IFITM1, IL12B, IL18, IRF7, KCNMB2,
and TACR1, to predict the 1-, 2-, and 3-year survival of
breast cancer patients (Fig. 2C). The total score was
obtained by accumulating the scores of each gene, and the
vertical lines were drawn downward at the corresponding
point of the total score to determine the relative survival
rates of 1-, 2-, and 3-years. According to the median risk
score, patients were classified into low-and high-risk groups.
We performed the Kaplan-Meier and ROC analyses to
estimate the strength of the IRGs’ signature and compare
the differences between the two groups. The KM curves
showed a significant difference between the two groups and
revealed that patients with higher risk scores tended to have
a worse prognosis and shorter survival times (Fig. 2D).
Moreover, the areas under the curve of ROC curves (AUCs)
at 1, 2, and 3 years were 0.640, 0.604, and 0.628, respectively
(Fig. 2E). The results showed the good sensitivity and
specificity of the prognostic model.

Further Validation of the IRGs Risk Prediction Model

To further assess the stratification capabilities of the IRGs risk
prediction model, which was constructed based on the TCGA
cohort, we divided breast cancers into high- and low-risk
groups based on the median risk score. Then we plotted the
distribution map of patient survival status and risk score

(Fig. 3A). The distribution plot of risk scores revealed more
deaths in the high-risk group. Additionally, the scatter plot
of the patients’ survival status demonstrated an obviously
improved prognosis for the low-risk group. The principal
component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) were utilized to confirm the
reliable clustering ability of the risk score. The plots
demonstrated that breast cancer patients of different risk
groups were distributed in two directions, indicating that
the expression of 7 genes in the model can effectively
classify breast cancer patients into high- and low-risk
groups (Fig. 3B). The univariate and multivariate Cox
proportional hazard regression analysis was conducted to
further explore the independent prognostic value of the
inflammation-related genes prognostic risk model.
Univariate analysis indicated that age (p < 0.001) and
pathological (stage) (p < 0.001) were significantly correlated
with overall survival. Additionally, further multivariate
analysis revealed a significant correlation between age (p <
0.001), pathological (stage) (p < 0.001), lymph node status
(N) (p < 0.001), and overall survival (Figs. 3C and 3D). The
hazard ratio (HR) of the risk score and 95% confidence
interval (CI) were 2.783 and 1.737–4.457 in univariate Cox
regression analysis (p < 0.01), and 3.129 and 2.065–4.741 in
multivariate Cox regression analysis (p < 0.01). These results
suggested that the risk score of the model was a powerful
independent predictor of the prognosis in breast cancer
patients.

Evaluation of tumor microenvironment based on IRGs
The single sample gene set enrichment analysis (ssGSEA) was
used to quantify 16 immune cell subsets and 13 immune-
related functions to clarify the correlation between the risk
score and immune status. In the TCGA cohort, the results
showed that the immune cell infiltration status was often
high in the low-risk groups, and the immune-related
pathway was also increased in those groups (Figs. 4A and
4B). From the findings, we could conclude that the immune
response may be more active in the low-risk group than in
the high-risk group, and the poor prognosis of breast cancer
patients in the high-risk group may be correlated with
negative immune regulation. According to the
immunophenotyping distribution of various tumor sample
types in the TCGA database, the levels of risk scores for 5
immune types were displayed through the one-way ANOVA
analysis (Fig. 4C). Then, we further researched the intrinsic
function of IRGs and the associated signal transduction
pathway through GSEA, the results demonstrated that the
pathways were differentially enriched between low- and
high-risk groups (Fig. 4D). Immune status and stromal cells
play an important role in the tumor microenvironment. We
performed a correlation analysis of the risk score and tumor
microenvironment to better understand the impact of the
tumor microenvironment on the prognosis of breast cancer
patients. The results demonstrated that the risk score was
negatively correlated with immune cell infiltration (p <
0.001, R = −0.36) and stromal cells (p < 0.001, R = −0.7)
(Fig. 4E). And also, spearman correlation tests were
performed based on stem cell score (DNAss) and stem cell
score (RNAss) to explore the association between risk scores
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FIGURE 2. Construction and evaluation of the prognostic model of inflammation-related genes. (A, B) LASSO Cox regression analysis
screened 7 differentially expressed inflammatory genes and established a prognostic model; (C) The nomogram for predicting 1-year, 2-
year, and 3-year overall survival in breast cancer patients; (D) Survival analysis of breast cancer patients in low- and high-risk groups; (E)
ROC curve confirmed the accuracy of the prognostic model.
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and cancer stemness scores, and the results revealed a positive
correlation between RNAss and risk score (p < 0.05, R = 0.16)
(Fig. 4F). As a result, there may be a strong relationship
between the risk score of the prognostic model and the
activity of cancer stem cells.

The relationship between IRGs and drug sensitivity
Through the 60 diverse human cancer cell lines (NCI-60)
database, which was assessed via the CellMiner interface
(https://discover.nci.nih.gov/cellminer), we explored the
effect of IRGs on drug sensitivity and obtained 16 drugs
with statistically significant differences (Fig. 5). The results
demonstrated that the expression of KCNMB2 was
positively correlated with the sensitivity of Isotretinoin,
Imuiquimod, Megestrol acetate, Fluphenazine, and
Fulvestrant. It represented that the higher the expression of

KCNMB2, the stronger the sensitivity to the above-
mentioned drugs. The expression of IL-18 was negatively
correlated with the sensitivity of Pipamperone, Bortezomib,
Actinomycin D, Estramustine, Vemurafenib, Vinblastine,
Raloxifene, Arsenic trioxide, and Lomustine. In addition, the
expression of IFITM1 has a positive correlation with
Imatinib, and GPR has a negative correlation with
Osimertinib. The investigation demonstrated that our risk
score calculation model could effectively predict the
sensitivity of cancer cells to these drugs and could lead to
more precise drug use in clinical settings.

Discussion

In recent years, the comprehensive treatment of breast cancer
has achieved, significant advances, and the survival of most

FIGURE 3. Prognostic value of the candidate prognostic model. (A) Risk curves constructed according to the median of the risk score and the
survival status in different risk scores; (B) Feasibility of PCA- and tSNE-based analysis and judgment models; (C) Univariate Cox regression
analysis of different clinical characteristics and risk scores; (D) Multivariate Cox regression analysis of different clinical characteristics and risk
scores.
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patients has greatly improved, but some breast cancer patients
still face the risk of recurrence and metastasis [5,31]. At
present, clinical, pathological, and molecular are used to
determine therapeutic strategies and evaluate the prognosis
of patients [32,33]. But due to the significant heterogeneity
of breast cancer, these factors still cannot be used to
precisely evaluate the prognosis of patients. Therefore, new
biomarkers that could accurately predict the prognosis of
breast cancer are urgently needed.

Cancer-associated systemic inflammation is strongly
related to poor disease outcome in patients [34,35]. The
inflammatory microenvironment can provide favorable
conditions for the expansion and mutation of tumor cells

[36]. A prior study has demonstrated that 8 inflammatory
response-related genes have been linked to prognosis and
immunological status in hepatocellular carcinoma, and
inhibiting these genes may be a treatment option [37].
Recent studies have demonstrated a close relationship
between some inflammatory cells and inflammatory factors
and breast cancer [18,38,39]. Additionally, there has been a
gradual increase in research on prognostic risk prediction
models for breast cancer. Only a few studies have developed
inflammation-based prognostic markers, despite the fact
that inflammation has been found to play a role in breast
cancer. Therefore, it is meaningful and innovative to
research the prognosis of breast cancer patients from the

FIGURE 4. Correlation analysis of immune infiltration patterns based on IRGs. (A) The difference of immune cell subsets in low- and high-
risk groups of an inflammation-related prognosis model; (B) The difference of immune function and pathway in the low- and high-risk groups
of inflammation-related prognosis models; (C) The difference between breast cancer patients with different risk scores and immune
classification; (D) KEGG analysis showing functional enrichment in risk groups; (E) Scatterplot of correlation between the immune cell
score, stromal cell and risk score. (F) Scatterplot of correlation between the DNAss, RNAss and risk score (���p < 0.001).

INFLAMMATORY-RELATED GENES PREDICTS PROGNOSIS IN BREAST CANCER 163



perspective of inflammation-related factors. In our study, a
prognostic signature of 7 genes associated with
inflammation precisely identified the survival of breast
cancer patients during robustness evaluation. Inflammation-
related genes could serve as possible biomarkers and
potential therapeutic targets for patients with breast cancer.

It is a very effective bioinformatics strategy to establish
predictive models using data from TCGA and GEO
databases that sequence the whole genomes of breast cancer
patients. In this study, we established an inflammatory risk
model to predict the prognosis of breast cancer. Firstly, we
identified 200 inflammatory-related genes from the gene set
of the GSEA database, and then 11 prognosis-related genes
were screened out using R software. The univariate Cox
regression analysis revealed that 11 IRGs all showed
prognostic values. LASSO algorithm analysis was used to
construct an inflammatory risk prediction model based on
the expression of prognostic IRGs and survival. 7 robust
IRGS were identified by 10-fold cross-validation analysis,
including GPR132, IFITM1, IL12B, IL18, IRF7, KCNMB2,
and TACR1. We used the IRGs to build a classifier. Patients
were divided into low- and high-risk groups according to
their risk scores. The KM survival analyses showed that
patients with higher risk scores tended to have a poorer
prognosis and survival. The ROC demonstrated that the
prognostic model had good sensitivity and specificity. And

the risk score could be regarded as a powerful predictor
through analyses such as PCA, t-SNE, and univariate and
multivariate Cox regression.

Tumor inflammation is closely associated with immune
cell infiltration in the tumor microenvironment, which
contributes to the immunotherapy response. We compared
tumor infiltration between the two risk groups in this study.
We found that patients in the low-risk group had higher
proportions of immune cells such as CD8+ T cells, B cells,
DCs, Macrophages, and so on. These immune cells could
contribute to anti-tumor immunity and were positively
associated with the prognosis of breast cancer [40,41].
Finally, we performed tumor microenvironment
characteristics and drug sensitivity analysis of these IRGs
and found there was a significant correlation. It indicated
that we could make accurate and effective decisions when
selecting drugs in clinical trials.

In conclusion, we established an inflammatory risk
model to predict the prognosis of breast cancer based on
TCGA database. Firstly, differentially expressed
inflammatory genes were identified and constructed into a
prognostic model using LASSO. The bioinformatics analysis,
which included ROC, risk score, Kaplan Meier analysis,
univariate and multivariate cox regression analysis, and
more, proved the excellent ability to predict the prognosis of
gene signatures based on inflammation. Finally, we

FIGURE 5. Gene-drug sensitivity analysis based on the CellMiner database and screened out the top 16 drugs with the highest correlation with
gene expression in inflammation-related prognosis models.
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examined the features of the tumor microenvironment and
drug sensitivity of these differentially expressed genes. In
summary, it was discovered that a higher risk score was
strongly associated with a worse prognosis for breast cancer,
which could be useful to clinicians in helping them make
accurate and effective decisions.
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Supplementary Materials

FIGURE S1. 30 inflammation-
related genes were related to overall
survival.
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