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ABSTRACT

Feature segmentation is an essential phase for geometric modeling and shape processing in anatomical study of
human skeleton and clinical digital treatment of orthopedics. Due to various degrees of freedom of bone surface,
the existing segmentation algorithms can hardly meet specific medical need. To address this, a novel segmentation
methodology for anatomical features of femur model based on medical semantics is put forward. First, anatomical
reference objects (ARO) are created to represent typical characteristics of femur anatomy by 3D point fitting in
combination with medical priori knowledge. Then, local point clouds between adjacent anatomies are selected
according to the AROs to extract boundary feature point (BFP)s. Finally, the complete model of femur is divided
into anatomical regions by executing the enhanced watershed algorithm guided with BFPs. Experimental results
show that the proposed method has the advantages of automatic segmentation of femoral head, neck and other
complex areas, and the segmentation results have better medical semantics. In addition, the slight modification of
segmentation results can be achieved by adjusting a few threshold parameter values, which improves the conve-
nience of modification for ordinary users.
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1 Introduction

As the longest and hardest tubular bone in the human skeletal system, the femur starts at the hip joint at
the top and ends at the knee joint at the bottom, and bears all the weight of the upper body [1]. With the
increasing trend of global aging, femoral surgery accounts for a large proportion of all surgical clinics.
For the treatment of local bone damage and necrosis, the most common method for doctors is to use
orthopedic implants to replace the original part of the bone [2], so as to achieve the restoration of bone
anatomical morphology and specific biological functions.

Fortunately, the integration of digital technology and interdisciplinary fusion, such as orthopedics
continuously drives the transformation of clinical treatment patterns and the promotion of postoperative
quality in orthopedics [3]. Three dimensional (3D) digital models have become an important reference for
doctors in femur pathological diagnosis and preoperative planning of surgical treatment [4,5]. However,
we found that in the clinical surgical treatment of medical orthopedics, especially in joint replacement
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surgery, surgeons usually pay more attention to the anatomical morphological characteristics of the local
lesion area than the complete bone shape to achieve better personalized treatment.

For medical device manufacturers, a good match between the shape structure and mechanical property
of implant product and individual patient’s bone is the research direction and ultimate goal. Therefore, during
orthopedic implant and prosthesis development, designers need to acquire the complete bone structure and
local shape characteristics of the specific population or an individual patient, and then complete serial or
customized product development according to routine standards and individual needs, respectively [6,7].
In hip prosthetic replacement, the selected implant should match the original femoral head shape as
closely as possible. While in knee arthroplasty, the shape of artificial joint must approximate that of distal
femoral condyle. Therefore, dividing the entire femoral model into multiple regions according to the
semantic of medical anatomy, especially complex regions involving joints, is critical for the design and
development of prosthesis and joint replacement surgery.

The surface contour of the femur is very complex and contains a large number of irregular curved
surfaces with varying degrees of freedom. At the same time, the local anatomy of the femur has
important medical functional and physio-mechanical properties, such as the external shape of the femoral
head is directly related to hip stability, which in turn affects the normal movement and life of patients.
However, existing segmentation algorithms have much uncertainty for femoral model segmentation
because of the smooth surface of bone, fewer geometrical characteristics, and individual differences. 3D
segmentation of human bone is still challenging work, especially for general medical researchers lacking
computer modeling expertise. Therefore, according to the typical topography and structure of the human
femur, we hypothesize that anatomical feature objects with important medical anatomical semantics could
be used to represent the global structure and describe the local anatomy [8–12], thereby guiding the
watershed algorithm for the anatomical segmentation of femur model based on the reference object.

In this study, we propose a novel segmentation methodology for anatomical features of femur model
based on medical semantics. Firstly, anatomical reference objects (ARO) are created to represent typical
characteristics of femur anatomy in combination with medical priori knowledge. Secondly, local point
clouds between adjacent anatomies are selected according to the AROs to extract boundary feature point
(BFP)s. Thirdly, the complete model of femur is divided into anatomical regions by executing the
enhanced watershed algorithm guided with BFPs. Our contributions to this paper are three-fold:

� First, we introduce a novel representation mechanism of femur anatomy in two-level feature points,
including structural feature points and shape feature points with anatomical referential objects (AROs)
to describe the overall structure and local details.

� Second, we improve a watershed 3D segmentation algorithm guided by boundary feature points
(BFPs) to achieve fast segmentation of complex regions.

� Finally, we implement the segmentation algorithms and evaluate the effectiveness and feasibility in a
prototype platform.

The paper is organized as follows. Section 2 reviews some of the existing segmentation works. Section 3
describes the materials and detailed algorithms for feature description, feature point extraction, registration of
segments and surface reconstruction. In Section 4, the methodology is implemented, and experimental results
are summarized and analyzed. Section 5 discusses the results and algorithms. Section 6 concludes with a
summary of the content of this study and proposes future research directions.

2 Related Works

In this section, we start by surveying existing techniques, including unsupervised segmentation and
supervision segmentation [13,14]. Then, we discuss the segmentation methods and their shortcomings in
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existing femur related, and propose a medical semantic based idea for anatomical feature segmentation in
point cloud models.

2.1 Unsupervised Segmentation
In unsupervised studies, 3D model segmentations are achieved without using any label information by

using classical algorithms include clustering [15], region growth [16], spectrum analysis, topological
segmentation, surface fitting, spatial subdivision and others [17]. The core idea of unsupervised
segmentation is to cluster related objects with consistent geometric features or shapes into the same class,
and then obtain segmentation models. Relying on consistent geometric similarity matching algorithms in
sets, existing studies have achieved good performance. However, in the case of different shapes and
topologies of objects of the same class, it is very hard to obtain satisfactory segmentation by only relying
on a small number of features to match objects. Previous techniques used handmade features, which are
usually concentrated on specific attributes of 3D objects, so it is difficult to extend them to other
application environments.

2.2 Supervision Segmentation
Supervised segmentation uses machine learning to map local features to labels, and its advantage lies in

solving geometric problems with algebra [18]. Typical supervised segmentation algorithms can be roughly
divided into point cloud segmentation, kd tree point cloud segmentation, image segmentation projection to
shape, hierarchical segmentation and graphical neural network [13]. In the process of execution of such
methods, a large number of shape features need to be input, and on this basis, the underlying objects
constituting the model are classified according to labels [19]. When data sets are diversified, network
prediction labels based on image convolution could effectively solve the problem of difficult
segmentation [20]. Because 3D point cloud data can be regarded as graphical data, many ideas of
graphical network have been applied to feature learning of point cloud data and achieved good results. Yi
et al. [21] used spectrum based graph convolution to perform semantic segmentation of 3D object
models, proposed a spectrum conversion network to achieve better parameter sharing, and introduced the
concept of gap convolution to increase multi-scale information. Compared with unsupervised
segmentation, supervised segmentation methods could achieve higher accuracy. However, the
segmentation accuracy of the existing method object boundary still needs to be strengthened [22], and the
global information and local information cannot be effectively integrated.

In summary, existing research has made significant contributions to model segmentation innovation.
However, existing methods usually focus on aspects such as geometric features and mathematical
statistics, while ignoring concerns and constraints on typical structures and specific functions in specific
types of models. Therefore, the existing segmentation algorithms are difficult to be used for the
segmentation of models with smooth surfaces and less prominent geometric features, and the rationality
of the final segmentation results cannot be guaranteed.

2.3 Bone Segmentation
Through semantic segmentation, medical users can more clearly locate and represent the detailed shape

and morphology of local regions in bone models. Unlike other standard segmentation test case models, the
anatomy and local shape of the human femur are irregular. At present, there are few reports on the semantic
segmentation of bone models combined with medical anatomy. Zhang et al. [23] proposed a normal vector
election method to solve the Gaussian curvature of vertices, and divided the femoral mesh model into
multiple regions automatically according to vertex clustering. Wu et al. [24] suggested the feature point
guided regional growth algorithm to segment the femoral and tibia mesh, and obtained the experimental
results related to medical understanding. However, due to the smooth surface and irregular shape of
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femur, it is a challenge to incorporate the specific needs of medical anatomy into the segmentation strategy or
rules of existing research methods. Therefore, the existing research on femur segmentation cannot avoid the
problems of over-segmentation and under-segmentation of local regions caused by automatic execution, and
it is difficult to meet the requirements of medical semantic segmentation.

To overcome the above-mentioned anatomical segmentation challenge of femur, we propose a novel
anatomical feature segmentation method for point cloud model based on medical semantics. In this
study, anatomical reference object (ARO) was used to describe typical anatomical features and medical
anatomical semantics of femur, and the enhanced watershed algorithm was combined with a few semantic
interactive operations to segment the femur into five components with significant medical significance.

3 Materials and Methods

In this study, 50 healthy femurs of Chinese female volunteers living in Southern Jiangsu of China with
no previous trauma were scanned by 64-slice CT (MSCT, Aquilion 64, Toshiba, Zoetermeer, Netherlands) to
acquire 3D surface models, and each femur was preprocessed by removing tendons and other attachments
around the bone, then point cloud models were obtained. The average height of the samples was 159.8 ±
4.6 mm (range from 157.2 to 163.7 mm). In addition, an averaged femur model constructed in our
previous studies [17–20] was used to represent the typical skeletal anatomy of femur.

3.1 Overview of Proposed Approach
To achieve the satisfaction of the segmentation results of femoral surface features to medical needs, it is

essential to describe the typical anatomical characteristics of femur as accurately as possible in combination
with medical prior knowledge. Fig. 1 shows the overall workflow of anatomical feature segmentation and
key processes of our method, namely ARO creation, BFP extraction, automatic segmentation and
interactive modification. First of all, the femoral anatomical reference object (ARO)s are used to represent
the typical anatomical structure information of femur. Next, considering the difference of boundary
features between regions, we select boundary feature point (BFP)s to guide bone segmentation based on
the existing marker-controlled watershed algorithm [24,25]. Then, the slight modification of segmentation
results can be achieved by adjusting a few threshold parameter values.

3.2 Creation of Anatomical Referential Object
In the studies of human bone morphology, the representation of femoral anatomical structure and the

recognition of shape features generally rely on a series of anatomical reference object (ARO)s with
significant medical semantics, including points, axes, planes, etc. The AROs are commonly located on the

Figure 1: Overall workflow of feature segmentation based on femoral medical semantics
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surface or inside of the 3D model. On the basis of existing research works [26,27], 3D point fitting strategy is
adopted to create the AROs corresponding to the head, neck, shaft and other features [9,10,12], and to guide
subsequent segmentation of femoral anatomical features.

The point set of femoral head area Ph is fitted to a spherical surface by using the least squares method, as
shown in Fig. 2a.

JhðPt;h; RhÞ ¼
X
Pi2Ph

ðjjPi � Pt;hjj � RhÞ2 (1)

in which, Pt,h and Rh are the head center and head radius of femoral spherical, respectively.

The center point of the neck isthmus Pt,ni is created by the minimum interface fitting method [27] as
shown in Fig. 2b, and the neck axes line Lnax is generated by connect Pt,h and Pt,ni.

JnðPt;e; xd; yd; aÞ ¼
X

jjPi � Pt;ejj � xd2yd2

xd2sin
2aþ yd2 cos 2a

� �2

(2)

According to the center point of the femoral isthmus, the femur is divided into two parts, namely the
proximal part and the distal one, and the anatomical axis is created by means of cross-section fitting
circle as follows:

Step 1. Create the center of femur center Vc (the average value of all vertices in the point cloud) as
shown in Fig. 2c.

Step 2. Generate the cross plane Pl,mc which has the smallest area and passes Vc, and its corresponding
plane Pl,m.

Step 3. Obtain the cross plane Pl,sc which has the smallest area size parallel to Pl,m, and create the center
Pt,si and its isthmus plane Pl,si by fitting contour curves.

Figure 2: Anatomical reference object of femur
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Step 4. Create multiple cutting contour curves parallel to Pl,si, and generate the proximal axis Lpsax and
the distal axis Ldsax by fitting corresponding circle centers.

The detailed information of AROs is listed in Table 1, and the detailed creation methods can be found in
our previous studies [11,12].

3.3 Extraction of Boundary Feature Point
Boundary feature point (BFP) refers to a concave or convex vertex located at the boundary of adjacent

anatomical regions of femur. The strategy adopted in this work for BFP extraction is to preliminarily
determine the range of adjacent boundary feature points based on the above-mentioned AROs, and
extract the BFPs of adjacent area through geometric attribute calculation of the vertex. In view of the fact
that the local height of vertex can effectively describe the curved shape, we describe the concavity and
convexity of the vertex position with the vertex height with average normal, and realize BFP extraction
based on the vertex height screening principle. The main steps of height calculation [11] are as follows:

Step 1. Calculate the area AT and normal NT of the triangular surface where the vertex V and the
adjacent vertices Vi and Vi+1 are located, and obtain the normal vector NV of vertex V as shown in
Fig. 3a.

Table 1: ARO definition

Location ARO Name

Head Pt,h Head center

Neck Pt,ni Isthmus center of neck

Neck Lnax Neck axis

Shaft Pt,si Isthmus center of shaft

Shaft Pl,si Isthmus plane of shaft

Shaft Lpsax Proximal axis of shaft

Shaft Pt,ns Intersection of neck axis and shaft one

Shaft Ldsax Distal axis of shaft

(a) Normal vector definition 

V V1

V2

Vi

Vm

Ti

T1

NTi

NV NT1

Vi+1

NVi

NB 

V 

Vi

NB 

HV(V,Vi) 

(b) Height between two vertices 

Figure 3: Height definition of vertex
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NV ðV Þ ¼
Pm�1

i¼1
ðNTðTiÞ � ATðTiÞ
Pm�1

i¼1
ATðTiÞ

(3)

in which, m is the number of triangles associated with point V.

Step 2. Calculate the normal vector NB of the edge where the two adjacent vertices are located, and
obtain the height HV between two adjacent vertices.

NBðV ;ViÞ ¼ NV ðV Þ þ NV ðViÞ
jjNV ðV Þ þ NV ðViÞjj (4)

HV ðV ;ViÞ ¼ ðV � ViÞ � NBðV ;ViÞ (5)

Step 3. Calculate the height H of V.

HðV Þ ¼
T
Pm
i¼1

HV ðV ;ViÞ
S2jNV ðV Þj (6)

in which, T is the height coefficient. For the fine point cloud model, the local height difference of vertices is
very close, and increasing the value of T can appropriately increase the height difference between adjacent
vertices, and then is beneficial to solve the local maximum height. The T value can be adjusted in the interval.

Combining the femoral anatomy visual features and medical anatomical semantics, we adopt the local
height value as the extraction criterion of BFP. First, a significant feature point is manually marked in the
adjacent area. Then, the feature point is traversed by breadth, and the BFP point with a larger height
value is selected. The detailed execution process is shown in Algorithm 1.

Algorithm 1. Framework of BFP extraction

Input: Point cloud Fs, cloud threshold α, height threshold δ, ARO

Output: Local adjacent cloud point Lc, BFP set

1 For each adjacent region in Fs do

2 Select a significant feature point Fpi in the adjacent region;

3 Calculate the Euclidean distance between Fpi and the corresponding ARO, D(Fpi, AROi);

4 For each adjacent point Fpij of Fpi do

5 Calculate the distance D(Fpij, AROi);

6 If D(Fpij, AROi)in [D − α, D + α] do

7 Add Fpij into Lc;

8 Calculate the height value H(Fpij);

9 If the positive or negative of value H(Fpij) is consistent with the concave

or

convex of shape and H(Fpij)>= (H(Fpij) +δ) do

10 Add Fpij into BFP set;

(Continued)
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11 Breadth-first traverse the adjacencies of Fpi, and go to Line 5;

12 End if

13 End if

14 End for

15 End for

Take the head and neck as an example, the BFP extraction steps are as follows:

Step 1. Extract a significant feature point Fpi in the area to be segmented as shown in Fig. 4a, and
calculate the distance from Fpi to the head center Pt,h;

Step 2. Define the local cloud range of BFP (Lc) between head and neck according to the initial value of
threshold α as shown in Fig. 4a, and traverse all adjacent vertices Fpij, then remove vertices which values of
height H are negative;

Step 3. Extract the vertices Fpij with larger height value, and add it into the BFP set as shown in Fig. 4b.

3.4 Segmentation of Femoral Anatomical Feature
Different from the existing marker-controlled watershed algorithm [23], we adopt BFP to guide the

segmentation process, and define geodesic distance [28] as the segmentation criterion. The segmentation
process is detailed in Algorithm 2.

First, a salient feature point is selected as the seed Si in each adjacent point cloud area Lc. Next, the Si is
traversed with breadth-first, if the neighbor Sij is a non-boundary point and its geodesic distance value is
smaller, expand the anatomical area by flooding, and remove Si from Lc. Finally, repeat the above steps
until Lc is empty, stop the seed area expansion, and obtain the point set Sp.

The segment result of the head, neck, and trochanter is shown in Fig. 5.

Figure 5: Segmentation of head, neck, and trochanter

Algorithm 1. (continued)

Pt,h

Fpi

Lc

Figure 4: BFP extraction between head and neck
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Algorithm 2. Watershed segmentation based on feature point guidance

Input: Lc, BFP, seed point Si,

Output: segmentation point set Sp

1 Add Si into Sp;

2 While Lc is not empty do

3 If the neighbor Sij of Si ∉ BFP do

4 If D(Sij) < D(Si) do

5 Insert Sij into Sp;

6 Remove Si from Lc;

7 End if

8 i = ij;

9 go to Line 4;

10 End if

11 End while

For the regions namely connection trochanter and shaft, connection shaft and condyle with smooth
shape and hard to extract effectively by BFP, a small amount of semantic interactions are used for
segmentation based on BFP and ARO. The femoral shaft is the part between the lesser trochanter point
Pt,lt and the supracondylar point Pt,mt, through the two points, the femur model is cut orthogonal to the
axis of the shaft Lsx as shown in Fig. 6.

4 Experiments and Results

4.1 Experiment Environment
The proposed segmentation methodology and algorithms were implemented in the prototype

experimental platform with the hardware environment consisting of 3.0 GHz i7-9700 CPU with 16G
RAM, and the software environment including Microsoft Visual Studio 2008 and CATIA
V5 R21 integrated with CAAV5 and RADE V5 toolkits, as shown in Fig. 7.

4.2 Automatic Segmentation
In the experiments, 50 femur samples and 1 average model were used to evaluate the segmentation

algorithm.

With the interface as shown in Fig. 7a, we selected the objects predefined in the ABO label, including
HeadCt, NeckAxs, NectCt, ShaftPl, ShaftCt, ShaftAxs, TPt and NeckShaftPt to create corresponding AROs.
Then, in the Segmentation Controll label, the distance thresholds between features were set to 0.50, and the
height values of BFP were set to be twice the average height of the searched area. Finally, the feature
segmentation results of the femur samples were obtained automatically; the segment results of one
average model and six samples are shown in Fig. 8.

Pt,lt Pt,mt

Lsx

Figure 6: Segmentation of trochanter, shaft, and condyle with semantic interaction
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Figure 7: Implementation interfaces of prototype platform

Figure 8: Segmentation results of one average model and six femur samples
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4.3 Interactive Modification
In order to verify the segmentation modification function of the proposed method, a few interactive

operations were performed on the averaged femur model.

As mentioned above, after editing the value of proximal ARO (Pt,lt ) as shown in Fig. 7 to the center of
shaft isthmus by 5 mm, the segmentation results between the trochanter and shaft are shown in Fig. 9b. With
a similar interactive adjustment method, the fine-tuning results of the distal boundary segmentation were
obtained as shown in Fig. 9c. Subsequently, the threshold α of the distance searched for the neck and
intertrochanteric BFP was adjusted from 0.50 to 0.30 mm, and the segmentation result is shown in
Fig. 9d. The experimental results show that the BFP extraction range can be effectively controlled by
adjusting the distance threshold and ARO in the region where the boundary feature points are located
through a small amount of interactive operations.

4.4 Comparison of Existing Methods
To evaluate the effectiveness of anatomical segmentation, the segmentation results of our method are

compared with existing methods in semantic segmentation. The experimental results are listed and
compared as shown in Fig. 10.

Figure 9: Segmentation adjustment based on interactions

(c) Experimental results of Wu[16] 

(b) Experimental results of Zhang[15]

(a) Experimental results of our method 

Over-segmentation

Under-segmentation

Under-segmentation

Figure 10: Result comparison with existing methods
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5 Discussions

From the experiments, we can find that femur surfaces can be segmented into significant regions,
including head, neck, intertrochanter, shaft, and condyle as shown in Fig. 8. Unlike other real femur
samples, the segmented boundaries of the averaged model are relatively smooth, because that the surface
of averaged femur is smoother and the individual features are weaker than other samples. The
segmentation results of several real femoral sample models show that there are some differences in local
detailed anatomy (such as head, neck, etc.) between individual femoral samples. However, the
segmentation results of individual bone models are very similar. Especially for the complex shape of neck
and intertrochanter, the automatic segmentation results of the watershed algorithm based on feature point
marking can basically keep the same feature shape. On one side, the results could meet the needs of
visual features and medical anatomy, and can be used to locate and describe the local anatomical shape in
preoperative planning of patients, so as to improve the accuracy of bone pathological diagnosis. On the
other hand, the head, condyle and other areas separated from the whole femur can not only independently
represent the complex shape of individual local anatomy, but also be used to quickly and batch obtain the
anatomical information of specific people’s bones, and then improve the design efficiency of orthopedic
implant and prosthesis and the matching of the implant to the patient’s bone. Therefore, representing
anatomical semantics based on ARO and BFP can effectively achieve medical semantic segmentation of
3D femur model.

During the entire process of BFP extraction, the feature point search range and height threshold settings
directly affect the final extraction result, which in turn determines the anatomical segmentation effect of
femur model. Taking into account various factors such as the shape characteristics of each region of
femur and the quality of model, we define the threshold within 0.1 and 0.5 mm, and set the BFP
extraction height to be 3 to 10 times the average height of vertices in the search area. In fact, due to the
significant differences in the shape of human bones, the above parameter value settings must be
reasonably adjusted for the specific characteristic shape of the individual femur region in order to more
effectively extract regional BFPs. Therefore, combined with a few interactive interventions, the method
can intuitively fine-tune femoral feature segmentation results, so as to meet the actual needs of femoral
feature segmentation in different medical applications.

For the complex shape and smooth surface of femur, existing femoral segmentation research cannot
avoid the problem of local region transition segmentation or insufficient segmentation caused by the
automatic implementation of different algorithms. Some studies proposed various evaluation metrics for
3D mesh segmentation [29]; however, for the evaluation of femur feature segmentation results, there is
still no unified measurement indicator. Existing related works mainly analyze the segmentation results
based on medical semantics and boundary shape comparison. To evaluate the effectiveness of anatomical
segmentation, the results of our method were compared with those of other similar methods in semantic
segmentation. The comparison of the experimental results is shown in Fig. 10. We can find that the
proposed method can address the issue of under-segmentation caused by the curvature calculation in the
literature [15], and the feature boundary after segmentation is clearer. BFP extraction based on AROs
achieves the semantic description of femoral anatomy and femoral medical function. Our segmentation
method makes up for the insufficiency of the uncontrollable BFPs in the literature [24], and effectively
solves the problem of meaningless over-segmentation in regions such as intertrochanter in Fig. 10c, and
then the segmentation results are more in line with medical understanding. The representation and
localization of the anatomical morphology and surface anatomical features of human long bones are of
great significance for many medical research and clinical applications, and the segmentation of bone
models has great research space.
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6 Conclusions

In this study, we propose a novel segmentation method for anatomical features of femoral point cloud
model based on medical semantics. This research has the following three contributions. (1) The boundary
feature points and the local height of vertices are used as markers and geometric measures, and the fast
watershed algorithm is improved to effectively control the expansion range of seed vertices and realize
automatic semantic segmentation of complex anatomical shapes. (2) Combined with anatomical reference
entities, it supports segmentation adjustment based on a small amount of semantic interaction, which can
solve the problem of over segmentation and under segmentation, and the segmentation result has more
medical anatomical semantics. (3) The effectiveness and feasibility of segmentation algorithms are
implemented and evaluated in a prototype platform.

The surface of femur is smooth, and the shape complexity of feature regions is obviously different. In
different clinical applications or medical researches, medical personnel has different concerns about feature
segmentation of the same region. Therefore, how to refine the model segmentation according to the medical
anatomy semantics and personality requirements of each local feature area will be the key research work in
the future.
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