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Image Recognition of Breast Tumor Proliferation Level Based on 
Convolution Neural Network 
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Abstract: Pathological slide is increasingly applied in the diagnosis of breast tumors 
despite the issues of large amount of data, slow viewing and high subjectivity. To 
overcome these problems, a micrograph recognition method based on convolutional 
neural network is proposed for pathological slide of breast tumor. Combined with 
multi-channel threshold and watershed segmentation, a sample database including single 
cell, adhesive cell and invalid cell was established. Then, the convolution neural network 
with six layers is constructed, which has ability to classify the stained breast tumor cells 
with accuracy of more than 90%, and evaluate the proliferation level with relative error 
of less than 5%. The experimental result indicates the effectiveness of this approach, and 
is useful for providing an objective basis for evaluating the malignancy of breast tumors. 

Keywords: Breast tumor, proliferation level, convolution neural network, immunohistochemical 
staining, pathological slide.  

1 Introduction 
In pathological diagnosis, the proliferation of tumors is an important basis to differentiate 
benign and malignant tumors and to suggest the prognosis of tumors [Friedman and Kim 
(2010); Atanassov, Mohan, Lan et al. (2016)]. Immunohistochemical staining based on 
the monoclonal antibody Ki-67 or proliferating cell nuclear antigen (PCNA) is able to 
distinguish cells in the division cycle and G0 phase cells from the tissue section to 
determine the proliferative capacity of the tumor and widely used in clinical diagnosis 
[Juríková, Danihel, Polák et al. (2016); Huang, Chen, Wang et al. (2016)]. The 
immunohistochemical stain classifies tumor cells based on different cell cycles according 
to the staining intensity. Accurate identification of cells in pathological sections is 
important for the diagnosis of tumors [Ikemura, Shibahara, Mukasa et al. (2016); 
Salomon, Köllerman, Thederan et al. (2008)]. 
At present, the interpretation method used in the diagnosis of clinical pathology is mainly 
manual viewing. This method relies on personal experience, and might draw a completely 
different conclusion by different doctors [Shui, Yu, Bi et al. (2016)]. In order to overcome 
the subjectivity of pathological diagnosis and to improve the efficiency and accuracy, 
Shete et al. [Shete and Kharate (2015)] combined thresholding of dyed intensity with 
watershed segmentation, and proposed an automatic detection method for breast cancer 
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malignancy based on the proportion of dyeing area to the size of the whole image. Ko et 
al. [Ko, Chen and Lin (2016)] achieved the separation of overlapping nuclei by 
separating the stained regions on the basis of normalization of staining, which promoted 
the recognition accuracy of mammary tumor cells. For the identification and 
classification of suspected tumor cells in pathology, researchers have proposed many 
methods. Van Eycke et al. [Van Eycke, Allard, Salmon et al. (2017)] used color vector 
extraction and matching to solve the inter-assay differences of tonsil tumor 
immunohistochemical staining, and proposed a method to evaluate the necessity of image 
normalization, which has a certain increase in the recognition speed. Shi et al. [Shi, 
Zhong, Hong et al. (2016)] used an image processing method based on local correlation 
clustering to identify different types of cells for pathological slides of nasopharyngeal 
carcinoma, which overcomes the defects of low-quality images and improves the 
recognition accuracy. Fan et al. [Fan, Wei and Cao (2016)] used Back Propagation (BP) 
neural network based on feature extraction to extract the region of interest from lung 
cancer tissue section immunohistochemistry and optimized the extraction and 
segmentation of cancerous regions. In the study of pathological section target 
identification, most of the work starts with the classification of staining intensity based on 
the beliefs that the staining intensities of different types of cells are significantly different 
and the cells are relatively independent. Such beliefs in fact do not reflect the actual 
situation. Therefore, the related algorithms need to be improved with respect to the 
quantitative analysis of tumor cells. 
Convolutional neural network is an efficient recognition algorithm widely used in pattern 
recognition, image processing and other fields in recent years. It has the characteristics of 
simple structure, less training parameters and strong adaptability. In view of the existing 
problems in the automatic identification of tumor cells in pathological slides of breast 
tumors, this paper proposes a method of image recognition for breast tumor cells based 
on convolutional neural network and calculates the tumor proliferation level, which is 
able to obtain relatively accurate diagnosis results. 

2 Convolutional neural network 
The structure of the Convolutional Neural Network (CNN) is a special multi-layer sensor, 
which is highly invariant to translation and other deformations, and therefore is 
particularly suitable for identifying two-dimensional shapes [Zbontar and LeCun (2016)]. 
CNN reduces the number of parameters mainly by two means. One is to use convolution 
to achieve local perception to reduce the number of parameters. The convolutional layer 
contains multiple feature maps, each of which represents certain aspect of the previous 
layer [Li, Tran, Thung et al. (2014)]. Pooling is another way of reducing the number of 
parameters by counting the average or maximum value of an image within a certain area 
to achieve downsampling. The subsampling of the upper layer by the pooling layer can 
reduce its complexity and prevent overfitting [Krizhevsky, Sutskever and Hinton (2012)]. 
In image applications, the convolutional neural network uses Stochastic Gradient Descent 
(SGD) and Graphics Processing Unit (GPU) to speed up the training process, which 
makes it more convenient to train large numbers of image data [Bottou (2010); Soos, Rak, 
Veres et al. (2008)]. In this study, we use the convolutional neural network to learn the 
characteristics of stained breast cancer cells in order to identify and classify them with 
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different differentiation abilities. 
The convolutional neural network learns the characteristics of the original image through 
the cooperation of the convolutional layer and the pooling layer, and adjusts the 
parameters through the classic back propagation algorithm (BP) to achieve the update of 
the weights, and ultimately complete the learning task. The convolutional network 
structure uses a convolutional discrete type [LeCun, Bottou, Bengio et al. (1998)]. 
Expressed as 

𝐶𝐶(𝑝𝑝,𝑞𝑞) = 𝑓𝑓(��𝑢𝑢(𝑝𝑝+𝑖𝑖−1,𝑞𝑞+𝑗𝑗−1) ∗ 𝑤𝑤(𝑖𝑖,𝑗𝑗) + 𝑏𝑏(𝑖𝑖,𝑗𝑗)

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

) (1) 

where (𝑝𝑝, 𝑞𝑞) is the coordinates of the pixel in the image, 𝑢𝑢(𝑝𝑝,𝑞𝑞) is the input data, 𝑤𝑤(𝑖𝑖,𝑗𝑗) 
is the weight matrix of the convolution kernel, 𝑏𝑏(𝑖𝑖,𝑗𝑗) is the offset of the convolution 
kernel, 𝑚𝑚 ∗ 𝑛𝑛 is the size of the convolution kernel and 𝑓𝑓(·) is the activation function. 
The pooling layer samples the mapping features of the input. After sampling, the number 
of input features and output features remains the same, while the size of the output 
features will be significantly reduced compared to the size of the input characteristics. 
The pooling layer is represented as 

𝑢𝑢𝛽𝛽
𝛾𝛾 = 𝑓𝑓(𝐵𝐵𝛽𝛽

𝛾𝛾 ∗ 𝑠𝑠𝑢𝑢𝑏𝑏 �𝑢𝑢𝛽𝛽
𝛾𝛾−1�+ 𝑏𝑏𝛽𝛽

𝛾𝛾) (2) 

where 𝛾𝛾 is the number of network layers, 𝛽𝛽 is a choice of input features, 𝑠𝑠𝑢𝑢𝑏𝑏(·) 
represents the function used for subsampling, 𝐵𝐵𝛽𝛽

𝛾𝛾  and 𝑏𝑏𝛽𝛽
𝛾𝛾  are offsets of the output 

features. The meaning of 𝑓𝑓(·) is similar to that of the convolutional layer. 
The learning target of CNN is to minimize the loss function L(𝑤𝑤, 𝑏𝑏), which typically 
adopts the mean squared error function, the cross-entropy cost function and the 
log-likelihood function. The derivative of the loss function for each layer is defined as the 
residual, and backpropagated by the gradient descent method. The training parameters 
𝑤𝑤𝑡𝑡 and 𝑏𝑏𝑡𝑡  of the convolutional neural network are updated layer by layer [Li, Hao and 
Lei (2016)]. 𝑤𝑤𝑡𝑡 and 𝑏𝑏𝑡𝑡  denote the weights and offset vectors of the convolution kernel 
of the level t, and the learning rate η is used to control the strength of backward 
propagation of residuals. 

𝑤𝑤𝑡𝑡  = 𝑤𝑤𝑡𝑡 − η ∗
∂L(𝑤𝑤, b)
𝜕𝜕 𝑤𝑤𝑡𝑡

 (3) 

𝑏𝑏𝑡𝑡  = 𝑏𝑏𝑡𝑡 − η ∗
∂L(𝑤𝑤, b)
𝜕𝜕 𝑏𝑏𝑡𝑡

 (4) 

In this study, we use the convolutional neural network to study the characteristics of the 
stained tumor cells to identify and classify the breast cancer cells with different 
differentiation abilities. To identify the proliferation level of one certain tissue section, it 
is necessary to extract independent cells from the original image, and add the counting 
weights according to the classification. 
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3 Methods 
3.1 Mammary tumor proliferation level 
Ki-67 is one of the essential biomarkers for assessment of proliferation rate in breast 
cancer screening and grading. Ki-67 image is shown in Fig. 1. The cells stained in dark 
brown were positive cells (P cells), i.e. tumor cells with strong proliferation ability; cells 
stained in blue were negative cells (N cell), corresponding to the G0 phase cells; the 
granular cells in the fibrous stroma were lymphocytes (L cells). 

 

Figure 1: Beast tumor cells in Ki-67 image 

Ki-67 positive index 𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 can characterize the proliferation of tumors, 

𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑁𝑁𝑢𝑢𝑚𝑚𝑃𝑃

𝑁𝑁𝑢𝑢𝑚𝑚𝑃𝑃 + 𝑁𝑁𝑢𝑢𝑚𝑚𝑁𝑁
 (5) 

Where, 𝑁𝑁𝑢𝑢𝑚𝑚𝑃𝑃 is the number of positive cells and 𝑁𝑁𝑢𝑢𝑚𝑚𝑁𝑁 is the number of negative 
cells. Studies on breast tumors have shown that, Ki-67 positive rate below 2% indicates 
that the cell proliferation activity is low and the tumor can be diagnosed as benign; Ki-67 
positive rate above 30% shows that the cell proliferation activity is extremely high and 
the tumor is highly malignant [Dowsett, Nielsen, A’Hern et al. (2011); Yang, Tang and 
Klimstra (2011); Shui, Yu, Bi et al. (2016); Focke, van Diest, Decker et al. (2016)]. 

3.2 Cell extraction 
The automatic extraction and recognition algorithm of breast tumor proliferation level 
proposed in this study is shown in Fig. 2. The use of image segmentation techniques is 
required to extract cells in both the training and application stages. The purpose of 
extracting cells during the training phase is to add labels to make samples, in which the 
positive and negative cells need to be distinguished, and the cells cannot be over-divided 
to prevent the over-fitting of CNN. The cells are extracted at the application stage for 
subsequent cell sorting and counting. As shown in Fig. 1, the staining intensity of the 
cells in the sectioned microscopic image is evenly distributed between blue and dark 
brown, and abnormal proliferation of tumor cells leads to increased adhesion between 
cells. In order to extract different types of cells, we combine two cell segmentation 
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techniques to treat breast tumor cell pathological images. 

 
Figure 2: Image recognition in CNN 

 

Figure 3: Multi-channel threshold segmentation; (a) original image, (b) positive cell set, 
(c) negative cell set, (d) background, (e) gray histogram of original image, (f) gray 
histogram of positive cell set, (g) gray histogram of negative cell set, (h) gray histogram 
of background 
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First of all, this study uses a multi-channel threshold segmentation method. The cell and 
background were separated by thresholding the I-channel image in the HSI model, and 
the negative and positive cells were differentiated by the threshold segmentation of the 
B-channel image in the RGB model, thereby dividing the original image into positive and 
negative cell sets and backgrounds. In three parts, the segmentation results are shown in 
Fig. 3. Figs. 3(a)-3(d) are the original image, positive cell (P cell) set, negative cell (N 
cell) set and background; Figs. 3(e)-3(h) shows the gray histogram. It can be seen from 
Fig. 3 that the gray value of the positive cells is uniformly distributed between 60 and 
190, and the gray value of the negative cells is between 130 and 220 and is concentrated 
in the range of 150 to 200. Therefore, the division of the negative cells and the positive 
cells in the pathological section is not absolute, and both of them are distributed in the 
gray-scale range of 130 to 190.  
Then, the segmented positive and negative cell sets were further divided using a 
watershed algorithm to extract positive cells and negative cells. The watershed represents 
the local maxima of the input image and the method has a good response to weak edges 
[Patras, Hendriks and Lagendijk (2001)]. The watershed method is able to generate 
continuous boundaries of cell division and fast calculation, but is likely to cause 
excessive segmentation. Correcting the gradient image by iterating the foreground marker 
yields [Koyuncu, Akhan, Ersahin et al. (2016)] a satisfactory segmentation result, as 
shown in Fig. 4. Among them, positive cells are in the orange region and negative cells 
are in the blue region. In the cell extraction process during the training phase, the 
lymphocyte and non-cellular substances are grouped together to reduce the interference 
to the counting during the application phase of the convolutional neural network. 

 

Figure 4: Watershed segmentation 
In addition, the segmentation results of Fig. 4 show that most single cells can be extracted, but 
some cells will adhere into a cell mass. The cell masses in the adhesive state mainly have 
three forms: Two-cell adhesions, three-cell bulk adhesions, and three-cell chain adhesions. In 
this study, these three types of adhesions are counted as one class separately, and the 
convolutional neural network is used to extract high-dimensional features to improve the 
robustness of the algorithm. Individual cells and adherent cell masses were kept in aspect 
ratios, placed in a 28×28 image as samples, and then be tagged. Take the positive cells as an 
example, independent cells are considered as a class and three adhesion states are considered 
as three classes. Thus, positive cells and negative cells are provided with 8 different types of 
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labels. In order to improve the recognition accuracy, another type of invalid cell is added. Fig. 
5 shows all 9 types of samples obtained by target extraction. 

 
Figure 5: Nine types of samples; (a) positive single cells, (b) positive two-cell adhesions, 
(c) positive three-cell bulk adhesions, (d) positive three-cell chain adhesions, (e) negative 
single cells, (f) negative two-cell adhesions, (g) negative three-cell bulk adhesions, (h) 
positive three-cell chain adhesions, (i) invalid cells 

3.3 Network structure 
The convolutional neural network used in this study consists of a six-layer network 
structure, including two convolutional layers C1 and C2, two pooling layers P1 and P2, 
one dropout layer D, and one fully connected layer F. The specific structure is shown in 
Fig. 6. In order to provide the network with better generalization ability, the image block 
is preprocessed by graying and normalization, and pictures with a size of 28×28 are then 
input into the network as training samples. In the convolution layer C1, the input blocks 
are convoluted using six 5×5 convolution kernels, and six feature maps with the size of 
24×24 are obtained. In the pooling layer P1, six 12×12 feature maps are obtained by 
sampling the feature map after the upper layer convolution using a maximum pool size of 
2×2. In the convolutional layer C2, twelve 5×5 convolution kernels are used to convolve 
the feature maps after the upper sampling, and 12 feature maps having a size of 8×8 are 
obtained. After the pooling layer C2 and the dropout layer D, we further reduce the 
feature number and adopt a full connection method at the output layer. Although the 
feature maps extracted through the two convolution and pooling operations are reduced in 
size, they can still guarantee the expressiveness of the features. 

 

Figure 6: The structure of convolutional neural network 
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4 Results and discussion 
The experimental data comes from http://pan.baidu.com/s/1mhGmS0S. There are 11 
microscopic section images of mammary gland tumors, each of which contained 10,000 
cells to 20,000 cells. We collected 100 pictures within a fixed-size field of view from 
these Slides. One example is shown in Fig. 1, which contained about 400 cells. In the 
process of building sample’s database, the cell’s segmentation approach proposed in this 
study is not always successful to all positive and negative cells, especial when their 
proportion is severely imbalanced. However, we can choose the properly segmented cells 
and labelled them artificially to overcome this problem. Then, the sample’s database of 
breast cancer Ki-67 immunohistochemistry is established under the guidance of clinic 
doctors. In order to improve the robustness and generalization of convolutional neural 
networks, the dataset is augmented by adding Gaussian noise, flip and rotation 
transformations to the samples. Tab. 1 shows the legends for each type of samples and the 
number of samples before and after data augmentation (DA). Among them, raw data of 
the 3rd, 4th, 7th, and 8th types are less, and the amount of data reach the same order of 
magnitude as other types after data augmentation. The convolutional neural network was 
eventually trained with 40,000 training samples and 20,000 test samples. 

Table 1: Sample distribution 

Type 1 2 3 4 5 6 7 8 9 

Legend 
         

Sample 
Size Before 
DA 

1200 900 200 200 1200 900 200 200 900 

Sample 
Size After 
DA 

9600 7200 4800 4800 9600 7200 4800 4800 7200 

When training the network, the number of samples extracted at each iteration is set to 100, 
and stop the iteration when the classification error is less than 8%. In order to verify the 
classification ability of the trained convolutional neural network, this study tested Fig. 1 
with a size of 900×900. According to a doctor, it contains 107 positive cells and 347 
negative cells. The classified number of nine types of samples is shown in Tab. 2, in 
which 𝑇𝑇𝑖𝑖 (i=1, 2, …, 9) is the statistic results by the doctor and 𝑃𝑃𝑗𝑗 (j=1, 2, …, 9) in the 
predicted results by CNN. 
By comparing the accuracy of various classifications, it was found that the classification 
errors of several types (such as 𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇5, and 𝑇𝑇6) with more raw samples were all 
below 10%. The classification accuracy of trained CNN was 

𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ��
∑�𝑛𝑛(𝑡𝑡,𝑝𝑝)|𝑡𝑡 = 𝑇𝑇𝑖𝑖�
∑�𝑛𝑛(𝑡𝑡,𝑝𝑝)|𝑡𝑡 = 𝑡𝑡�

∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖�
9

1

= 93.53% (6) 

where 𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 denotes the classification accuracy of class 𝑇𝑇𝑖𝑖, and 𝑛𝑛(𝑡𝑡,𝑝𝑝) denotes the 



 
 
 
 
Image Recognition of Breast Tumor Proliferation Level                        211 

sample number with true classification 𝑡𝑡  and prediction classifier 𝑝𝑝 . Tumor 
proliferation levels were calculated based on the classification results in Tab. 2. 

Table 2: The number of nine types of cell classified by doctor and CNN 

 
Prediction Accuracy 

(%) 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 𝑃𝑃4 𝑃𝑃5 𝑃𝑃6 𝑃𝑃7 𝑃𝑃8 𝑃𝑃9 

Truth 

𝑇𝑇1 37 2 - - 1 - - - 1 90.24 
𝑇𝑇2 1 20 - - - - - - - 95.24 
𝑇𝑇3 - - 4 - - - - - 1 80 
𝑇𝑇4 - - - 3 - - - - - 100 
𝑇𝑇5 2 - - - 154 6 - 1 4 92.22 
𝑇𝑇6 - - - - - 65 - 2 2 94.20 
𝑇𝑇7 - - 1 - - - 5 - - 83.33 
𝑇𝑇8 - - - - - 1 - 7 - 87.5 

𝑇𝑇9 2 - - - 4 1 - - 82 92.13 
 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑝𝑝=𝑃𝑃1

+ 2 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑝𝑝=𝑃𝑃2

+ 3 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑝𝑝=𝑃𝑃3|𝑃𝑃4

 (7) 

𝑁𝑁𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖_𝑛𝑛𝑖𝑖𝑛𝑛 = � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑝𝑝=𝑃𝑃5

+ 2 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑝𝑝=𝑃𝑃6

+ 3 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑝𝑝=𝑃𝑃7|𝑃𝑃8

 (8) 

𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝 = � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑡𝑡=𝑇𝑇1

+ 2 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑡𝑡=𝑇𝑇2

+ 3 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑡𝑡=𝑇𝑇3|𝑇𝑇4

 (9) 

𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝 = � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑡𝑡=𝑇𝑇5

+ 2 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑡𝑡=𝑇𝑇6

+ 3 ∗ � 𝑛𝑛(𝑡𝑡,𝑝𝑝)
𝑡𝑡=𝑇𝑇7|𝑇𝑇8

 (10) 

𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖_pre =
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 +𝑁𝑁𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖_𝑛𝑛𝑖𝑖𝑛𝑛
= 0.2391 (11) 

𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑝𝑝𝑡𝑡 =
𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝
= 0.2356 (12) 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝_𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖_𝑛𝑛𝑖𝑖𝑛𝑛 respectively represents the predicted number of positive breast 
tumor cells and negative tumor cells, 𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑁𝑁𝑡𝑡𝑝𝑝𝑡𝑡𝑖𝑖_𝑝𝑝𝑝𝑝𝑝𝑝 each represents the true 
number of positive breast tumor cells and negative tumor cells. For the test image, the 
relative error of tumor proliferation levels can be calculated. 

𝛿𝛿 =
𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖_pre − 𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑝𝑝𝑡𝑡

𝐾𝐾𝐾𝐾67𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖_𝑡𝑡𝑝𝑝𝑡𝑡
= 1.49% (13) 

The results meet the requirement that the relative error be less than 10%. 
In order to further verify the reliability of the breast cancer proliferation level recognition 
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algorithm based on the convolutional neural network, four slides reflecting different 
degrees of malignancy were selected from the breast tumor pathological database for 
identification, and five independent images with more than 400 cells were taken from 
each slide within a fixed-size field of view. In the test of each slide, the number of cells is 
more than 2,000. The statistical results are shown in Tab. 3. 

Table 3: Quantitative analysis of the recognition algorithm 

Slide 

    
Mean of 
Proliferation 
Level 

9.16% 19.55% 22.32% 39.79% 

Mean of 
Accuracy 

90.77% 93.80% 90.12% 92.62% 

Variance of 
Accuracy 3.12% 2.96% 4.05% 3.64% 

Mean of  
Relative Error 

2.71% 1.76% 2.93% 1.85% 

The mean relative error generated when calculating the proliferation level for the selected 
4 slides was less than 5%; meanwhile, the mean value of the classification error when the 
tumor cells or cell blocks were classified in each figure by the convolutional neural 
network was lower than 10%. This result shows the effectiveness of the proposed method 
for the automatic identification of mammary tumor proliferation. In future studies, the 
number of samples of tumor cells will be increased to improve the classification accuracy 
of the network. 

5 Conclusion 
In order to meet the requirements of high accuracy and speed in the quantitative analysis of 
tumor cells in pathological section images, we propose a method of automatic recognition 
of tumor proliferation level based on convolutional neural networks. In this study, a variety 
of image segmentation methods are adopted to accomplish breast cancer cell extraction and 
sample’s database establishment. The convolutional neural network with six layer network 
structure is built to learn the characteristics of breast cancer cells for identifying and 
classifying mammary gland tumor cells with different differentiation capabilities. The 
experimental results show that the convolutional neural network proposed in this study can 
accurately separate positive and negative cells of different forms, which has values in 
clinical application in the identification and diagnosis of early tumors. 
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