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Abstract: Intravascular optical coherence tomography (IVOCT) is becoming more and 

more popular in clinical diagnosis of coronary atherosclerotic. However, reading IVOCT 

images is of large amount of work. This article describes a method based on image feature 

extraction and support vector machine (SVM) to achieve semi-automatic segmentation of 

IVOCT images. The image features utilized in this work including light attenuation 

coefficients and image textures based on gray level co-occurrence matrix. Different sets of 

hyper-parameters and image features were tested. This method achieved an accuracy of 83% 

on the test images. Single class accuracy of 89% for fibrous, 79.3% for calcification and 

86.5% lipid tissue. The results show that this method can be a considerable way for semi-

automatic segmentation of atherosclerotic plaque components in clinical IVOCT images. 
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1 Introduction 

In recent years, intravascular optical coherence tomography (IVOCT) [Bezerra, Costa, 

Guagliumi et al. (2009)] has been increasingly applied to the clinical diagnosis of coronary 

heart disease. Comparing to coronary angiography, IVOCT has the advantage on providing 

a tomographic image of the lesion vessel and obtaining the detailed information on the 

vessel wall. IVOCT also provides images with a resolution of around 10 μm, an order of 

magnitude higher than the 200 μm resolution of intravascular ultrasound (IVUS). This 

demonstrates that it has the ability to clearly characterize the endovascular tissues, 

providing detailed and accurate information for stent implantation and other interventional 

procedures. 

During imaging diagnosis, the IVOCT imaging probe is pulled by the imaging guidewire 

and extends into the lesion vessels for imaging. A single imaging pullback process yields 

approximately 270 consecutive blood vessel cross-sectional images, which gives the 

clinician a large amount of reading work. Therefore, automated or assisted IVOCT image 

reading techniques, to distinguish between vascular tissue components, are in great need. 
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Among the existing studies, He et al. [He and Chunliu (2016)] implements a fuzzy c means 

clustering with geometric constrains, followed by a linear regression to analysis the correlation 

between IVOCT image features and manual Fibrous-cap-thickness measurements. In His study, 

some OCT features were found to have good performance and could be utilized for automatic 

qualitative analysis and the identification of high-risk plaques. Tsantis et al. [Tsantis, Kagadis, 

Katsanos et al. (2012)] extracted several features of the stent based on wavelet transform and 

then used neural network model to detect it. Ughi et al. [Ughi, Adriaenssens, Onsea et al. 

(2012)] introduced a method using the attenuation coefficient, which is extracted from each 

A-scan line according to the optical properties of tissue, combined with other texture features 

to perform image segmentation on the plaque tissue area. Athanasiou et al. [Athanasiou, 

Bourantas, Rigas et al. (2014)] first utilized the K-means clustering algorithm to extract the 

calcified region, and then used the gray level co-occurrence matrix and extracted the LBP 

texture. The classification was implemented based on the comprehensive consideration of 

the random forest algorithm. Wang et al. [Wang, Kyono, Bezerra et al. (2010)] proposed a 

way for semi-automatic detection of calcified plaques. In this study, edge detection was used 

to roughly extract the boundaries of calcified plaques, and then the active contour method 

was used to further adjust them. This method provides a clear and delineated boarder of 

calcifications but with limitations as users must first artificially remove false-positive 

calcified areas.  

This work implements a method based on multiple image feature extraction and support 

vector machine classifier (SVM) to segment the IVOCT blood vessel cross-sectional images. 

Training labels and “precision standards” come from manual segmentation. This work aims 

to distinguish three major plaque components at the site of coronary atherosclerotic lesions, 

i.e. calcification, fibrous tissue, and lipid containing regions [Tearney, Regar, Akasaka et al. 

(2012)].  

2 Methods 

The segmentation process steps are described as follows: pre-processing, feature extraction, 

SVM training and acquiring classification results. The purpose of the preprocessing is to 

exclude various artifacts and interferences on the image for subsequent steps of feature 

extraction [Tearney, Regar, Akasaka et al. (2012)]. The extracted features are enumerated 

in Section 2.3. Specific settings of parameters and training procedures of the SVM 

classifier are described in Section 2.3.  

2.1 Data acquisition 

Intracoronary images employed in this study were collected from 11 patients (age was 61-

73 years and four were women) at Nanjing Drum Tower Hospital in Nanjing with a 

Fourier-Domain OCT system (C7-XR, St. Jude Medical, Inc.) and the C7 Dragonfly 

intravascular OCT catheter (St. Jude). All data were de-identified before sending to 

Southeast University for analysis.  Imaging specifications, according to the manufacturer, 

consist in an axial resolution of 15 μm and a lateral resolution of 19 μm. Scan parameters 

are 100 frames per second, pullback speed of 20 mm/s and scan depth of 1.0-2.0 mm in 

biological tissue.  

The image datasets were acquired from 11 clinical patients and were non-identifiable. Each 
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frame of raw image was of 504×976 size and stored in polar coordination. A total of 28 

slices of images were chosen. Three well-trained IVOCT image reader implemented 

manual segmentation on each image as gold standard of this study. Average consistency 

between segmentation results from IVOCT readers is 91%. 

2.2 Preprocessing 

The original data were stored in polar coordinates as shown in Fig. 1(a). In order to eliminate 

the noise in the lumen, the pre-processing method uses Gaussian filtering on the image. 

The steps to remove the guide wire artifacts refer to the method by Wang et al. [Wang, 

Kyono, Bezerra et al. (2010)]. Due to the consistency of the guide wire artifacts location in 

IVOCT frames within a single pullback, a darker trajectory representing the movement of 

guide wire position along the pullback, as presented in Fig. 1(b), can be generated by: 1) 

generate a single line containing means of every A-scan line in the origin frame; 2) arrange 

each average line together to acquire a map as shown in Fig. 1(b). Thus the aim to extract 

the high-lighted yellow boundary in Fig. 1(b) can be treated as a dynamic programming 

problem [Howard (1966)].  

Fig. 1(c) was obtained by implementing an OSTU threshold filtering on a single frame 

image which has eliminated the guidewire artifacts with the position obtained. Lumen 

position can be easily acquired from Fig. 1(c). Fig. 1(d) is the Cartesian view obtained from 

Fig. 1(a) and Fig. 1(c), in which the red line in the figure is the contour of the vessel lumen 

[Ping, Zhu and Li (2015)]. Then, according to the lumen position, the region of interest 

(ROI) was set by extending a distance of 270 pixels along the axial direction.  

 
Figure 1: (a) An IVOCT frame in polar coordinate; (b) Average line map. Red dotted line 

refers to the frame position of Fig. 1(a); (c) OSTU threshold map; (d) Cartesian coordinate 

map of Fig. 1(a), in which the red line implies lumen position 

2.3 Extract features 

The segmentation was based on individual pixels. The target was to determine which 

category it belongs to pixel by pixel. It should be noted that each feature for a single pixel 

was extracted from a neighborhood of a particular sized window where the pixel was 

located. The utilized features are described below: 

(1) Attenuation coefficient: the method proposed by Van et al. [Van, Goderie, Regar et al. 

(2010); Soest, Goderie, Noorden et al. (2009)] was used to perform line-by-line attenuation 

coefficient extraction of A-scan line of IVOCT image. This method automatically extracts 

the attenuation coefficient 𝜇𝑡  by choosing a window to fit the A-scan line according to Eq. 

(1): 
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𝐼𝑑(𝑧) = 𝐼0 ∙ exp(−𝜇𝑡𝑧)(1)                                                                                    (1) 

(2) We extracted a series of gray level co-occurrence matrix based texture features. Let Cij be 

the element of the i-th row and the j-column in the normalized matrix, Let 𝑃𝑖𝑗 be the element 

of the i-th row and j-column in the original GLCM, then:  𝐶𝑖𝑗 = 𝑃𝑖𝑗 ∑ 𝑃𝑖𝑗
𝐺
𝑖,𝑗⁄ 𝐶𝑖𝑗 =

𝑃𝑖𝑗 ∑ 𝑃𝑖𝑗
𝐺
𝑖,𝑗⁄ , Then we can extract features such as: 

Contrast:                                 

 𝑓 = ∑ 𝐶𝑖𝑗(𝑖 − 𝑗)2                                                                                            (2) 

Correlation:                  

 𝑓 =
∑(𝑖𝑗)𝐶(𝑖,𝑗)−𝜇𝑖𝜇𝑗

𝜎𝑖𝜎𝑗
                                                                       (3) 

Homogeneity:                

 𝑓 =  
𝐶𝑖𝑗

(1+|𝑖−𝑗|)
                                                                                  (4) 

Entropy:                              

𝑓 =  − ∑ 𝐶𝑖𝑗log (𝐶𝑖𝑗 +  2−30)                                                            (5) 

Among them, in Eq. (3), 𝜇𝑖 = ∑ 𝑖𝐶𝑖𝑗 , 𝜇𝑗 = ∑ 𝑗𝐶𝑖𝑗 , 𝜎𝑖
2 = ∑(𝑖 − 𝜇𝑖)2𝐶𝑖𝑗 , 𝜎𝑗

2 = ∑(𝑗 −

𝜇𝑗)
2

𝐶𝑖𝑗 . The gray level co-occurrence matrix was calculated based on grayscale levels of 

16, 32, and 64; distances between pixel pairs of 2, 4, and 6; angles of 0o, 45o, 90o and 135o; 

window widths of Grayscale co-occurrence matrix extraction at 5 pixels, 9 pixels, 15 pixels, 

21 pixels.  

We annotated the pixels in the ROI region in several images and extracted the features. A 

total of 3 types of labels were marked out: pixels in the calcification area, pixels in the lipid 

area, pixels in the fibrous tissue area. A total of 628400 252-dimensional vectors were 

obtained. 

2.4 Feature processing and SVM training 

First the missing or damaged part in the data acquired from Section 2.2 was wiped out. 

Since SVM classifier is scale-variant, a linear scale change was made for each dimension 

feature of the data so that the features of each dimension were roughly scaled to the range 

of (0, 1). The ratio of the linear scale change was calculated from the training data and used 

directly in the test data. 

Then, the feature data were selected by sorting according to the Random forest feature 

selection and relevance scores between features and training labels. The filtered data was 

entered into the SVM class for training. Noted that SVM classifier is equipped with ‘rbf’ 

kernel function for which the parameter is γ = 0.7 . We set up SVMs with different 
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proportions of features as control groups to perform the experiments. In addition, the data 

set was divided into training sets and test sets in different proportions for subsequent 

analysis.  

Classification accuracy was computed within the manually drawn ROI by comparing the 

ground-truth pixels to the output result of SVM classifier. Accuracy was computed as the 

number of pixels signed to the correct class label divided by the total number of pixels. 

3 Results 

Part of the statistics of texture features collected from the ROIs of the images is shown in 

Tab. 1. 

According to the random forest selecting score, a certain percentage, i.e. from 20% to 90%, 

of the top-scored features were taken as input of SVM classifier. Fig. 2(a) lists the test 

accuracies of SVM classifiers trained with different numbers of features. It can be seen that 

an increase in the number of features leads to an increase in the classification score. 

However, the score improved slowly when more than 70% features were added in, yet the 

calculation was time-consuming. Apart from this, to some extent, Fig. 2(a) implies that 

Random forest selection did not work well in estimating the correlation between the 

features and the target label. Relatively, the scores achieved with feature selection based 

on trained SVM weight is shown in Fig. 2(b). 

Table 1: Feature naming rules: f*i*d*w*. i16 represents a greyscale level of 16; d2 

indicates that the distance between pixel pairs is 2; w5 refers to a window size of 5×5; f* 

indicates the feature type: f1: Contrast, f2: Correlation, f3: Homogeneity, f4: Entropy, f5: 

Energy, f6: cluster shadow; Atten: attenuation coefficient. In this table, ‘f2i16d2w5’, 

‘f3i16d2w5’, ‘f4i16d2w5’, ‘f5i16d2w5’, ‘f6i16d2w5’ implies ‘Correlation’, ‘Homogeneity’, 

‘Entropy’, ‘Energy’, ‘Cluster shadow’ calculated from GLCM. The GLCM parameters are 

specified as: greyscale level=16, pixel distance offset=2, window size=5×5 

   

According to Fig. 2(b), the first 151 dimensions feature were taken as input of SVM. This 

balanced the trade-off between 4% accuracy and the amount of calculations, reduced the 

test time from about 6 s to about 3 s per 100 pixels. 

To exam how much we benefit from adding more training data and the capability of SVM 

classifier, we used different sizes of training set to train the SVM. With a constant number 

 Atten f2i16d2

w5 

f3i16d2

w5 

f4i16d2

w5 

f5i16d2

w5 

f6i16d2

w5 

… 

count 628400 628400 628400 628400 628400 628400 … 

mean 19.0368

3 

0.22185

4 

0.02882

8 

0.35078

3 

64.5151

3 

3.67943

6 

… 

std 5.76380

9 

0.21191

9 

0.00809

6 

0.04698

4 

65.1912

4 

0.16436

9 

… 

min 3.87244

9 

-

0.28709 

0.02015

1 

0.24229

8 

-

206.916 

1.70274

1 

… 

max 42.8254 0.90898

7 

0.29154

5 

0.75583

9 

582.061

8 

3.94259

5 

… 

 …       

 7 rows×504 columns 
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of training steps, the training and validation score increases with the gradual expansion of 

training data. The training score and validation score were close when taking 80% of 

dataset as the training set as Fig. 3 shows. 

      
(a)                                                                                    (b)                                                                  

Figure 2: The prediction results achieved by including different ratios of parameters that 

were selected based on Random forest estimation (a) and SVM model parameters (b) 

respectively 

 

Figure 3: A cross-validation on the prediction results over splitting the training set and the 

validation set in different proportions 

4 Discussion 

In general, support vector machines can select a few training samples that are most 

effective for predicting tasks in high dimensional data, thus saving the required memory in 

the model learning process and improving the prediction performance of the model. A 

support vector machine with kernel function could obtain the optimal classifier in the 

determined data set. However, the support vector machine also consumes more computing 

resources and time when the input data dimension is very high. The computing devices 

utilized in the experiment: Feature extraction and classifier training were implemented on 

inter core7 CPU with Python multiprocessing. The features acquisition in a 977×977 image 

(ROI area only) costs about 10 min; the training process takes 25 min 40 s when counting 

in 252-dimensional feature entry; point-by-point prediction in a single-image (depends on 

the ROI) takes about 2-3 min. 

As Fig. 4 implies, in most of the images acquired, there are much more pixels belong to 

fibrous class than lipid or calcification, which means there are more samples of fibrous class 

than the rest of two. In this case, we managed to keep the amount of the samples belonging 

to each class in balance during training. Apart from this, Fig. 4(d) shows that some pixels 

belonging to calcification class were misclassified to fibrous class, which is probably because 
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of the inhomogeneity and relatively low brightness display of calcified plaque area. Fig. 4(e) 

shows an example of lipid pool with bright fibrous cap. Lipid plaques are characterized by 

their low brightness and low contrast, which makes it easy to be distinguished from other 

plaques once the ROI is determined. Most of the misclassified pixels of lipid class are located 

on the border of lipid and fibrous tissues. Similar to this, the accuracy appears low at the 

location of different tissue boundaries or complex plaque components area. This relatively 

poor performance may be caused by the lack of data diversity, which is the limitation of this 

study. However, the advantage of this method is based on per pixel classification, which 

means some part of the image, e.g. the border of the fibrous and the lipid tissue, could be 

fixed utilizing morphological based image processing method and other image features.  

To apply the SVM classifier trained with 151 features in test set’s image ROI we achieved 

an accuracy of 83%. Single class accuracy of fibrous, calcification and lipid tissue are 89%, 

79.3% and 86.5% respectively. As an example, Fig. 4 shows the predict result of two 

individual frames. Figs. 4(a), 4(e) are original image in Cartesian coordination. Figs. 4(b) and 

4(f) are the images with segmentation results overlays of Figs. 4(a) and 4(e), respectively. 

Figs. 4(c), 4(d) are the actual label results and predictions of 4(a). Figs. 4(g), 4(h) are the true 

label results and predictions of 4(e). Figs. 5(a) and 5(b) refer to the confusion matrix and the 

normalized confusion matrix [Powers (2011)] for the prediction. 

     

    

Figure 4: (a), (e) are two different original IVOCT frames; (b) is the image with 

segmentation result overlay of (a); (c) and (d) are the manual segmentation result and 

automatic segmentation result of (a); similarly, (f), (g), (h) are the overlay image, manual 

result and automatic segmentation result of (e). Red, blue, green parts indicate fibrous, 

calcification and lipid tissues respectively 
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(a)                                                                           (b) 

 Figure 5: (a) confusion matrix; (b) normalized confusion matrix 

With an increasing amount of training set to be added into the developed algorithm, the 

features can be improved significantly in the future. This method may be applied as a useful 

tool for plaque segmentation based on OCT imaging.  
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