
 

 

Copyright © 2016 Tech Science Press             MCB, vol.13, no.1, pp.23-36, 2016 

The Correlation Between Texture Features and Fibrous Cap 

Thickness of Lipid-Rich Atheroma Based on Optical Coherence 

Tomography Imaging 

Chunliu He1, Jiaqiu Wang2, Yuxiang Huang1, Tongjing Zhu1, Yuehong Miao1, Zhiyong Li1,2* 

Abstract: Fibrous cap thickness (FCT) is seen as critical to plaque vulnerability. 

Therefore, the development of automatic algorithms for the quantification of FCT is for 

estimating cardiovascular risk of patients. Intravascular optical coherence tomography 

(IVOCT) is currently the only in vivo imaging modality with which FCT, the critical 

component of plaque vulnerability, can be assessed accurately.This study was aimed to 

discussionthecorrelation between the texture features of OCT images and the FCT in 

lipid-rich atheroma.Firstly, a full automatic segmentation algorithm based on 

unsupervised fuzzy c means(FCM) clustering with geometric constrains was developed to 

segment the ROIs of IVOCT images. Then, 32 features, which are associated with the 

structural and biochemical changes of tissue, were carried out to describe the properties 

of ROIs. The FCT in grayscale IVOCT images were manually measured by two 

independent observers. In order to analysis the correlationbetweenIVOCT image features 

and manual FCT measurements, linear regression approach was performed. 

Inter-observer agreement of the twice manual FCT measurements was excellent with an 

intraclass correlation coefficient (ICC) of 0.99.The correlation coefficient between each 

individual feature set and mean FCT of OCT images were 0.68 for FOS, 0.80 for GLCM, 

0.74 for NGTDM, 0.72 for FD, 0.62 for IM and 0.58 for SP. The fusion image features of 

automatic segmented ROIs and FCT measurements improved the results significantly 

with a high correlation coefficient (r= 0.91, p<0.001). To conclude, the OCT images 

features demonstrated the perfect performances and could be used for automatic 

qualitative analysis and the identification of high-risk plaques instead manual FCT 

measurements. 

Keywords: Atherosclerotic plaque, intravascular optical coherence tomography, fibrous 

cap thickness, coronary plaque vulnerability. 
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1  Introduction 

Coronary atherosclerotic plaque rupture is a major cause of acute coronary syndrome 

(ACS)[Yonetsu, Kakuta, Lee,et al.(2011);Habara, Nasu, Terashima, et al. (2014); Cardoso, 

Weinbaum (2014)]. Thin-capped fibroatheroma (TCFA) is recognized as a precursor for 

plaque rupture. The pathologic features of TCFA are a large lipid-rich necrotic core (the 

maximum lipid arc>90o), a thin fibrous cap, and macrophage infiltration into the 

cap[Habara, Nasu, Terashima, et al. (2014); Cardoso, Weinbaum (2014); Di, Yoon , Kato, 

et al. (2014); Falk , Nakano, Bentzon, et al. (2013);Fujii, Hao, Shibuya, et al. (2015); 

Jang, Tearney, MacNeill, et al. (2005);Virmani, Burke, Farb, et al. (2006)]. Postmortem 

studies have shown that a fibrous cap thickness (FCT) (<65um) prone to rupture, the 

critical threshold was widely accepted [Tearney, Jang, Bouma (2006); Tian, 

Dauerman,Toma, et al.(2014)]. The composition and morphology of atherosclerotic 

plaques are considered to be more important in determining the risk of acute syndromes 

than the degree of luminal stenosis [Wang, Liu, Zhang, et al. (2016)].Therefore, detection 

and quantification of FCT of lipid-rich atherosclerotic plaque are important for the 

assessment of plaque vulnerability in order to prevent acute events and monitor 

interventional treatments. 

Intravascular imaging modalities such as intravascular ultrasound (IVUS) and 

angiography do not have ability to accurately quantify some of the critical components of 

a vulnerable plaque such as FCT measurements and macrophage content. IVOCT, 

however, is a unique high axial resolution (~10μm) imaging modality capable of 

characterizing these important morphological features of atherosclerotic plaque. IVOCT 

has demonstrated its capacity in the identification and quantification of FCT in clinical 

practice [Virmani, Burke, Farb, et al. (2006);Jang, Bouma, Kang, et al. (2002); Kubo, 

Imanishi, Takarada, et al. (2007)].  

According to the published consensus standards for IVOCT images, the plaque lipid core 

is a signal-poor region within an atherosclerotic plaque, with poorly delineated borders, and 

little or no signal backscattering. Incontrast, the fibrous caphas a relatively homogeneous signal 

with high backscattering. Several semi-automatic and fully-automatic methods have been 

used to segment lipid and fibrous components bya supervised segmentation algorithm 

[Wang, Chamie, Bezerra, et al. (2012);Athanasiou, Bourantas, Rigas, et al. (2014)]. 

However, the two major drawbacks that hinder such image analysis are: (1) the procedure 

is cumbersome and time-consuming because of the large number of pixels, and (2) 

manual segmentation as the gold standardare subject to a certain degree of variability 

between different analysts. Therefore, an unsupervised method based on FCM algorithm 

was introduced in the study to resolve the segmentation problem of the poorly delineated 

borders of the lipid core. 

Therefore, in the present study,we determined the correlation coefficient and statistically 

significant between FCT measurements and IVOCT images features and estimated effect 

of OCT image features in quantifying FCT indirectly. 
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2 Materials and methods 

2.1 Image dataset 

All 33 IVOCT clinical pullbacks of 20 patients were taken from Affiliated Drum Tower 

Hospital, Nanjing University between December 2015 and December 2016. The IVOCT 

images were acquired by using a commercially available Fourier Domain OCT (FDOCT) 

system (2.7F C7-XR, St. Jude Medical, St. Paul, Minnesota) and C7 Dragonfly catheter 

(St. Jude). The system is equipped with a near-infrared laser light source with a central 

wavelength of 1310 nm and full-width-at-half-maximum bandwidth of 80 nm. The 

imaging system provides an axial resolution ~10 um and a lateral resolution of ~30um in 

biological tissues. Scan parameters were set as 100 frames/sec, 54,000 A-scans/sec, 

pullback speed of 20 mm/sec, pullback length of ~54.2 mm. This study was approved by 

the institutional human ethics committee. All the patients have given explicitly informed 

consent. IVOCT images including lipid-rich plaques from all pullbacks were selected as 

all databases. Out of these images, only segments containing lipid-rich plaques were 

selected based on the published consensus standards [Falk, Nakano, Bentzon, et al. 

(2013)] and the improvement of standard interpretation algorithm [Kini, Vengrenyuk, 

Yoshimura, et al. (2017)]. Total of 102 images were selected for further analysis. For each 

plaque, expert observers selected the same images from the IVOCT runs and measured 

the thinnest FCT two times, from which the final measurement value of FCT was 

averaged. 

2.2 Image pre-processing 

Consider the IVOCT images in polar coordinates where the rowis angle and columnis 

depth as shown in Fig.1(a).Ring-area (RA)and lumen are automatically segmented by the 

following four steps. The results of each step are shown in Fig.1. The procedures include: 

 Remove guide-wire and artifacts; 

 The horizontal and vertical thresholdscalculated were taken into account the catheter 

size of polar image,then, set to the rows and columns to zeros based on the thresholds, 

the result as follow in Fig.1 (b); 

 Binarization images were processed by adaptive threshold Otsu’s method algorithm 

and by morphological connect neighborhood and area constraint [Koga, Ikeda, 

Yoshida, Nakata, Takeno, Masuda, Koide, Kawano, Maemura (2013)]; 

 Lumen was automatically segmented by connecting the nonzero pixels, interpolating 

pixels of full zero row, and then expanding lumen to 1mm to take into account the 

limited penetration depth of OCT system; 

 The polar images were subsequently converted to a cartesian coordinate in order to 

reconstruct an image that preserved the true vessel wall morphology of visualization. 
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Figure 1:Illustration of the fully-automated segmentation procedure 

Image (a) shows original raw polar domain image;Image (b) shows the guide-wire and 

catheter artifacts removal partially;Image (c) illustrates the application of the Otsu’s 

method, morphological operations and the area constrain;Image (d) shows lumen 

segmentation result; Image (e) and (f) show the RA segmentation results before and after 

scan-conversion respectively 

2.3 Region of interest(ROI) extraction 

Compared to fibrous cap, necrotic lipid core exhibits a lower signal density and a more 

heterogeneous back-scattering [Prati, Guagliumi, Mintz, et al.(2012);Prati, Regar, Mintz, 

et al. (2010)]. Lipid core area has the followingmajor characteristics: diffusely bordered, 

signal-poor regions with overlying signal-rich bands. In this paper, FCM method was 

selected to extract the cap of fibrous components[Chamie, Bezerra, Attizzani, et al. 

(2013)], which was contoured with green solid lineas shown in Fig.2 (a). Once the cap of 

fibrous components was segmented, the lipid core borders were subsequently obtained by 

arc angle of lumen contours.Thecontourofthe fibrous cap componentin the 2-D image 

was represented bytwocurves along x-axis and y-axisin Fig.2 (b) and (c).Asimple 

polynomial curve fitting algorithmwasproposedin order to smooth two curves. Next, the 

key problem was to locate the two points pointed by the white arrow to extract ROI.We 

used the simple geometric constraints: the catheter center set as an origin, four equal 

regions were divided, the same arc angle in Fig.2 (b) and (c) are the points indicated by 

white arrow in Fig.2 (a). Fig.3givesthree representative results of the ROI in different 

pullbacks. 
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Figure 2: The fibrous cap contour extraction algorithm using the FCM algorithm with 

geometric constraint 

The green solid line contour of image (a) shows the cap segmentation result byFCM 

algorithm. Image (b) and (c) display the fitting results using polynomial curve fitting 

algorithm. The green solid line and red solid line represent curve shape of the row and 

column index valuebefore and after polynomial curve fitting, respectively. Image (d) 

shows the cap contours of image (a) before and after polynomial curve fitting 

 

Figure3: Representative results of the ROI on three frames from different pullbacks 

Image (a), (b) and (c) show the log image with lipid-rich plaques in the cartesian 

coordinate. Image (c), (d) and (f) show the ROI (red overlay region) corresponding to the 

image (a), (b) and (c), respectively 
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2.4 Feature extraction 

Texture features and shape parameters were extracted from ROIs. Texture refers to the 

spatial interrelationship and arrangement of the basic elements of an image [Kato, 

Yonetsu, Jia, et al.(2013); Christodoulou, Pattichis, Pantziaris, et al.(2003)]. Texture 

features have to be derived from the gray images because the spatial interrelationships 

and the arrangements of the image pixels are seen as variations in the intensity patterns or 

gray tones visually. Although it is easy to recognize different kinds of textures, it is quite 

a difficult task to define and interpret the texturesautomatically by computer 

algorithm.Shape is also an important feature for medical image [Wang, Liu, Zhang, et al. 

(2016)]. In this paper, six different feature sets composing of a total 32 features were 

listedin table 1.The implementation details for the texture features, shape parameters and 

referred papers are shown below: 

Table 1:Feature setsinformation and corresponding references 

Feature 

sets 
Feature name Reference 

FOS 
mean, variance, median, 

skewness, kurtosis 

[Christodoulou, Pattichis, Pantziaris, et 

al. (2003)] 

GLCM 

correlation, contract, 

dissimilarity, energy, 

entropy, homogeneity, maximum 

probability. 

[Kalyan, Jakhia, Lele, et al. (2014)] 

NGTDM 
busyness, contrast, complexity, 

coarseness, texture length 
[Araki, Ikeda, Shukla, et al. (2016)] 

IM I1,I2,I3,I4,I5,I6,I7 
[Yoshikawa, Ishii, Kurebayashi, et al. 

(2013)] 

FD H1, H2, H3, H4 
[Christodoulou, Pattichis, Pantziaris, et 

al. (2003)] [Qiu, Chen, Li, et al. (2012)] 

SP 
eccentricity, perimeter, 

majoraxislength, minoraxislength 

[Christodoulou, Pattichis, Pantziaris, et 

al.(2003)] 

2.5 Statistical analysis 

Initially, univariate linear regressions were performed between FCT measurements andvariables 

of IVOCT image features. Direct linear regression wasappropriate here, because the IVOCT 

images sampling interval was far more than 0.2 mm and the FCT measurements at nearby 

frameswere independent. In addition, multivariatelinear regressions were performed against all 

32 image features.Multiple correlation coefficient between variables was estimated using 

Pearson’s correlation coefficient (r). For all test, a two tailed p value<0.05 was considered 
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statistically significant. All statistical analysis was performed with SPSS statistical software 

(IBM SPSS Statistics for Windows, Version 19.0. IBM Corp, Armonk, New York). 

3  Result 

Table 2 reports statistically significant (p) and Pearson correlation coefficient (r) between 

univariate feature and mFCT(average twice measurements of FCT) measurements of 102 

images. The correlation coefficient is generally low, where the lowest and highest values 

are 0.64 (mean and energy) and 0.05 (I4). Bold p-values represent no statistically 

significant between two variable values. 

Table 2: The correlation coefficient of mFCT and univariate image features by two 

observers 

 mFCT  mFCT 

feature name r p-value  r p-value 

mean 0.64 <0.001 Texture length 0.38 <0.001 

variance 0.49 <0.001 I1 0.54 <0.001 

median 0.48 <0.001 I2 0.22 0.03 

skewness 0.51 <0.001 I3 0.33 <0.001 

kurtosis 0.53 <0.001 I4 0.05 0.59 

correlation 0.61 <0.001 I5 0.13 0.19 

contract 0.61 <0.001 I6 0.28 <0.001 

dissimilarity 0.62 <0.001 I7 0.50 <0.001 

energy 0.64 <0.001 H1 0.08 0.43 

entropy 0.48 <0.001 H2 0.08 0.41 

homogeneity 0.35 <0.001 H3 0.44 <0.001 

maximum probability 0.34 <0.001 H4 0.06 0.56 

busyness 0.25 0.0112 eccentricity 0.27 <0.001 

contrast 0.36 <0.001 perimeter 0.16 0.10 

complexity 0.16 0.10 mal 0.26 0.01 

coarseness 0.39 <0.001 mil 0.41 <0.001 

Similarly, Table 3shows statistically significant (p) and Pearson correlation coefficient (r) 

between multivariate features and mFCT measurements. Statisticallysignificant results 

were observed in each group i.e. individual group feature setand the fusion feature set. 
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The lowest correlation coefficient of individual group appeared at shape parameter group 

(SP), whichwas 0.58 for observer. The phenomenon was in turn confirmed in Table 2 that 

the correlation coefficient of four shape parameters were overall lower than others.In the 

contrast, the highest correlation coefficient of individual group was observed in feature 

set 2 (GLCM),which were 0.80. Pearson correlation coefficient of the fusion feature sets 

were0.91, which better than any individual group feature set.  

Table 3: The correlation coefficient of mFCTand multivariate image features 

Feature set 
mFCT 

r p-value 

FOS 0.68 <0.001 

GLCM 0.80 <0.001 

NGTDM 0.74 <0.001 

FD 0.72 <0.001 

IM 0.62 <0.001 

SP 0.58 <0.001 

Fusion feature sets 0.91 <0.001 

4  Discussion 

FCT is important indicator of plaque vulnerability, thus could potentially guide 

appropriate surgical treatment such as percutaneous coronary intervention (e.g., balloon 

angioplasty or stent placement). The reliable examination of these indicators of 

atherosclerotic plaques will ultimately determine the clinical value of IVOCT images, 

depending on the application of meaningful and reproducible methods.The 

mainfindingsof the present study are the excellent inter-observer agreement of the manual 

assessment of FCT measurements with previous studies. In addition, the highcorrelation 

between the image features of segmented ROIs and FCT measured, which show that 

IVOCT image feature is able to provide more information in quantization FCT 

measurements to promote both the computer-aided routine clinical use and analysis of 

large-scale data sets from clinical trials in vulnerable plaque. 

The current accepted universal method for assessing FCT measurements in vivo using 

IVOCT images is based on single measurement of the thinnest portion of the fibrous cap 

[Kubo, Imanishi, Takarada, et al. (2007);Kume, Akasaka, Kawamoto, et al. (2006)]. In 

practice, the extensive clinical image data in vivowere usually analyzed manually by 

expert analysts. Indeed, the excellent inter-observer agreement of IVOCT images to 

measure the FCT manually, have been previously reported. Kim et al. [Kim, Lee, Kato, et 

al. (2012)] performed first in vivo investigation in the inter-observer agreement 

(ICC=0.99) by 4 independent observers. Subsequently, Gerbaud et al [Gerbaud, Weisz, 

Tanaka, et al. (2016)] reported the excellent inter-observer agreement resulted for FCT 



 

 

 

The Correlation Between Texture Features and Fibrous Cap Thickness             31 

measurement, with ICC of 0.99 was reached in the analysis and was similar to literature 

previously. Greatly, excellentinter-observer agreement (ICC=0.99) was achieved for FCT 

measurement, consistent with the result of the previous mentioned studies.  

Although others’ and ourstudies had been certified the FCTmeasurements may be 

repeatable by independent observer manually,few literates focus on the interrelationship 

between IVOCT image features and FCT measurements.Such an idea will help in 

enhancing the significance of noninvasive coronary artery tests in the identification of 

FCT measurementsand assessment the risk factors of stroke. Thus, in the study, we first 

analyzedthe correlation coefficient and statistically significant between FCT 

measurementsandthe six group image features based on the priori knowledge that the 

more higher the correlation coefficient, the better elucidate the image features were used 

to quantify FCT. 

The results in this study (Table 2 and Table 3) indicate significant relationships between 

image features and FCT measurements. The rvalue of the univariate regressions indicate 

that only several single texture feature factor are dominant in determining FCT, there are 

mean, contract, dissimilarity, energy, entropy, homogeneity, maximum probability (Table 

2). On the other hand, the individual feature set of the multivariate regressions are all 

highly significant, and the correlation coefficients are substantially higher as well (Table 

3). Thus, FCT measurements seem to be influenced by multiple aspects of the texture 

features and shape parameters. This is to be expected, the texture features are postulated 

to act through their influence on the spatial interrelationships and arrangementof the gray 

image, and it is reasonable that each of these FCT (the minimum distance implied in the 

spatial arrangement) would be influenced by texture feature and shape parameters.Best 

feature sets were the GLCM feature set, followed by the FD. In general, all individual 

feature set performed in a range of about 0.62-0.80, except of the shape parameters that 

performed much worse.In order to enhance the influences of feature set, the six feature 

sets were combined, by connecting the feature one by one. Fusing results of the six 

different feature sets, improved the correlation results obtained by the individual feature 

sets, reaching an average correlation coefficient of 0.91 for observer. The benefits of 

fusionresults are more obvious in the case where there is no dominant best feature sets, as 

the case with the features extracted from the lipid-rich plaque images in this study. It is 

noteworthy in this respect that the signs of the regression coefficients in the univariate 

and multivariate regressions in Tables 1 and 2 are consistent. 

5  Study Limitations 

In multivariate regression analysis, correlation among the independent variables is one 

common problem. The problem may be an influentialfactor if the primary purpose of the 

regression is to identify important explanatory variables that might play a causal role. The 

estimated regression coefficients for such correlated variables can be different. This 

problem was not involved and discussed in our case. Feature selection method with 

deleting the possible correlations between the independent variables are suggested in the 

future research. 

In computer vision analysis, efficiency measured by the computational time is another 
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common problem. Computational times for preprocessing, lumen segmentation, 

scan-conversion and ROI segmentation were recorded bymatlab code, especially 

scan-conversion spent a long time (two hours for 271 images) in the study. As such, 

further coding and implementation in a faster language (e.g. C/C++) would significantly 

reduce computational time, possibly achieving the analysis of a multiple IVOCT images 

in a few minutes. 

Lack of histology data as the golden standard in the FCT measurement is the third 

problem. Given that IVOCT manual FCT measurementsof atherosclerotic plaques are 

subject to some inter-observer variability, the use of a third reader is always required in 

case of disagreement between two readers. As a matter of fact, only FCT measurement 

using a large series of histological samples would be able to give more objective and 

detailed results.However, even if histology can provide a stronger ground truth, the 

correct registration with IVOCT images can be a challenge due to histological slice 

thickness and helicoidal IVOCT data acquisition [Rieber, Meissner, Babaryka, et al. 

(2006)]. Therefore, a large amount of histological data would be required to achieve 

enough statistical analysis result, which is not currently available. 

7  Conclusion 

We discussed the correlation between features and FCT measurementsin human coronary 

arteries based on IVOCT images. The regression result demonstrated the fusion feature 

played an important role in quantification FCT for online identification of high-risk 

plaques.  
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