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Application of Different Variants of the BEM in Numerical
Modeling of Bioheat Transfer Problems

Ewa Majchrzak∗

Abstract: Heat transfer processes proceeding in the living organisms are de-
scribed by the different mathematical models. In particular, the typical continu-
ous model of bioheat transfer bases on the most popular Pennes equation, but the
Cattaneo-Vernotte equation and the dual phase lag equation are also used. It should
be pointed out that in parallel are also examined the vascular models, and then for
the large blood vessels and tissue domain the energy equations are formulated sep-
arately.
In the paper the different variants of the boundary element method as a tool of nu-
merical solution of bioheat transfer problems are discussed. For the steady state
problems and the vascular models the classical BEM algorithm and also the multi-
ple reciprocity BEM are presented. For the transient problems connected with the
heating of tissue, the various tissue models are considered for which the 1st scheme
of the BEM, the BEM using discretization in time and the general BEM are ap-
plied.
Examples of computations illustrate the possibilities of practical applications of
boundary element method in the scope of bioheat transfer problems.

Keywords: bioheat transfer models, Pennes equation, Cattaneo-Vernotte equa-
tion, dual-phase lag equation, boundary element method, heating of tissue

1 Introduction

Bioheat transfer models proposed in the literature can be divided into two cate-
gories, namely tissue models and vascular ones [1]. Currently, most of the exist-
ing models bases on the continuous Pennes equation [2]. Generally speaking, the
Pennes equation corresponds to the well known Fourier equation supplemented by
the additional components which take into account the global effect of the heat
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exchange between the blood vessels and the surrounding tissue. At present, it is
said that the tissue properties (in particular its heterogeneity) cause that the better
models can be formulated on the basis of Cattaneo-Vernotte equation [3, 4] and
dual-phase lag equation [5, 6]. The assumption of the finite velocity of thermal
wave causes a delay of heat flux in relation to the temperature gradient (Cattaneo-
Vernotte equation) and additionally a delay of temperature gradient in relation to
the heat flux (dual-phase lag equation).

Vascular models try to reproduce the real network of blood vessels in the tissues and
describe the local changes in temperature within individual blood vessels. How-
ever, the more exact vascular models required the detailed knowledge of blood
vessels geometry, the direction of blood flow, etc.

The influence of the external thermal effects is taken into account at the stage of the
boundary conditions formulation. Heat exchange between the skin surface and the
environment is determined by the processes of radiation, convection, evaporation
(sweating) and the action of controlled or uncontrolled external heat sources.

In this study, the possibilities of the boundary element method (BEM) application
for the numerical modelling of bioheat transfer problems are discussed [7, 8, 9].

So, for the steady state tasks the possibilities of the multiple reciprocity BEM ap-
plications are presented [10]. For the transient bioheat transfer problems described
by the Pennes equation the 1st scheme of the BEM [7, 9] and the BEM using dis-
cretization in time [7, 9, 11] are used, while to solve the Cattaneo-Vernotte equation
or the dual-phase lag equation the generalized boundary element method [12, 13]
is proposed.

Examples of calculations are mainly connected with the tissues models and they
concern the computations of temperature distribution in the injured and healthy tis-
sue (steady state problem) and the modelling of tissue heating (transient problem).
The vascular models are also discussed, in particular the numerical solution con-
cerning the thermal processes proceeding within a perfused tissue in the presence
of the blood vessels (artery and vein) is shown.

2 Bioheat transfer equations

Bioheat transfer in biological tissue domain is usually described by the equation
basing on the classical Fourier law

q(x, t) =−λ∇T (x, t) (1)

and then the energy equation takes a form

x ∈Ω : c
∂T (x, t)

∂ t
=−∇q(x, t)+Q(x, t) (2)
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In equations (1) and (2) q denotes the heat flux, ∇T(x, t) is the temperature gradient,
λ is the thermal conductivity of tissue, c is the volumetric specific heat of tissue,
Q(x, t) is the capacity of internal volumetric heat sources, x, t are the spatial co-
ordinates and time.

Introducing (1) into (2) one obtains the traditional energy equation

x ∈Ω : c
∂T (x, t)

∂ t
= λ ∇

2T (x, t)+Q(x, t) (3)

In the case of bioheat transfer the component Q(x, t) (the Pennes approach) is the
sum of perfusion and metabolic heat sources, in particular

Q(x, t) = GB cB [TB−T (x, t)]+Qm (4)

where GB is the blood perfusion coefficient, cB is the volumetric specific heat of
blood, TB is the arterial temperature and Qm is the metabolic heat source.

The modifications of equation (3) result from the acceptation of generalized forms
of the Fourier law. For example, the Cattaneo-Vernotte model results from the
formula

q(x, t + τq) =−λ∇T (x, t) (5)

where τq = a/C2 is called the relaxation time, a = λ /c is a thermal diffusivity and
C is a speed of thermal wave in the medium.

The first order Taylor expansion of formula (5) gives

q(x, t)+ τq
∂q(x, t)

∂ t
=−λ∇T (x, t) (6)

Putting (6) into (2) one obtains the following modified bioheat transfer equation

x ∈Ω : c
[

∂T (x, t)
∂ t

+ τ
∂ 2T (x, t)

∂ t2

]
= λ∇

2 T (x, t)+Q(x, t)+ τ
∂Q(x, t)

∂ t
(7)

Heat transfer in biological tissues can be also described by dual-phase-lag model
[5, 6] basing on the assumption that

q(x, t + τq) =−λ∇T (x, t + τT ) (8)

where τT is the thermalization time, it is the phase-lag in establishing the tem-
perature gradient across the medium during which conduction occurs through its
small-scale structures [5].
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Taking into account the first order Taylor expansions for q and T

q(x, t)+ τq
∂ q(x, t)

∂ t
=−λ∇T (x, t)−λτT

∂ ∇T (x, t)
∂ t

(9)

one obtains the following dual-phase-lag equation

x ∈Ω : c
[

∂ T (x, t)
∂ t

+ τq
∂ 2T (x, t)

∂ t2

]
=

λ∇
2T (x, t)+λτT

∂ ∇2T (x, t)
∂ t

+Q(x, t)+ τq
∂ Q(x, t)

∂ t

(10)

In the case of steady state conditions, the equations above presented give the well
known Poisson one

λ∇
2T (x)+Q(x) = 0 (11)

3 Boundary element method for steady state bioheat transfer equation

The Pennes equation for the steady state problem can be written in the form (c.f.
equations (3), (11))

λ∇
2T (x)+GB cB [TB−T (x)]+Qm = 0 (12)

or

λ∇
2T (x)−GB cB T (x)+Q = 0 (13)

where Q = GB cB TB +Qm.

To solve the equation (13) the multiple reciprocity boundary element method (MRBEM)
[10, 14] has been applied. This variant of the BEM allows one to avoid the dis-
cretization of domain interior. So, the following integral equation is considered
[14]

B(ξ )T (ξ )+
∞

∑
l=0

(GB cB
λ

)l ∫
Γ

q(x)V ∗l (ξ ,x)dΓ =

∞

∑
l=0

(GB cB
λ

)l ∫
Γ

T (x)Z∗l (ξ ,x)dΓ− Q
λ

∞

∑
l=1

(GB cB
λ

)l−1 ∫
Γ

Z∗l (ξ ,x)dΓ

(14)

where ξ is the observation point, q(x)= -λ n•∇T(x) is the boundary heat flux (n is
the normal outward vector). The coefficient B(ξ ) is dependent on the location of
source point ξ . For all points located inside the domain Ω the coefficient B(ξ ) =1.
If the point ξ belongs to the boundary Γ this coefficient is equal to β /2π , where β
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is an internal angle which the boundary makes at the point ξ . Thus, for a smooth
boundary the value B(ξ ) =0.5 is obtained.

Functions V ∗l (ξ ,x) for 2D and 3D problems are defined as follows [10, 14]

V ∗l (ξ ,x) =
{ 1

2π λ
r2l
(
Al ln 1

r +Bl
)

for 2D problem
1

4π λ
r2l−1Cl for 3D problem

(15)

where r is the distance between the points ξ and x, while

A0 = 1, Al =
Al−1
4l2 , l = 1,2,3, ...

B0 = 0, Bl =
1

4l2

(
Al−1

l +Bl−1

)
, l = 1,2,3, ...

(16)

and

C0 = 1, C1 =
1
2 , C2 =

1
24 , Cl =

1
(2l−1)(2l−3)Cl−1, l = 3,4,5, ... . (17)

The heat fluxes Z∗l (ξ , x) =−λ n ·∇V ∗l (ξ , x) resulting from the fundamental solu-
tions (15) can be calculated analytically and then

Z∗l (ξ ,x) =
{ d

2π
r2l−2

[
Al−2l

(
Al ln 1

r +Bl
)]

for 2D problem
− d

4π
(2l−1)r2l−3Cl for 3D problem

. (18)

where

d =
w

∑
e=1

(xe−ξe)cosαe (19)

while cosαe are the directional cosines of the normal boundary vector and w is the
problem dimension.

The other variants of the boundary element method can be also considered, for
example fast multipole BEM [15] or dual reciprocity BEM [16].

It should be pointed out that in the case when, for example, burned tissue or bone
tissue is considered the blood perfusion and metabolic heat source do not occur and
then GB=0 and Qm=0 (c.f. equation (13)). Then, the Pennes equation reduces to
the Laplace one for which the boundary integral equation has the following form

B(ξ )T (ξ )+
∫
Γ

q(x)V ∗0 (ξ ,x)dΓ =
∫
Γ

T (x)Z∗0(ξ ,x)dΓ (20)
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4 Boundary element method for transient bioheat transfer equations

From the mathematical point of view the Pennes equation (4) is the parabolic one,
the Cattaneo-Vernotte equation (7) is the hyperbolic one, while the DPL equation
(10) contains a second order time derivative and higher order mixed derivative in
both time and space.

To solve the Pennes equation by means of the boundary element method the several
variants basing on a time marching technique can be applied, this means the 1st

scheme of the BEM e.g. [17, 18, 19], the BEM using discretization in time e.g.
[20] and the dual reciprocity BEM [21, 22, 23]. The other approaches can be also
developed (e.g. [24]).

At first, the time grid should be introduced

0 = t0 < t1 < ... < t f−2 < t f−1 < t f < ... < tF < ∞ (21)

with the constant time step ∆t = t f – t f−1.

In the case of 1st scheme of the BEM for transition t f−1 → t f the following
boundary integral equation corresponding to the Pennes equation (4) is considered
[7, 9] (c.f. equation (23)

B(ξ )T (ξ , t f )+ 1
c

t f

∫
t f−1
∫
Γ

T ∗(ξ ,x, t f , t)q(x, t)d Γd t =

1
c

t f

∫
t f−1
∫
Γ

q∗(ξ ,x, t f , t)T (x, t)d Γd t + ∫
Ω

T ∗(ξ ,x, t f , t f−1)T (x, t f−1)dΩ+

1
c

t f

∫
t f−1
∫
Ω

Q(x, t f )T ∗(ξ ,x, t f , t)dΩd t

(22)

where T ∗ (ξ , x, t f , t) is the fundamental solution and it is a function of the form

T ∗(ξ ,x, t f , t) =
1

[4πa(t f − t)]w/2 exp
[
−

r2

4a(t f − t)

]
(23)

while ξ denotes a source point, r is the distance between the points x and ξ , w is the
problem dimension, a = λ /c is the diffusion coefficient and q(x, t)= - λ n•∇T(x, t).

The heat flux resulting from fundamental solution should be found using the for-
mula q∗ (ξ , x, t f , t) = - λ n•∇T ∗ (ξ , x, t f , t) and after mathematical manipulations
one obtains

q∗(ξ ,x, t f , t) =
λd

2 ·2w π
w
2 [a(t f − t)]

w+2
2

exp
[
−

r2

4a(t f − t)

]
(24)
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where d is defined by the dependency (19).

Another approach related to the Pennes equation solution is to replace the derivative
with respect to time by differential quotient. This variant of the BEM is called the
BEM using discretization in time [7, 9, 11]. Thus, taking into account the formula
(3), the Pennes equation (3) can be written in the form

c
∂T (x, t)

∂ t
= λ∇

2 T (x, t)−GB cBT (x, t)+Q (25)

where, as previously, Q = GBcBTB +Qm.

For time t ∈[t f−1, t f ] the following approximate form of the equation (25) is con-
sidered

T (x, t f )−T (x, t f−1)

∆t
= a∇

2 T (x, t f )− GB cB

c
T (x, t f )+

Q
c

(26)

and then

∇
2 T (x, t f )−AT (x, t f )+ 1

a∆t T (x, t f−1)+ Q
λ
= 0 (27)

where A=(c+GBcB∆t)/(λ∆t).

This approach is close to the finite difference method in the case of transient thermal
diffusion problems. Using the weighted residual criterion [7, 9] one obtains the
following boundary integral equation

B(ξ )T (ξ , t f )+ 1
λ
∫
Γ

T ∗(ξ ,x)q(x, t f )d Γ = 1
λ
∫
Γ

q∗(ξ ,x)T (x, t f )d Γ+

1
a∆t ∫

Ω

T (x, t f−1)T ∗(ξ ,x)dΩ+ Q
λ
∫
Ω

T ∗(ξ ,x)dΩ
(28)

where T ∗(ξ , x) is the fundamental solution and for the objects oriented in rectan-
gular co-ordinate system it is a function of the form

T ∗(ξ ,x) =


1

2
√

A
exp
(
−r
√

A
)
, for 1D problem

1
2π K0

(
r
√

A
)
, for 2D problem

1
4πr exp

(
−r
√

A
)
, for 3D problem

(29)

where K0(·) is the modified Bessel function of zero order [7, 9].

Heat flux resulting from the fundamental solution can be found using the formula
q∗ (ξ , x) = - λ n•∇T ∗ (ξ , x)

q∗(ξ ,x) =


λ sgn(x−ξ )

2 exp
(
−r
√

A
)
, for 1D problem

λ d
2π r K1

(
r
√

A
)
, for 2D problem

λ d
4πr2 exp

(
−r
√

A
)(

1
r +
√

A
)
, for 3D problem

(30)
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where K1(·) is the modified Bessel function of the second kind of order one [7, 9]
and sgn(•) is the sign function.

It should be pointed out that in order to improve the exactness of this variant of the
BEM the following approximation of equation (25) for t ∈[t f−2, t f ] can be taken
into account

3 T (x, t f )−4T (x, t f−1)+T (x, t f−2)

2∆t
= a∇

2 T (x, t f )− GB cB

c
T (x, t f )+

Q
c

(31)

The details of this approach can be found, among others, in [7].

In the case of Cattaneo-Vernotte equation or dual-phase-lag equation the boundary
element method is more complicated because the corresponding fundamental solu-
tion is either unknown or very difficult to obtain. A natural way to solve these equa-
tions is to apply the concept of generalized variant of the BEM using discretization
in time.

Because for τT =0 the dual-phase-lag equation reduces to the Cattaneo-Vernotte
equation, therefore the algorithm for the first of these equations will be presented
here.

Taking into account the form (3) of source function the dual-phase-lag equation
(10) can be written as follows

c
[

∂ T (x, t)
∂ t

+ τq
∂ 2T (x, t)

∂ t2

]
= λ∇

2T (x, t)+λτT
∂ ∇2T (x, t)

∂ t
−

GB cBT (x, t)+Q−GB cBτq
∂ T (x, t)

∂ t

(32)

Approximate form of equation (32) results from the introduction of differential
quotients, in particular

c
[

T (x, t f )−T (x, t f−1)

∆ t
+ τq

T (x, t f )−2T (x, t f−1)+T (x, t f−2)

(∆ t) 2

]
=

λ∇
2T (x, t f )+

λτT

∆ t

[
∇

2T (x, t f )−∇
2T (x, t f−1)

]
−GB cBT (x, t f )+

Q−GB cBτq
T (x, t f )−T (x, t f−1)

∆ t

(33)

or

∇
2 T (x, t f )−AT (x, t f )+R

[
T (x, t f−1)

]
= 0 (34)

where

A =
(∆t + τq)(c+GB cB ∆t)

λ ∆t(∆t + τT )
(35)
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and

R
[
T (x, t f−1)

]
=− τT

∆t + τT
∇

2 T (x, t f−1)+
c (∆t +2τq)+GB cB τq ∆t

λ ∆t (∆t + τT )
T (x, t f−1)

−
c τq

λ ∆t (∆t + τT )
T (x, t f−2)+

Q∆t
λ (∆t + τT )

(36)

Using the weighted residual criterion [7, 9] one obtains the following boundary
integral equation

B(ξ )T (ξ , t f )+
1
λ
∫
Γ

T ∗(ξ ,x)q(x, t f )d Γ =

1
λ
∫
Γ

q∗(ξ ,x)T (x, t f )d Γ+ ∫
Ω

R
[
T (x, t f−1)

]
T ∗(ξ ,x)dΩ

(37)

where fundamental solution T ∗(ξ , x) is described by formula (29), while the func-
tion q∗(ξ , x) by formula (30).

However, numerical experiments show that this variant of the BEM gives inaccurate
results, especially in the case of the dual-phase-lag equation.

The effective tool to solve the dual-phase-lag equation is the generalized boundary
element method (GBEM) [12, 13]. From the mathematical point the of view the
theoretical bases of GBEM are rather complicated, but at the stage of numerical
algorithm construction the procedures are similar to other variants of the BEM. At
the beginning, the derivatives with respect to time in the dual-phase-lag equation
(32) are replaced by the differential quotients and then the equation (34) is obtained.
Next, for the successive transitions t f−1→ t f the following equation must be solved

∇
2U [1](x)−AU [1] (x)+R

[
T (x, t f−1)

]
= 0 (38)

where

U [1](x) =
∂ Φ(x; p)

∂ p

∣∣∣∣
p=0

(39)

while Φ(x; p) is called homotopy [12], p is the embedding parameter.

The boundary integral equation corresponding to equation (38) has the following
form

B(ξ )U [1](ξ )+ 1
λ

∫
Γ

T ∗(ξ ,x)W [1](x)dΓ =

1
λ

∫
Γ

q∗(ξ ,x)U [1](x)dΓ+
∫
Ω

R [T (x, t f−1)]T ∗(ξ ,x)dΩ
(40)
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whereW [1](x)= -λ n•∇U [1](x) and the functions T ∗(ξ , x), q∗(ξ , x) are described by
formulas (29), (30), respectively.

After solving (40), the temperature T (x, t f ) is determined from the equation

T (x, t f ) = T (x, t f−1)+U [1](x) (41)

or [25]

Tk(x, t f ) = Tk−1(x, t f−1)+mU [1](x), k = 1,2, ...,K (42)

where T0(x, t f ) = T (x, t f−1), m is an iterative parameter and K is the number of
iterations.

Examples of computations - steady state problems
The first example concerns the computations of temperature field in the non-homogeneous
domain being the composition of burned and healthy tissue [26, 27]. The steady
state Pennes equation for healthy tissue is of the form

x ∈Ω2 : λ2∇
2T2(x)+GBcB [TB−T2(x)]+Qm = 0 (43)

where T2 (x) is the tissue temperature, λ2 is the tissue thermal conductivity, GB is
the blood perfusion coefficient, cB is the volumetric specific heat of blood, TB is
the arterial blood temperature, Qm is the metabolic heat source, x are the spatial
co-ordinates, x={x1, x2} for 2D problem, x={x1, x2, x3} for 3D problem.

For the burned tissue, blood perfusion and metabolic heat generation are equal to
zero, because the tissue is dead. So

x ∈Ω1 : λ1∇
2T1(x) = 0 (44)

where λ1 is the thermal conductivity of burned tissue.

On the surface between sub-domains the continuity of heat flux and temperature
field is assumed

x ∈ Γc :
{
−λ1 n ·∇T1(x) =−λ2 n ·∇T2(x)
T1(x) = T2(x)

(45)

On the skin surface (Figure 1) being in a thermal contact with an environment the
Robin condition should be taken into account

x ∈ Γex : −λ1 n ·∇T1(x) = α [T1(x)−Ta] , e = 1,2 (46)

where α is the heat transfer coefficient, Ta is the ambient temperature.
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Figure 1: Domain considered

At the internal surface the body core temperature is known

x ∈ Γin : T2(x) = Tb (47)

For the others boundaries the no-flux conditions can be assumed.

The problem has been solved by coupling of the multiple reciprocity BEM for
healthy tissue (equation (14)) and classical algorithm of the BEM for burned tissue
(equation (20)).

To solve the equations (20) and (14) the boundary Γ is divided into N elements Γ j

=1,2,. . . ,N. Then

B(ξ )T1 (ξ )+
N1

∑
j=1

∫
Γ j

q1 (x)V ∗0 (ξ , x)dΓ j =
N1

∑
j=1

∫
Γ j

T1 (x)Z∗0 (ξ , x)dΓ j (48)

and

B(ξ )T2(ξ )+
∞

∑
l=0

(
GBcB

λ2

)l N
∑

j=N1+1

∫
Γ j

q2(x)V ∗l (ξ ,x)dΓ j =

∞

∑
l=0

(
GBcB

λ2

)l N
∑

j=N1+1

∫
Γ j

T2(x)Z∗l (ξ ,x)dΓ j− Q
λ2

∞

∑
l=1

(
GBcB

λ2

)l−1 N
∑

j=N1+1

∫
Γ j

Z∗l (ξ ,x)dΓ j

(49)

where N1 is the number of elements resulting from the discretization of the bound-
ary limiting domain Ω1.

It should be pointed out that different types of boundary elements can be used,
namely constant elements, linear or parabolic ones [7, 9]. Here the linear boundary
elements are applied as shown in Figure 2.
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Figure 2: Discretization of boundaries

After the mathematical manipulations one obtains the following system of algebraic
equations corresponding to the burned tissue [7, 9]

K1

∑
k=1

G1
ikq1

k =
K1

∑
k=1

H1
ikT 1

k , k = 1,2, ...,K1 (50)

and the system of equations corresponding to the healthy tissue

K

∑
k=K1+1

G2
ikq2

k =
K1

∑
k=K1+1

H2
ikT 2

k +Pi, i = K1 +1,K1 +2, ...K (51)

where K1 is the number of boundary nodes located on the boundary limiting sub-
domain Ω1, K−K1 is the number of boundary nodes located on the boundary lim-
iting sub-domain Ω2. For example, for 2D problem presented in Figure 2: K1 =48,
K =108. It should be pointed out that taking into account the form of boundary
conditions, on the contact surface between sub-domains Ω1 and Ω2 (nodes 28-
69 in Figure 2) the double boundary nodes should be introduced. The remaining
double nodes (shown in Figure 2) for example 3-4, 24-25 correspond to different
boundary conditions, namely nodes 4, 24 are connected with the Robin condition,
while nodes 3, 25 are connected with the Neumann condition.

The system of algebraic equations corresponding to the equation (50) can be written
in the form

G1 q1 = H1T1 (52)
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and

G2 q2 = H2T2 +P (53)

The way of matrix G1, H1, G2, H2, P elements computations is described in details
in [7, 14].

For the needs of further considerations concerning the temperature field modeling
the following denotations are introduced (c.f. Figures 1 and 2)

– T1
1, T2

1, Tex
1 , q1

1, q2
1, qex

1 are the vectors of functions T and q at the
boundary Γ1∪Γ2∪Γex of domain Ω1,

– Tc1, Tc2, qc1, qc2 are the vectors of functions T and q on the contact
surface Γc between sub-domains Ω1 and Ω2,

– T3
2, T4

2, Tin
2 , q3

2, q4
2, qin

2 are the vectors of functions T and q at the
boundary Γ3∪Γ4∪Γin of domain Ω2.

Using above designations one obtains the following systems of equations

– for the burned region

[
G1

1 Gex
1 G2

1 Gc1
]

q1
1

qex
1

q2
1

qc1

=
[

H1
1 Hex

1 H2
1 Hc1

]
T1

1
Tex

1
T2

1
Tc1

 (54)

– for the healthy tissue domain

[
Gc2 G3

2 Gin
2 G4

2
]

qc2
q3

2
qin

2
q4

2

=
[

Hc2 H3
2 Hin

2 H4
2
]

Tc2
T3

2
Tin

2
T4

2

+P (55)

The condition (45) written in the form{
qc1 =−qc2 = q
Tc1 = Tc2 = T (56)
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should be introduced to the equations (54), (55). Next, coupling these systems of
equations one has

[
G1

1 Gex
1 G2

1 −Hc1 Gc1 0 0 0
0 0 0 −Hc2 −Gc2 G3

2 Gin
2 G4

2

]


q1
1

qex
1

q2
1

T
q
q3

2
qin

2
q4

2


=

[
H1

1 Hex
1 H2

1 0 0 0
0 0 0 H3

2 Hin
2 H4

2

]


T1
1

Tex
1

T2
1

T3
2

Tin
2

T4
2



(57)

The remaining boundary conditions should be also taken into account and then

[
−H1

1 αGex
1 −Hex

1 −H2
1 −Hc1 Gc1 0 0 0

0 0 0 −Hc2 −Gc2 −H3
2 Gin

2 −H4
2

]


T1
1

Tex
1

T2
1

T
q
T3

2
qin

2
T4

2


=

[
αGex

1 Ta

Gin
2 Tb

]

(58)

As an example, the domain of dimensions 0.04m× 0.02m has been considered. The
following input data have been assumed [26]: thermal conductivity of burned tissue
λ1=0.1 [W/(mK)], thermal conductivity of healthy tissue λ2=0.2 [W/(mK)], blood
perfusion coefficient GB=0.0005 [1/s], volumetric specific heat of blood cB=4.452
[MJ/(m3K)], arterial blood temperature TB=37oC, metabolic heat source Qm =200
[W/m3], heat transfer coefficient α=10[W/ (m2K)], ambient temperature Ta=20oC.
In Figure 3 the temperature distributions on the skin surface for different values of
parabolic vertex b (c.f. Figure 2) this means 0.012 m, 0.014 m and 0.016 m are
shown. The last curve corresponds to the constant burn depth, of course.

It should be pointed out that from the practical point of view this type of information
is very important. The skin surface temperature is dependent on the local depth of



Application of Different Variants of the BEM 215

Figure 3: Temperature distribution at the skin surface: 1– b=0.012m, 2 – b=0.014
m, 3 – b=0.016 m.

Figure 4: Pair of blood vessels
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the burn wound. Thus, it is possible to estimate the shape of wound using, for
example, the thermograms and solving the geometrical inverse problem [28].

As a second example, the thermal processes proceeding within a perfused tissue
in the presence of the blood vessels (artery and vein) are analyzed. The domain
considered corresponds to the so-called Krogh-type tissue cylinder [29] as shown
in Figure 4, which is heated only by a pair of blood vessels located at a central part
of cylinder, on the side surface the no-flux conditions can be assumed.

A steady state temperature field in tissue sub-domain is described by the Pennes
equation (c.f. equation (12))

(x1,x2,z) ∈Ω : λ∇
2T (x1,x2,z)+GB cB [TB−T (x1,x2,z)]+Qm = 0 (59)

The boundary conditions on the contact surfaces between tissue and vessels are of
the form of Robin ones

(x1, x2, z) ∈ Γ1 : q(x1, x2, z) =−λ n ·∇T (x1, x2, z) = α1 [T (x1, x2, z)−TB1 (z)]
(x1, x2, z) ∈ Γ2 : q(x1, x2, z) =−λ n ·∇T (x1, x2, z) = α2 [T (x1, x2, z)−TB2 (z)]

(60)

where TB1(z), TB2(z) are the blood temperatures inside artery and vein, respectively,
α1 and α2 are the heat transfer coefficients. According to the literature [1, 29],
under the assumption that the Nusselt number in the case considered equals to
Nu = 4, one can determine directly the values of above coefficients.

As was mentioned, the boundary condition on the external surface of the system is
of the form

(x1, x2, z) ∈ Γ1 : q(x1, x2, z) =−λ n ·∇T (x1, x2, z) = 0 (61)

Assuming that the changes of blood temperature are only the functions of co-
ordinate z, and taking into account the countercurrent blood flow, one can write
the following ordinary differential equations resulting from the energy balances
[30]

(x1,x2,z) ∈Ω1 :
dTB1 (z)

d z
= A1 [Tv1 (z)−TB1 (z)]+B1 (62)

and

(x1,x2,z) ∈Ω2 :
dTB2 (z)

d z
=−A2 [Tv2 (z)−TB2 (z)]−B2 (63)

where

Ae =
2αe

wecB Re
, Be =

QBm

wecB
, e = 1, 2 (64)
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while R1, R2 are the vessels radiuses, w1, w2 denote the blood rates inside artery
and vein, QBm is the metabolic heat source in blood vessels, while Tv1(z), Tv2(z)
are the mean temperatures of vessels walls corresponding to the cross section z. On
the basis of the Peclet number (Pe = 100 [1, 29]), one can determine the rates w1
and w2. The last equations are supplemented by the initial conditions, this means
TB1(0) = TB10 and TB2(Z) = TB20, where Z is the length of the segment considered.

The problem has been solved using the iterative algorithm being the combination
of the multiple reciprocity BEM (tissue) and the finite difference method (vessels).
At first, the fixed section perpendicular to the vessels is considered as shown in
Figure 5.

Figure 5: Section perpendicular to the vessels

For the cross section z the following equation (c.f. equation (59))

x ∈Ωz : λ∇
2T (x)−GB cB T (x)+Q = 0 , x = {x1,x2} (65)

supplemented by the boundary conditions (c.f. equations (60), (61))

x ∈ Γ1z : q(x) =−λ n ·∇T (x) = α1 [Tv1 (z)−TB1 (z)]
x ∈ Γ2z : q(x) =−λ n ·∇T (x) = α2 [Tv2 (z)−TB2 (z)]

x ∈ Γ0z : q(x) =−λ n ·∇T (x) = 0
(66)

is taken into account.

Application of multiple reciprocity boundary element method leads to the integral
equation (14). To solve this equation the discretization of the boundary should be
done (as shown in Figure 6) and the integrals in equation (14) are substituted by the
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Figure 6: Discretization of the boundaries and internal nodes

sums of integrals over these elements. Parabolic boundary elements are used here
and finally one obtains the following system of equations [31]

K

∑
k=1

Gi kqk =
K

∑
k=1

Hi kTk +
K

∑
k=1

Pi k, i = 1,2, ...,K (67)

If one assumes that K1 nodes are located at the boundaryΓ1z, K2 - K1nodes are
located at the boundary Γ2z and the remaining nodes K − K2 - K1 are located at the
boundaryΓ0z then

K1

∑
k=1

Gi kqk +
K2

∑
k=K1+1

Gi kqk +
K
∑

k=K2+1
Gi kqk =

K1

∑
k=1

Hi kTk +
K2

∑
k=K1+1

Hi kTk +
K
∑

k=K2+1
Hi kTk +

K
∑

k=1
Pi k

(68)

Taking into account the boundary conditions (66), in the well-ordered form, one
has

K1

∑
k=1

(α1Gi k−Hi k)Tk +
K2

∑
k=K1+1

(α2Gi k−Hi k)Tk−
K
∑

k=K2+1
Hi kTk =

K1

∑
k=1

α1Gi kTB1 (z)+
K2

∑
k=K1+1

α2Gi kTB2 (z)+
K
∑

k=1
Pi k

(69)

It is visible, that the solution of this system of equations is possible under the as-
sumption that the temperatures TB1(z) and TB2(z) are known, and then the tempera-
tures at the boundary nodes can be determined.
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Next, the following approximation of equations (62), (63) is proposed

TB1(z+∆z)−TB1(z)
∆ z = A1 [Tv1 (z)−TB1 (z)]+B1 (70)

and

TB2(z+∆z)−TB2(z)
∆ z =−A2 [Tv2 (z)−TB2 (z)]−B2 (71)

So

TB1 (z+∆z) = (1−A1∆z) TB1 (z)+A1 ∆zTv1 (z)+B1 ∆z (72)

and

TB2 (z+∆z) = (1+A2 ∆z) TB2 (z)−A2 ∆zTv2 (z)−B2 ∆z (73)

The idea of the algorithm discussed is the following. For the cross section z = 0
and arbitrary assumed temperature TB2(0) (the temperature TB1(0) = TB10 is known
from the initial condition, of course) the system of equations (69) is solved. Next,
the mean values of vessels walls temperatures are calculated

Tv1 (z) = 1
K1

K1

∑
k=1

Tk, Tv2 (z) = 1
(K2−K1)

K2

∑
k=K1+1

Tk (74)

Putting z = 0 in equations (72) and (73) the temperatures TB1(∆z) and TB2(∆z) are
calculated and these values are introduced to the system of equations (69). From
this system of equations the boundary temperatures for cross section z = ∆z are de-
termined. The mean values of vessels walls temperatures are determined from (74),
next using the formulas (72), (73) the blood temperatures TB1(2∆z) and TB2(2∆z)
can be found. These temperatures introduced to the system of equations (66) allow
ones to calculate the boundary temperatures for the cross section 2∆z. The proce-
dure is continued until the cross section z = Z is achieved. If TB2 (Z) 6= TB20 then
the procedure is repeated for the other value of TB2(0). The iteration process is
continued until the calculated value TB2(Z) is close to the temperature TB20

As an example, the following input data are assumed [31]: radius of artery R1 =
0.0002 [m], radius of vein R2 = 0.0003 [m], radius of Krogh-type tissue cylinder
R= 0.0015 [m], distance between blood vessels D = 0.0003 [m] (Figure 5), length
of cylinder Z = 0.06 [m], thermal conductivity of tissue λ = 0.5 [W/(mK)]. The
inlet arterial blood temperature is set as TB10 = TB = 37.5˚C, the inlet venous blood
temperature TB20 = 37˚C, perfusion coefficient equals to GB = 0.0005425 [1/s],
metabolic heat sources in tissue and vessels are Qm = 245 [W/m3] and QBm =
100 [W/m3], respectively. It is assumed that for the artery and vein Nu = 4, Pe = 100
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and then the values of heat transfer coefficients correspond to α1 = 5000 [W/(m2K)],
α2 = 3333.33 [W/(m2K)], while the blood rates are equal to w1 = 0.03 [m/s] and
w2 = 0.02 [m/s].

The computations have been done under the assumption that the boundary of cross
section (Figure 6) is divided into 80 parabolic boundary elements with K = 160
boundary nodes (K1 = 16, K2−K1 = 24 corresponds to the number of nodes located
at the artery and vein walls, respectively) and ∆z = 2R1. Inside the tissue sub-
domain 620 internal nodes have been distinguished (see: Figure 6).

In Figures 7, 8, 9, 10 and 11 the results obtained are presented. In particular, the
temperature distributions in the tissue domain for cross sections z = 0, 0.01, 0.02,
0.03 [m] are shown and the changes of blood temperature along artery-vein axes
are presented. The calculated temperature of the venous blood leaving the tissue
region equals to TB2(0) = 37.3˚C. In Figure 12 the temperature distributions along
the segments corresponding to plane of symmetry A-A (Figure 6) for diffrent values
of co-ordinate z are shown.

Figure 7: Temperature distribution (z = 0 m)

The example presented above is rather an academic one, because not all parameters
can be found in the literature, but such models should be developed since they well
describe the heat conduction especially in the extremities [32].
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Figure 8: Temperature distribution (z = 0.01 m)

Figure 9: Temperature distribution (z = 0.02 m)
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Figure 10: Temperature distribution (z = 0.03 m)

Figure 11: Temperature distribution along artery-vein axes

5 Examples of computations - transient problems

Biological tissue domain of dimensions D×D (square) shown in Figure 13 is con-
sidered. The upper surface is heated by the boundary heat flux in the form

x ∈ Γ2 : qb(x, t) = qb(x1,D, t) = q0
t
te

(
1− t

te

)
exp
(
− x2

1
d2

)
(75)

where q0 is the maximum heat flux, te is the exposure time and d = L/2.
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Figure 12: Temperature distribution along the sector A-A

Figure 13: Boundary conditions and discretization

Along the boundary Γ1 (0≤ x1 ≤ D, x2=0) the Dirichlet condition T = Tb is as-
sumed, on the remaining boundaries (Γ3) the no-flux condition is taken into ac-
count. Initial temperature Tp of tissue is also given.

To determine the temperature distribution in the domain under consideration, the
different models have been applied, namely the Pennes equation (4), the Cattaneo-
Vernotte equation (7) and the dual-phase-lag equation (10).

In the case of Pennes model the 1st scheme of the BEM has been used and then the
boundary integral equation (22) should be solved. For the constant elements with
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respect to time one obtains

B(ξ )T (ξ , t f )+ ∫
Γ

q(x, t f )g(ξ ,x)dΓ = ∫
Γ

T (x, t f )h(ξ ,x)dΓ+

∫
Ω

T ∗(ξ ,x, t f , t f−1)T (x, t f−1)dΩ+ ∫
Ω

Q(x, t f )g(ξ ,x)dΩ
(76)

where

g(ξ ,x) =
1
c

t f

∫
t f−1

T ∗(ξ ,x, t f , t)dt (77)

and

h(ξ ,x) =
1
c

t f

∫
t f−1

q∗(ξ ,x, t f , t)dt (78)

It should be pointed out that the integrals (77), (78) can be calculated in the analyt-
ical way [7, 29].

The integration with respect to the boundary Γ and interior Ω requires the introduc-
tion of geometrical mesh. So, the boundary Γ is divided into N boundary elements
Γ j, j=1, ..., N, while the interior Ω into L internal cells Ωl , l=1, 2, ..., L.

If one assumes the constant boundary elements and constant internal cells then the
formula (76) leads to the following system of algebraic equations (i=1, 2, ..., N)

N

∑
j=1

Gi j q f
j =

N

∑
j=1

Hi j T f
j +

L

∑
l=1

Pil T f−1
l +

L

∑
l=1

Zil Q f
l (79)

where

Gi j = ∫
Γ j

g(ξ

i ,x)d Γ j (80)

Hi j =

{
∫
Γ j

h(ξi,x)dΓ j, i 6= j

−0.5, i = j
(81)

Pil = ∫
Ωl

T ∗(ξi,x, t f , t f−1)dΩl (82)

Zil = ∫
Ωl

g(ξi,x)dΩl (83)

The matrix notation of the system (79) is the following

Gq f = HT f +PT f−1 +ZQ f (84)
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Equation (84) allows one to determine the ’missing’ boundary values (temperatures
or heat fluxes) for time t f .

In the second stage of algorithm the temperatures at internal nodesξ i for i = N+1,
N+2, ..., N +L are calculated on the basis of formula

T f
i =

N
∑
j=1

Hi j T f
j −

N
∑
j=1

Gi j q f
j +

L
∑

l=1
Pil T f−1

l +
L
∑

l=1
Zil Q f

l (85)

The temperature field obtained for time t f constitutes the new pseudo-initial condi-
tion for the next step of computations.

To solve the Cattaneo-Vernotte equation and dual-phase-lag equation the general-
ized boundary element method has been applied. Because for τT =0 the dual-phase-
lag equation reduces to the Cattaneo-Vernotte one therefore only the algorithm for
DPL model (10) is discussed. This equation is supplemented by the boundary con-
ditions

x ∈ Γ1 : T (x, t) = Tb

x ∈ Γ2 : qb(x, t)+ τq
∂ qb(x,t)

∂ t =−λ

[
n ·∇T (x, t)+ τT

∂

∂ t (n ·∇T (x, t))
]

x ∈ Γ3 : 0 =−λ

[
n ·∇T (x, t)+ τT

∂

∂ t (n ·∇T (x, t))
] (86)

and initial ones

t = 0 : T (x, t) = Tp,
∂ T (x, t)

∂ t

∣∣∣∣
t=0

= 0 (87)

where qb(x,t) is given by the formula (75).

Using generalized variant of the BEM, for transition t f−1 → t f ( f ≥2) the fol-
lowing equation (c.f. equation (38)) is considered

∇
2U [1](x)−BU [1] (x)+R

[
Tk−1(x, t f−1)

]
= 0 (88)

with corresponding boundary conditions [13]

x ∈ Γ1 : U [1](x) = 0

x ∈ Γ2 : W [1](x) = ∆ t
∆ t+τT

[
qb(x, t f )+ τq

∂ qb(x,t)
∂ t

∣∣∣
t=t f

]
− λτT

∆ t+τT
n ·∇T (x, t f−1)+λ n ·∇Tk−1(x, t f−1)

x ∈ Γ3 : W [1](x) =− λτT
∆ t+τT

n ·∇T (x, t f−1)+λ n ·∇Tk−1(x, t f−1)

(89)

Comparing the equations (38) and (88) one can see that, according to the formula
(42), the temperature T (x, t f−1) is replaced by Tk−1(x, t f−1).
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As previously, the constant boundary elements and the constant internal cells are
used and then one obtains the following approximation of equation (88)

N

∑
j=1

Gi jW
[1]
j =

N

∑
j=1

Hi jU
[1]
j +

L

∑
l=1

Pi l R
[
Tk−1(xl, t f−1)

]
(90)

where

Gi j =
1
λ

∫
Γ j

T ∗(ξi,x)dΓ j (91)

and

Hi j =


∫
Γ j

q∗(ξi,x)dΓ j, i 6= j

−0.5, i = j
(92)

while

Pi l =
∫
Ωl

T ∗(ξi,x)d Ω l (93)

Introducing the boundary conditions (89) into the linear algebraic equations (90)
one obtains the equations for the unknown W [1] on the boundary Γ1 and unknown
U [1] on the boundaries Γ2 and Γ3. After solving the system of equations (90), the
values U [1] at the internal points ξ i are calculated using the formula

U [1]
i =

N

∑
j=1

Hi jU
[1]
j −

N

∑
j=1

Gi jW
[1]
j +

L

∑
l=1

Pi l R
[
Tk−1(xl, t f−1)

]
(94)

Finally, for the all boundary and internal points the temperature values are deter-
mined on the basis of equation (42).

At the stage of computations the following input data have been assumed: the
side of the square D=0.02 [m], the maximum heat flux q0=25 [kW/m2 ], the ex-
posure time te=20 [s] (c.f. equation (75)), volumetric specific heat of tissue c =3
[MW/(m3K)], thermal conductivity of tissue λ=0.5[W/(mK)], blood perfusion co-
efficient GB=0.002 [1/s], volumetric specific heat of blood cB=3.9962 [MW/(m3K)],
blood temperature TB=37oC, metabolic heat source Qm=245 [W/m3], relaxation
time τq=15[s], thermalization time τT =10[s]. Initial temperature of tissue equals to
Tp=37oC.

The discretization of boundary and interior of the domain considered is shown in
Figure 13. Calculations were performed under the assumption that the time step is
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equal to ∆t=1 [s] and the iterative parameter is equal to m=0.9 (c.f. formula (42)).
For each iteration k the error of numerical solution is calculated (c.f. equation (88))

Ek =

√
1
L2

L

∑
l=1

[
∇2U [1](xl)−BU [1] (xl)+R [Tk−1(xl, t f−1)]

]2
k (95)

If Ek ≤10−4 then the values U [1](xl) at the internal nodes xl , l = N+1, ..., N +L are
accepted and the temperatures Tk(xl , t f ) (c.f. equation (42)) constitute the pseudo-
initial condition for the next transition t f → t f+1.

Figure 14: Temperature history at the point A

Figure 15: Temperature history at the point B

Figures 14 and 15 illustrate temperature history at the points A and B marked in
Figure 13 for the Pennes, Catanneo-Vernotte (CV) and the DPL equations. The



228 Copyright © 2013 Tech Science Press MCB, vol.10, no.3, pp.201-232, 2013

differences between these solutions are visible, and in the case of DPL equation the
temperatures are smaller in comparison with the Pennes or Cattaneo-Vernotte ones.

This example shows how important is proper choice of the model describing heat
conduction in the tissue. For example, during the hyperthermia treatment the tem-
perature in sub-domain considered should achieve 42-45˚C, and if this procedure
is simulated, the accuracy of temperature prediction is extremely important.

6 Conclusions

Different variants of the boundary element method for solving the bioheat transfer
equations have been presented. For the steady state problems the multiple reci-
procity boundary element method has been applied, while for transient bioheat
transfer the 1st scheme of the BEM, the BEM using discretization and the general-
ized boundary element method have been presented. The examples of computations
show that the BEM is an effective tool for solving the different problems in the field
of bioheat transfer.

It should be noted that the BEM was also used for numerical modeling of cryosurgery
procedures [18, 33], the electric field effects in domain of biological tissue [34, 35],
the laser-tissue interaction with tissue domain [36] and for identification of tumor
position [14]. Recently the papers concerning the application of interval boundary
element method [37, 38] appear. The problems considered concern, among others,
the bioheat transfer ones [39].
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15. Ptaszny, J., Fedeliński, P. (2007) Fast multipole boundary element method
for the analysis of plates with many holes. Archives of Mechanics. 59(4-5),
385-401.

16. Brebbia, C.-A., Nowak, A.-J. (1992) Solving heat transfer problems by the
dual reciprocity BEM. Boundary Element Method for Heat Transfer, Chapter



230 Copyright © 2013 Tech Science Press MCB, vol.10, no.3, pp.201-232, 2013

1, Comp. Mech. Publications and Elsevier Applied Science, Southampton,
1-32..

17. Majchrzak, E. (1998) Numerical modelling of bio-heat transfer using the
boundary element method. Journal of Theoretical and Applied Mechanics.
2(35), 437-455.
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