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Abstract: A greyscale-based fully automatic deformable image registration al-
gorithm, based on an optical flow method together with geometric smoothing, is
developed for dynamic lung modeling and tumor tracking. In our computational
processing pipeline, the input data is a set of 4D CT images with 10 phases. The
triangle mesh of the lung model is directly extracted from the more stable exhale
phase (Phase 5). In addition, we represent the lung surface model in 3D volumetric
format by applying a signed distance function and then generate tetrahedral meshes.
Our registration algorithm works for both triangle and tetrahedral meshes. In CT
images, the intensity value reflects the local tissue density. For each grid point, we
calculate the displacement from the static image (Phase 5) to match with the mov-
ing image (other phases) by using merely intensity values of the CT images. The
optical flow computation is followed by a regularization of the deformation field
using geometric smoothing. Lung volume change and the maximum lung tissue
movement are used to evaluate the accuracy of the application. Our testing results
suggest that the application of deformable registration algorithm is an effective way
for delineating and tracking tumor motion in image-guided radiotherapy.

Keywords: Dynamic lung modeling, tumor tracking, deformable image registra-
tion, optical flow, geometric smoothing.

1 Introduction

Today, cancer is the second most common cause of death in the United States.
In 2011, about 571,950 Americans are expected to die of cancer. It is estimated
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that 221,130 people will be diagnosed with lung and bronchus cancer, and approx-
imately 156,940 of them will die from this disease [1]. Approximately 45,000-
50,000 of these patients will be diagnosed with locally advanced non-small-cell
lung cancer (NSCLC) with an expected 5-year survival of only 10-20%. The poor
results of radiotherapy for medically inoperable NSCLC may be due to various de-
ficiencies in conventional radiation treatment techniques. One of such deficiencies
is the respiratory-induced organ motion, which limits further reduction in treatment
margins, and consequently also limits further dose escalation without significantly
increasing treatment-related toxicities. There have been numerous studies demon-
strating significant respiration motions and their dosimetric effects. However, it
was not until recently that 4D CT scans became available. 4D CT images allow for
quantitative modeling of internal organ motion for both treatment targets (primary
tumors and involved lymph nodes) and normal tissues and organs that may be at
risk due to radiation related toxicity. The internal organ motion determined from
4D CT provides evidence-based strategies to improve treatment plans. In addition,
CT imaging modality provides the necessary tissue density information needed for
radiation transport calculations, which are critical in designing accurate radiation
treatments taking into account of density variations due to breathing. However,
quantitative dosimetric studies using 4D CT are scarce at the present time. One
reason was the need for deformable image registration to track dose deposited in
the same target volume in multiple CT images at different time. This technique is
still under intense research and development.

As reviewed in [2], four main deformable registration techniques were developed
for medical image data: elastic registration, level-set method, diffusion-based reg-
istration, and optical flow method. In elastic registration [3]; [4], external forces are
introduced to stretch the image while internal forces defined by stiffness or smooth-
ness constraints are applied to minimize the amount of bending and stretching. One
of its advantages is that the feature matching and mapping function design can be
done simultaneously. The level-set method [5] is a numerical technique for track-
ing interfaces and shapes, which can easily track topology change and combine
segmentation together with registration [6]; [7]. The diffusion-based registration
[8]; [9] considers the contours and other features in one image as membranes, and
the other image as a deformable grid model, with geometrical constraints. This
approach relies mainly on the notion of polarity, as well as the notion of distance.
The optical flow method [10]; [11] assumes that the corresponding intensity value
in the static image and the moving image stays the same, and then estimates the
motion as an image velocity or displacement. This method is suitable for deforma-
tions in temporal sequences of images. Optical flow and diffusion registrations can
be combined to have better matching results.
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In this paper, we develop a systematic computational framework for dynamic lung
modeling and tumor tracking using an optical flow registration together with ge-
ometric modeling techniques. In our computational processing pipeline, the input
data is a set of 4D CT images with 10 phases. The triangle mesh of the lung model
is directly extracted from one stable phase (Phase 5). In addition, we represent the
lung surface model in 3D volumetric format by applying a signed distance function
and then generate tetrahedral meshes. Our registration algorithm works for both
triangle and tetrahedral meshes. In CT images, the intensity value reflects the local
material density. For each grid point, we calculate the displacement from the Phase
5 image to match with images at other phases by using merely intensity values. The
optical flow computation is followed by a regularization of the deformation field
using geometric smoothing. Lung volume change and the maximum lung tissue
movement are used to evaluate the accuracy of the application. Our testing results
suggest that the application of the deformable image registration is an effective way
for delineating and tracking tumor motion for image-guided radiotherapy.

The remainder of this paper is organized as follows. Section 2 overviews the sys-
tematic computational framework and then the following sections explain details.
Section 3 describes an optical flow approach together with geometric smoothing.
Section 4 shows testing results, and finally Section 5 draws conclusions.

Figure 1: Ten phases during respiration.

2 Computational Framework

The respiration process can be divided into ten phases (Fig. 1), and the CT image
data at each phase were obtained automatically from a 4D CT machine. During
respiration, the motion of the lung results in the movement of the tumor inside the
lung. It is important to study the movement of the lung and find out the exact posi-
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tion of the tumor at each phase of respiration. The ultimate goal is to use the lung
and tumor tracking results for dose calculation and non-active lung tissue identi-
fication during the lung cancer treatment planning. Fig. 2 shows a computational
framework of dynamic lung modeling and tumor motion tracking for the optimiza-
tion of radiation therapy. During the respiration, Phase 5 in Fig. 1 is relatively
stable due to its very small volume change. We construct a surface model of the
lung as well as the tumor directly from the CT data at Phase 5, and define it as the
reference.

Figure 2: Pipeline of dynamic lung modeling and tumor tracking for radiotherapy
optimization.

The triangular surface mesh of the lung model is generated using our in-house
software named LBIE-Mesher (Level-set Boundary Interior and Exterior Mesher)
[12]; [13]. Noise may exist in the constructed 3D surface models, therefore geo-
metric flows (or geometric partial differential equations) [14]; [15] are adopted to
smooth the surface and improve the aspect ratio of the surface mesh, while pre-
serving surface features. Fig. 3 shows one constructed lung model with tumor. The
constructed surface is then converted to volumetric grid data using the signed dis-
tance function method, which puts the surface into grids and calculates the shortest
distance from each grid point to the surface, and finally assigns different signs to
grids inside and outside the boundary. Then the volumetric data will be used as
input to generate tetrahedral meshes for the lung-tumor model. Both triangular and
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(a) (b)
Figure 3: The extracted surface model of the lung (a) and the triangular mesh after
smoothing (b).

tetrahedral meshes will be used in the following dynamic lung modeling and tumor
tracking.

3 Deformable Image Registration

CT images are used in radiation dose calculation because Hounsfield units (CT
pixel values) are calibrated to the attenuation coefficient of water and therefore the
pixel values are well defined. CT images directly reflect tissue density, therefore
we choose an intensity-based algorithm for radiotherapy application [16]. Our al-
gorithm is based on an optical flow method, also known as the “demons” algorithm
[8], together with a geometric smoothing technique.

3.1 Optical Flow

Given one static image S and one moving image M, the “demons” algorithm evalu-
ates the demons force using the gradient of the intensity field from S to match these
two images. Usually, the optical flow formula is applied to calculate one passive
force ~fs at grid point on a greyscale image,

~fs =
(m− s)~∇s

|~∇s|2 +(s−m)2
, (1)

where ~∇s is the gradient on the static image. This algorithm may not be efficient
especially when image varies little among neighboring grid points in one local re-
gion. Based on Newton’s third law of motion, an active force fm was introduced
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to speed up the rate of convergence by making use of information from both static
and moving images,

~fm =− (s−m)~∇m

|~∇m|2 +(s−m)2
. (2)

The term “passive” force denotes the contribution to the force from the static image.
Similarly, the term “active” force denotes the influence from the moving image, in
which the deformation is iteratively calculated to match with the moving image and
it is active to track the corresponding point on the moving image. Combining fs

and fm, the total force at a specific grid point can be calculated as

~f = ~fs + ~fm = (m− s)(
~∇s

|~∇s|2 +(s−m)2
+

~∇m

|~∇m|2 +(s−m)2
). (3)

Eqn (3) is suitable for 3D image analysis with a complete grid of demons, and can
deal with large deformation between two images. However, it may not be able to
capture the boundary precisely. Therefore, we introduce “demons 2” to improve
the performance along the boundary. For each contour point P in S, the “passive”
and “active” forces are obtained using

~f ′s = K(m)~ns and ~f ′m = K(m)~nm, (4)

where ~ns is the oriented normal of the contour point in S, and ~nm is the oriented
normal of the contour point in M (both from inside to outside). K(m) is the demon
function, see Fig. 4. In the figure, sin = s(P− 2~ns), sout = s(P + 2~ns), and P is
the position vector of this contour point. Combining both “passive” and “active”
forces, we can obtain the total demon force,

~f ′ = K(m)(~ns + ~nm). (5)

Figure 4: The K(m) function in “demons 2”.
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3.2 Geometric Smoothing

To obtain smooth geometry after registration, we also include a geometric smooth-
ing technique into our algorithm besides the Gaussian filter on the image domain.
Here, we minimize an energy functional

E (x) =
∫

Ω

(g(x(u,v,w))−1)2dudvdw, (6)

where Ω = [0,1]3, x(u,v,w) is the position vector of one grid point, and

g(x) = g11g22g33 +2g12g23g13− (g2
13g22 +g2

23g11 +g2
12g33) (7)

with g11 = xT
u xu, g12 = xT

u xv, g13 = xT
u xw, g22 = xT

v xv, g23 = xT
v xw, and g33 = xT

wxw.
For the existence of the solution of Eqn (6), see [17]. Here, we construct an L2-
gradient flow by minimizing the energy functional E (x),

x̄(u,v,w,ε) = x+ εΦ(u,v,w), (8)

where u,v,w ∈Ω and Φ ∈C1
0(Ω)2. Then, we have

δ (E (x),Φ) =
d

dε
E (x̄(·,ε))|ε=0 = 2

∫
Ω

(g(x(u,v,w))−1)δ (g)dΩ. (9)

Hence, the equation becomes

δ (E (x),Φ) = 2
∫

Ω

(ΦT
u α +Φ

T
v β +Φ

T
wγ)dudvdw. (10)

After applying Green’s theorem, we have

δ (E (x),Φ) =−2
∫

Ω

Φ
T (αu +βv + γw)dudvdw+ const, (11)

where αu = 2∗( ∂g(x)
∂u (xug22g33 +xvg23g13 +xwg12g23−xwg13g22−xvg12g33−xug2

23)+
(g(x)−1)(xuug22g33 +xu

∂g22
∂u g33 +xu

∂g33
∂u g22 +xvug23g13 +xv

∂g23
∂u g13 +xv

∂g13
∂u g23 +

xwug12g23−xw
∂g12
∂u g23 +xw

∂g23
∂u g12−xwug13g22−xw

∂g13
∂u g22−xw

∂g22
∂u g13−xvug12g33−

xv
∂g12
∂u g33−xv

∂g33
∂u g12−xuug2

23−2xu
∂g23
∂u g23));

βv = 2 ∗ ( ∂g(x)
∂v (xvg11g33 + xug23g13 + xwg12g13− xug12g33− xwg23g11− xvg2

13) +
(g(x)−1)(xvvg11g33 +xv

∂g11
∂v g33 +xv

∂g33
∂v g11 +xuvg23g13 +xu

∂g23
∂v g13 +xu

∂g13
∂v g23 +

xwvg12g13 +xw
∂g12
∂v g13 +xw

∂g13
∂v g12−xuvg12g33−xu

∂g12
∂v g33−xu

∂g33
∂v g12−xwvg23g11−

xw
∂g23
∂v g11−xv

∂g11
∂v g23−xvvg2

13−2xv
∂g13
∂v g13)); and
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γw = 2 ∗ ( ∂g(x)
∂w (xwg11g22 + xvg12g13 + xug12g23− xug13g22− xvg23g11− xwg2

12) +
(g(x)−1)(xwwg11g22 +xw

∂g11
∂w g22 +xw

∂g22
∂w g11 +xvwg12g23 +xv

∂g12
∂w g23 +xv

∂g23
∂w g12 +

xuwg12g23 +xu
∂g12
∂w g23 +xu

∂g23
∂w g12−xuwg13g22−xu

∂g13
∂w g22−xu

∂g22
∂w g13−xvwg23g11−

xv
∂g23
∂w g11−xv

∂g11
∂w g23−xwwg2

12−2xv
∂g12
∂w g12)).

We define a term G = −2λ (αu + βv + γw) (λ is an input parameter), and merge it
with Eqns (3) and (5). Then, we obtain

~f = ~fs + ~fm +~f ′s + ~f ′m−G. (12)

To apply the displacement field from image grid points to the mesh model, a tri-
linear interpolation on 3D regular grids is used to calculate the corresponding dis-
placement of the mesh model. All the information required is the intensity value of
each grid point on the static and moving images. As shown in Fig. 5, Eqn (12) is
calculated iteratively. In each iteration, the regularization of the deformation field
and geometric smoothing follow this optical flow calculation, using a Gaussian fil-
ter with a variance of σ2 (here we choose σ =1.0) and the G term in Eqn (12).
The regularization plays an essential role as a smoothing operation to remove noise
and preserve the geometric continuity, when this algorithm calculates displacement
merely using the local information. After each iteration a stopping criterion is re-
quired. For each mesh vertex, if the maximum displacement difference is smaller
than a given threshold as which we set 0.01, which is roughly 10% of the minimum
span among X, Y and Z coordinates, the program stops.

4 Testing Results and Discussion

We have applied our algorithm to 2D lung images. For example, we took the same
transverse cross section (slice 48) from the lung images at Phase 5 and Phase 9.
In Fig. 6, (a) shows the contour curve overlaid with the static image at Phase 5.
In (b), the green curve denotes the contour curve in (a) overlaid with the moving
image at Phase 9, the red curve denotes the deformed contour using demons 1&2,
and the blue curve denotes the deformed contour using demons 1&2 and with G
term influence. The deformed grids are shown in (c) and (d). It is obvious that the
deformed isocontour matches with the moving image very well, and with G terms
the deformed grids are much smoother. As shown in Fig. 7, this can be verified
again using the same coronal cross section (slice 250) at Phases 5 and 9, which
shows more obvious movement of the tumor.

In addition, we applied our algorithm to tetrahedral lung mesh and calculated the
volume at each time phase. We generated the tetrahedral mesh directly from Phase
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Figure 5: The iterative scheme for the optical flow and geometric smoothing.

5 image data utilizing our meshing tool LBIE-Mesher. In Fig. 8, the blue line de-
notes the registration result using our algorithm, which always takes Phase 5 as the
reference phase to generate the targeted tetrahedral meshes. The green line denotes
the registration results, which takes the adjacent phase mesh (obtained from regis-
tration) as the reference to generate the targeted tetrahedral mesh in two different
directions, one is Phase 5-4-3-· · · -7-6-5 and the other one is Phase 5-6-7-· · · -3-4-5.
After finishing both computations, we took the average of these two sets of results.
From the results, we can observe that the gradual registration yields a better match
with Fig. 1, with the volume change reaching the maximum at Phase 0 through the
ten phases of one cycle.

Furthermore, we applied our algorithm to the triangle surface mesh and calculated
the maximum displacement of the left lung, the right lung and the tumor during the
breath, see Fig. 9. The green line denotes the maximum displacement of the left
lung, where the tumor was. The red and blue lines denote the maximum displace-
ment of the right lung and the tumor, respectively. Ideally, both the left and right
lungs should deform roughly in the same displacement range. From this figure, it is
obvious that the left lung deforms irregularly (at Phase 3) and the tumor can move
as large as 1cm. This is because the lung tumor is one kind of abnormal mass con-
sisting of non-active lung tissues, it has lost the functionality of the regular lung cell
during inspiration and expiration. The moving trajectory of the tumor can be used
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(a)

(b)

(c) (d)
Figure 6: Registration results of 2D lung images (transverse cross sections) at
Phases 5 and 9. (a) The contour curve overlaid with the static image at Phase
5; (b) the green curve denotes the contour in (a) overlaid with the moving image at
Phase 9, the red curve denotes the deformed contour without G term influence, and
the blue one denotes the deformed contour with G term influence; (c) the deformed
grids without G term influence; and (d) the deformed grids with G term influence.
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(a)

(b)
Figure 7: Registration results of 2D lung images (coronal cross sections) at Phases
5 and 9. (a) The contour curve overlaid with the static image at Phase 5; and (b) the
green curve denotes the contour in (a) overlaid with the moving image at Phase 9,
the red curve denotes the deformed contour without G term influence, and the blue
one denotes the deformed contour with G term influence.
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Figure 8: The volume change using various methods.

Figure 9: The maximum displacement of the left lung, the right lung and the tumor.

to control the movement of the radiation probes, and thus to optimize the radiation
therapy for lung cancer treatment planning.

Discussion. Compared to the standard tidal lung volume in Fig. 1, the maximum
volume change in Fig. 8 is much smaller. This is reasonable because each patient is
different. From Fig. 9, we can observe that during the respiration, the tumor move-
ment can be large, even reach 1-2cm. In addition, the physical condition of this
patient is not good due to the large size tumor, which contributes to the shortness
of breath. Since we do not know much about the health situation of that patient,
we merely deduce that the lung tumor leads to the reduced lung displacement, es-
pecially for the left lung with the tumor.
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5 Conclusions

We have developed an effective deformable image registration technique using the
optical flow method together with geometric smoothing, which was validated using
a set of 4D CT images of the lung. However, we only tested our technique on
limited samples. As part of our future work, we will test more datasets and compare
with other state-of-art techniques. There are several potential developments which
could improve this technique, such as multi-resolution registration. To effectively
register two images from large structure features to fine details, in the future we
will investigate new techniques supporting multi-resolution alignment. In addition,
we will study how to identify the detailed level for each grid point based on the
intensity gradient information. In this way, we can skip quite a lot grid points
whose neighboring points vary little, and thus to improve the effectiveness of this
algorithm.
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