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Cellular Automata Modeling of Pulmonary Inflammation
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Abstract: Better understanding of the acute/chronic inflammation in airways is
very important in order to avoid lung injuries for patients undergoing mechanical
ventilation for treatment of respiratory problems. Local lung inflammation is trig-
gered by many mechanisms within the lung, including pathogens. In this study,
a cellular automata based model (CA) for pulmonary inflammation that incorpo-
rates biophysical processes during inflammatory responses was developed. The
developed CA results in three possible outcomes related to homeostasis (healing),
persistent infection, and resolved infection with high inflammation (inflamed state).
The results from the model are validated qualitatively against other existing compu-
tational models. A sensitivity analysis was conducted on the model parameters and
the outcomes were assessed. Overall, the model results showed possible outcomes
that have been seen in clinical practice and animal models. The present model
can be extended to include inflammation resulting from damage tissue and even-
tually to model inflammation resulting from acute lung injury and multiple organ
dysfunction syndromes in critical illness and injury.
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1 Introduction

Inflammation has been recognized as a major integral component for most of the
acute and chronic diseases. Inflammation can be initiated within the body as an
innate process or by external factors such as infections and trauma. Inflammation
is a complex and dynamic process, and involves nonlinearity and stochasticity. In
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response to a pathogen insult, inflammation occurs as necessary responses of the
organism. It involves a variety of cell types including immune cells within the in-
jured tissues. Without the inflammation, the harmful stimuli cannot be removed and
the healing process cannot occur. However, an over-expression or under-expression
of inflammatory responses can lead to severe consequences. Over-expression can
continue to occur in absence of the initial stimulus and lead to sepsis and/or Mul-
tiple Organ Dysfunction Syndrome (MODS), which is characterized by sequential
organ failure. A significant number of sepsis patients develop MODS and is a
leading cause of death for intensive care unit patients. The mortality rates for a
patient with a single failed organ is 18% and 52% with two or three failed organs.
The mortality rate increases as more organs fail [1-3]. Acute lung injury (ALI) is
typically one of the first manifestation of MODS. It can be triggered by external
stimuli such as pathogens or from inflammatory mediators produced from various
other processes ranging from other damaged organs to blood transfusions or even
the biomechanical forces of mechanical ventilation itself. Therefore, modeling the
acute inflammatory response within the lung is an essential step to understanding
the complex dynamics involved in the ALI and MODS.

Many mathematical models have been developed to describe inflammatory responses
to pathogens [4-7]. However, there are limitations in those models. The encounter
of pathogens and immune cells has been modeled assuming that it occurred uni-
formly throughout the tissue. In reality the encounter is not uniform for the whole
tissue. Some parts of the tissue might have the encounter while some parts do not.
A computational model that takes this reality into account would help researchers
better understand inflammatory responses in the human body. Thus, developing
computational models allowing for spatial simulations may provide powerful tools
to assist in our understanding of the complexities of the inflammatory process and
to better inform scientists to develop more useful experiments.

In general, there are two approaches to modeling inflammation. The first is the
population down approach in which the inflammation process is treated as a dy-
namical system and is characterized using equations, such as ordinary differential
equations (ODE) or partial differential equations (PDE). The second approach is
the component up approach involving object/event based and agent based models
for inflammation. Recently, Vodovotz et al. [8] nicely summarized the current state
and future prospects of modeling inflammation. Due to the complex process of
inflammation, several models based on ODE’s, PDE’s and Agent based Modeling
(ABM’s) have been developed. ODE models while very successful are completely
deterministic and ignore the spatial structure and variability. To overcome this spa-
tial structure deficit, PDE’s have been developed to vary over space and time, but
do not easily account for stochasticity. In contrast to PDE’s methods, ABM’s tech-
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niques has been developed [8, 9, 17, 18] for computational simulations, in which
agents are discrete events, rule-based, and can be stochastic. Recently, Brown et
al. [19] developed an agent-based model of inflammation due to particulate ex-
posure in the lung. In this study, a cellular automata based model for pulmonary
acute inflammation that incorporates many biophysical processes during inflam-
matory responses was developed. Here, we model the inflammatory response to a
pathogen within the lung. The results from the model are validated against other
computational models and the possible outcomes of the results are presented and
discussed.

2 Inflammation Model

The inflammation process in the lung begins with an encounter between the pathogens
or damaged cells and macrophages. The encounter triggers macrophages to release
pro-inflammatory cytokines, signaling proteins that can cause vasodilation and in-
crease the permeability of blood vessels. Vasodilation and increase blood vessel
permeability are key components to inflammation [10]. Cytokines also stimulate
neighboring cells to secrete chemoattractants of other inflammatory cells; e.g. neu-
trophils. The activated inflammatory cells release additional cytotoxic mediators
that can not only kill the invading pathogen but may also result in further damage
to injured innate cells or in damaging previously healthy innate cells such as the
alveolar epithelial cells.

The inflammatory response model at the cellular level was developed via the cellu-
lar automata (CA) method. The CA model was composed of two species: epithelial
cells within the lung and immune cells. The pathogens was not explicitly consid-
ered but are modeled as spread directly from one epithelial cell to another. The CA
model was constructed on two-dimensional square lattice where each lattice site
represented one epithelial cell (see Fig.1). The immune cells were mobile, mov-
ing from one lattice to another. Therefore, the square lattice represents the tissue
of immobile epithelial cells, which is patrolled by the mobile immune cells. The
CA was updated synchronously based on specific rules. The boundary conditions
for both epithelial and immune cells were periodic boundary, i.e., an immune cell
moving off from one edge of the lattice was reintroduced at the opposite edge and
an infectious epithelial cell at one edge can infect a healthy epithelial cell at the
opposite edge. Finally, the neighborhood of the lattice was defined as eight closest
lattice sites, i.e., Moore neighborhood (see Fig.1).

2.1 CA Rules

Details of the CA rules for each species were derived from the general inflammatory
processes in human body and are described below.



144 Copyright © 2012 Tech Science Press MCB, vol.9, no.2, pp.141-156, 2012

 
Figure 1: (a) Two-dimensional square lattice used for the inflammatory responses
model. (b) Moore neighborhood (dark) of each lattice site (white)

 
Figure 2: Possible states of an epithelial cells (squares) and immune cells (oval)
during inflammatory responses due to pathogen
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An epithelial cell can be in any of six states: healthy, containing, expressing, in-
fectious, damage, and dead (see Fig. 2). A containing cell represents a cell that
has bacteria within it, but has not presented the bacteria to the immune system.
Expressing cells have processed the bacteria and are presenting to the immune sys-
tem, but the bacteria is unable to spread to neighboring healthy cells. Infectious
cells can infect healthy neighbors. Transition of each state occurs as follows:

• Rule 1: A healthy cell becomes a containing cell with probability PI

PI = 1− (1−P1I)
NI

where P1I is a probability that one infectious cell can infect a healthy cell and
NI is a number of infectious cells in the neighborhood.

• Rule 2: A containing cell becomes an expressing cell after being infected for
TEXPRESS time steps

• Rule 3: An expressing cell becomes an infectious cell after being infected
for TINFECT IOUS time steps

• Rule 4: A healthy cell becomes a damaged cell if there are at least ND acti-
vated immune cells in the neighborhood with probability PD.

• Rule 5: An expressing, infectious, and damage cell becomes a dead cell with
probability

PP = 1− (1−P1P)NAC

where P1P is the probability that one activated immune cell can phagocyte
the expressing, infectious, or damage cell and NAC is a number of activated
immune cell in the neighborhood.

• Rule 6: A dead cell is replaced by a healthy cell with probability

PH = 1− (1−P1H)NH

where P1H is the probability that one healthy cell divides and replaces the
dead cell and NH is the number of healthy cells in the neighborhood.

• Rule 7: The infectious cell is killed by the pathogen with probability PK

after being infected for a minimum of two hours. An epithelial cells will
survive for TEXPRESS + TINFECT IOUS + 1 (ten hours) before it can die due
to the infection. Activated immune cells can damaged the expressing and
infectious epithelial cells at any time step and this will lead to death before
ten hours.
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An immune cell can be in any of three states: inactivated, activated, and dead (see
Fig. 2). An inactivated immune cell is an immune cell that has no specificity.
An activated immune cell is an immune cell that has encountered an expressing,
infectious, or damaged cell or has been recruited by another activated immune cell.
Immune cells move randomly at every time step. They can move within a 11x11
grid centered at the immune cells current location.

Transition of each state occurs as follows:

• Rule 8: An inactivated immune cell recruits activated immune cells with
the recruitment rate θR immune cells per neighborhood when it is in the
neighborhood of an expressing, infectious, or damage cell. The number of
immune cells recruited is determined randomly, between zero and θR for
each expressing, infectious or damaged cell in the lattice. We are assuming
that inactivated cells locally react to the expressing cells and release pro-
inflammatory cytokines that activate blood immune cells and attracts these
activated immune cells to the local infection site. Therefore, the new cells
arrive activated.

• Rule 9: An activated immune cell becomes a dead immune cell when it is
older than its lifespan. This lifespan is determined randomly, between zero
and LAC for each immune cell.

3 Results and Discussion

3.1 Simulations

The CA rules described above were implemented using MATLAB software. The
simulation was performed on a lattice of 100 × 100 sites which represented a tissue
area of 2× 2 mm2 [11]. The initial population of inactivated immune cells was fifty
cells. This value represents the normal concentration of immune cells per area in
the lung. The initial conditions were a three by three grid of containing cell at the
center of the lattice with randomly placed immune cells. Only one immune cell
can occupy one lattice site. The periodic boundary conditions were used for all
simulations.

The various parameters for the rules are given in Table 1. As it can be seen from this
table, there is no set value for P1I . The parameter P1I represents the possibility that
the pathogen can affect the epithelial cell and it strongly depends on the pathogen
type. For this reason, P1I was varied in the analysis to see the effect on the outcome
on inflammatory responses. One simulation time step corresponds to two hours real
time.
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Table 1: Parameters for the CA model of inflammatory responses due to pathogen

Parameters Values Description
T EXPRESS 2 h Delay from containing to express

T INFECT IOUS 4 h Delay from containing to infectious
ND 4 Minimum number of immune cells that can damage a

healthy epithelial
LAC 20 h An activated immune cell lifespan [20]
θ R 9 Maximum Number of immune cells recruited
P1H 0.45 Probability that one healthy cell divides and replaces a

dead cell
P1P 0.45 Probability that one activated immune cell can phago-

cyte an expressing, infectious, or damage cell
PD 0.5 Probability that immune cells damage a healthy cell
PK 0.6 Probability that an infectious cell is killed by the

pathogen

3.1.1 Inflammatory Responses due to Pathogen

There are three possible outcomes. These include a return to homeostasis (healing),
persistent infection with damaged tissue (labeled infected), and resolved infection
but with continued inflammation and damaged tissue (labeled inflamed). In the
healthy outcome the infection is eliminated, all epithelial cells which were infected
or damaged are replaced by healthy cells. The immune system is no longer stimu-
lated. Therefore, there are only inactive immune cells present. In Figure 3A, time
shots from a healthy outcome are shown for times twelve hours, one, four, and
seven days. The state of the epithelial determines the color of the lattice square.
While lattices occupied by immune cells (inactive or active) are white regardless
of the state of the epithelial. In Figure 3B, the transients for various cells types
are plotted versus time in days. The infection persists until approximately day five
when the immune response is capable of eliminating the infection.

The infected state is characterized by unresolved containing, expressing, infectious,
dead and damaged cells. These cells continue to stimulate the inflammatory re-
sponse. Therefore, both inactivated and activated immune cells are also present. In
Figure 4A, time shots are plotted for the infected state. The immune response is
unable to eliminate the infection so there are containing, expressing, and infectious
cells at day eight, see Figure 4B.

The inflamed state outcome represents an unresolved immune response, despite the
elimination of the pathogen. There are no containing, expressing or infectious cells,
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Figure 3: Time shots (A) and transients (B) for the healthy state. P1I= 0.5, infection
introduced by setting a 3 by 3 square at the center of lattice to containing cells.
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Figure 4: Time shots (A) and transients (B) for the infected state. P1I= 0.5, infection
introduced by setting a 3 by 3 square at the center of lattice to containing cells.
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Figure 5: Time shots (A) and transients (B) for the inflamed state. P1I= 0.5, in-
fection introduced by setting a 3 by 3 square at the center of lattice to containing
cells.



Cellular Automata Modeling of Pulmonary Inflammation 151

but damage cells are present. The inflammatory response needed to eliminate the
infection caused significant levels of tissue damage. This damage is a stimulus to
the immune response, which in turn creates more damage. This positive feedback
loop leads to spreading inflammation that fills the lattice. In Figure 5 the time shots
and transients are plotted for a simulation leading to this state. At day four, we see
that the onset of spreading damage has been triggered due to this positive feedback
loop and immune cell levels are increasing. These immune cells eliminated the
infection by three and a half days.

For most initial immune cell configurations the containing cells are found within
the first few time steps given the random movement of the immune cells. However,
only in a contrived initial immune cell setup, which forced immune cells to be
located a significant distance from the infection would the simulation outcomes
be altered. In this scenario the delay in immune cells locating the infection could
increase the probability of a persistent infection.

These three outcomes coincide with the three outcomes represented in various ODE
models for inflammation, including Reynolds et al. [7]. The Reynolds ODE model
has three fixed points representing health, aseptic death and septic death. In the
aseptic outcome the infection is resolved, but there is elevated tissue damage and
inflammation. This outcome is analogous to the inflamed outcome in the ABM
model. The septic death outcome is characterized by persistent infection with high
levels of tissue damage and inflammation. Therefore, it is analogous to the in-
fected outcome of the ABM model. In general, the inflammatory responses due
to pathogen from the present CA model were similar to those in clinical situations
and were qualitatively similar to those from the ODE models of the acute inflam-
mation [4, 6, and 7] and the agent-based model of the acute inflammatory response
developed by other researchers [13].

3.2 Sensitivity Analysis

3.2.1 Sensitivity to probability of infection

The ODE model is a deterministic model and the system outcome is by the param-
eter set and the initial conditions. With the ABM, the same parameters and initial
conditions can give rise to different outcomes. Therefore, we run multiple simula-
tions with the same parameters and initial conditions to determine the likelihood of
each outcome.

The likelihood for each outcome given a particular parameter set and initial pathogen
load was determined by running 800 simulations, all with the same initial condi-
tions with total time eight days. At the end of the eight days an outcome was
classified as infected if there was more than ten containing, expressing, or infec-
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Figure 6: Likelihood of outcomes: P1I ranged between 0.1 and 1. Outcomes were
classified as healthy (blue), infected (red), or inflamed (green).

tious epithelial cells. It is classified as inflamed if it was not classified as an infected
and there are more than twenty damaged cells. Otherwise the outcome is classified
as healthy. Using this classification system with P1I = 0.5 and 3 times 3 square at
the center of lattice of containing cells, 60.6% of the outcome were Healthy, 32.6%
infected and the remaining 6.8% were in the inflamed sate. Figure 6 shows the
likelihood of outcomes for various P1I with the same initial pathogen load levels.
The number of healthy outcomes decreases steadily as P1I increases from 0 to 0.6.
Typically, these healthy outcomes are now classified as infected. Above P1I=0.6
the likelihood of the healthy outcome remains around 50%. Between P1I=0.7 and
P1I=0.8 the infected outcome continues to increase but instead of the likelihood of
healthy outcomes decreasing the inflamed likelihood outcome is decreasing. Above
P1I=0.8 the likelihood of the infected state decreases and the inflamed outcome is
more likely. The quickly expanding infection at these probabilities is more likely
to over trigger the immune system leading to the inflamed state.

Using the deterministic ODE model at low pathogen growth rate (analogous to
low P1I) the system is bistable between aseptic death and health. The septic death
(infected) state does not exist. At low P1I the likelihood of entering the infected
is drastically reduced. As the pathogen growth rate is increased in the determin-
istic model, septic death comes into existence and is stable. Therefore, with high
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pathogen growth the system is tri-stable between all three stats. When we increased
significantly P1I the likelihood of a healthy state decreased to about a half and both
non-healed states are more likely.

3.2.2 Sensitivity to initial pathogen load

As in the deterministic model the initial pathogen load plays a role in determin-
ing the outcome. In order to observe the model outcome dependence on initial
pathogen load in this ABM model several simulation were conducted and qualita-
tively compared to the deterministic model [7]. To increase the number of pathogen
containing cell, additional evenly-spaced 3 × 3 clusters were added to the model
lattice with P1I=0.5. As the number of initial containing cells is increased the in-
fected outcome becomes more probable, see Table 2. The likelihood of the healthy
state is decreased while the tissue damage state remains low.

Table 2: Increasing the number of containing clusters on the likelihood of model
outcomes

Number of Initial
Clusters

Healthy Infected Inflamed

1 60.6% 32.6% 6.8%
2 30.2% 61.2% 8.6%
4 9.8% 76.2% 14%

In the deterministic model there are two strict thresholds for the initial pathogen
load, which determine whether the outcome is health, aseptic death and septic
death. Low pathogen results in health, moderate pathogen loads lead to aseptic
death, while those above the second threshold result in septic death. Given the
stochasticity in the present CA model all outcomes can be reached for all initial
pathogen level. The CA outcomes trends are similar to the ODE model. High
initial pathogen load typically results in an infected outcome, see Table 2.

Even though the developed ABM of pulmonary acute inflammation was capable
of producing outcomes noted in clinical practice and animals models [14, 15, and
16] and there are some limitations. The model does not account for the myriad
of discrete and shared biochemical process, such as cytokine production, negative
feedback from the immune response, and the specific interactions between the in-
nate and adaptive immune response involved in the inflammatory process as well
as many lung tissue and cell properties. As it stands currently the dynamics are
not specific to lung tissue. However, the current model is a good first scaffolding
step to build upon for the future additions which include the complexities of the in-
flammatory process and specific lung properties. The model may also lend itself to
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multiscaling through connections with other modeling techniques such as the use
of ODE models for gas exchange and fluid-solid domain models which take into
account the biomechanics of tissue and airflow. This is an initial study that does not
account for tissue and cell properties. This will be addressed in future studies. But
the three outcomes of this model reflect qualitatively those seen clinically in lung
of injured patients, which is a significant first step in modeling lung inflammation.
Further validation of the model is required through quantitative comparisons to ad-
ditional experimental and clinical data in order to utilize the model for practical
clinical applications.

4 Conclusions

A cellular automata (CA) based model was developed to simulate the acute lung
inflammation. The rules developed were implemented in the CA model consisting
of two species: epithelial cells and immune cells. The rules for the CA model were
based on previous experiments. The inflammatory responses due to pathogen ex-
posure were investigated. The inflammatory responses produced by the CA model
due to pathogen exposure were similar to those in clinical situations and were quali-
tatively similar to those from the ODE model of the acute inflammation that exist in
the literature. The results from sensitivity analysis and dependence on parameters
and initial conditions are similar to those seen in previous deterministic models.
This is the initial step in developing an agent based model that models the inflam-
matory response within the lung due to various stimuli. In the future this model can
be extended to include the inflammatory response to mechanical stress and strains
modeling acute lung injury during mechanical ventilation. This type of multiscale
modeling will result in a much more clinical relevance as it pertains to acute lung
injury in the setting of critical illness and injury.
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