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Cytoplasmic Motion Induced by Cytoskeleton Stretching
and Its Effect on Cell Mechanics

T. Zhang∗

Abstract: Cytoplasmic motion assumed as a steady state laminar flow induced
by cytoskeleton stretching in a cell is determined and its effect on the mechan-
ical behavior of the cell under externally applied forces is demonstrated. Non-
Newtonian fluid is assumed for the multiphase cytoplasmic fluid and the analytical
velocity field around the macromolecular chain is obtained by solving the reduced
nonlinear momentum equation using homotopy technique. The entropy generation
by the fluid internal friction is calculated and incorporated into the entropic elastic-
ity based 8-chain constitutive relations. Numerical examples showed strengthening
behavior of cells in response to externally applied mechanical stimuli. The spatial
distribution of the stresses within a cell under externally applied fluid flow forces
were also studied.

Keywords: cell cytoplasm cytoskeleton macromolecules non-Newtonian fluid
constitutive relation

1 Introduction

Cytoplasmic motion could be induced by macromolecular chain stretching in a cell.
For example, in amoeboid movement, contraction due to the interaction of actin
filaments with myosin near cell’s trailing end squeezes the fluid forward into the
pseudopodium; in plant cells, cytoplasmic streaming, a circular flow of cytoplasm
within cell, could be brought by actin-myosin contraction and sol-gel transforma-
tions; in adherent cells, fluid motion could be formed during stress fibers assembly
and disassembly. Cytoplasmic fluid dynamics, transport, and interaction with cy-
toskeletal network have been studied in numerous publications [1, 2, 3, 4, 5]. In the
current paper, we focus on the steady state laminar flow in cytoplasmic motion and
one-way interaction between cytoskeletal filaments and cytoplasmic motion. that
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is, cytoskeletal filaments induce cytoplasmic fluid flow. Such flow could occur in
cytoplasmic streaming, amoeboid movement, and around bundled stress fibers.

Cytoplasmic fluid, cytosol, make up ∼70% of the total volume of a typical cell
and 20-30% of which is occupied by different macromolecules with viscosity be-
ing 5-20 times that of water. Cytoplasmic fluid, therefore, can be considered as
multiphase fluid, a mixture of solid particles entrained in a fluid. Multiphase fluid
flow has found broad applications in industries and engineering such as microalgae
in photobioreactors, particulate matter in exhaust emission, and solids in industrial
waste stream, etc. Such a fluid-solid mixture displays complicated physical, chem-
ical, and mechanical behavior depending on numerous variables, e.g., geometry of
the particles, physical, chemical, and mechanical properties of each constituent,
and their volume fractions.

One possible approach to model the fluid-solid mixture is to consider each phase
as a single individual continuum with its own governing equations, interacting
with each other through coupled equations [6, 1, 7, 8, 2]. Alternatively, the fluid-
solid mixture is considered as a single homogeneous continuum behave as a non-
Newtonian fluid. Such an approach has been used by numerous authors to obtain
approximate analytical solutions for pipe flow [9, 10, 11, 12], parallel plate flow
[13], channel flows [14], and torsional flow [15]. Here, we consider cytosol as a
non-Newtonian fluid, its motion induced by macromolecular chain stretching, and
the effect on cell mechanics. An approximate analytical solution of the velocity
field is firstly obtained for cytoplasmic motion. The entropy generated by the fluid
motion is then incorporated into the entropic elasticity based constitutive models to
describe the mechanical behavior of cells under externally applied forces.

2 Governing equations

The constitutive relation of non-Newtonian fluid was given by Rivlin and Ericksen
[16] as

T =−pI + µA1 +α1A2 +α2A2
1 +β1A3 +β2[A1A2 +A2A1]+β3[tr(A2

1)]A1 (1)

where µ is the viscosity coefficient; α1, α2, β1, β2, and β3 are material parameters
that are generally temperature dependent. T is the stress tensor and pI the spherical
stress tensor. The kinematic tensors Ak(k = 1,2,3) are defined by the velocity field
v̄ as

A1 = ∇v̄+ v̄∇ (2a)

An =
d
dt

An−1 +An−1∇v̄+ v̄∇An−1, n = 2,3 (2b)
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where ∇ is gradient operator and d
dt is the material time derivative. It has been

shown [17] that for thermodynamically compatible fluid the constitutive relation
Eq. (1) can be reduced to

T =−pI +[µ +β3[tr(A2
1)]A1 +α1A2 +α2A2

1. (3)
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Figure 1: Diagram of surrounding fluid pipe concentrated with a macromolecular
chain.

Considering the diameter is about 1.0 nm for macromolecular chain and 1-10 µm
for cells, the fluid motion induced by chain stretching should be localized. For the
localized fluid motion, we only consider laminar flow surrounding a single chain
and ignore the flow interaction among different chains. This assumption serves
the purpose to include the effect of fluid motion in the cell constitutive relation
rather than to conduct a full scale fluid dynamics analysis and interaction with the
cytoskeleton. Under such assumption, the surrounding fluid moves with the chain
and forms a concentric fluid pipe with macromolecular chain as shown in Fig. 1.
Suppose there is no sliding between the fluid and the chain, the inner boundary of
the fluid pipe has the same velocity, V0, as the chain moves. The velocity on the
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outer boundary is zero. Following Massoudi and Christie’s work [9] for pipe flow,
the governing equation for the current problem is given by

d
dr

(
r

dv
dr

)
+Λ

(
dv
dr

)2(dv
dr

+3r
d2v
dr2

)
= C (4a)

(v)r= R
1−R

= 1 and (v)r= 1
1−R

= 0 (4b)

where r = r̄
R∗ , v = v̄

V0
, R∗ = r̄0− r̄i, Λ = 2β3V 2

0
µ∗R∗2 , R = r̄i

r̄o
, r̄i, and r̄o are the inner and

outer radius of the fluid pipe, respectively, µ∗ is a reference fluid viscosity, and C =
0 is the pressure differential in the pipe. Here we have assumed that both viscosity
coefficient and pressure along axial direction are constants. Obviously, equation (4)
is a nonlinear ordinary differential equation. Perturbation and homotopy methods
have been often used to solve such equations. Here, we use homotopy method [18]
to solve the nonlinear problem of Eq. (4).

3 Homotopy method

In general, a nonlinear differential equation of a unknown function u can be written
as

A (u)− f (r) = 0, r ∈Ω (5)

with boundary conditions

B(u,
∂u
∂n

) = 0, r ∈ Γ (6)

where A is a general differential operator, f (r) is a known analytical function, B
is a boundary operator, ∂u

∂n is the gradient of u along the normal direction n of the
boundary Γ that encloses the domain Ω. A can be divided into linear and nonlinear
operators, L and N , respectively. Equation (5) can then be written as

L (u)+N (u)− f (r) = 0. (7)

A homotopy v(r, p) : Ω× [0,1]→R can be constructed and satisfies

H (v, p) = (1− p)[L (v)−L (u0)]+ p[A (v)− f (r)] = 0 (8a)

or

H (v, p) = L (v)−L (u0)+ pL (u0)+ p[N (v)− f (r)] = 0 (8b)

p ∈ [0,1], r ∈Ω
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where p is an embedding parameter, u0 is an initial approximate solution to the
original problem of Eq. (5) and satisfies the given boundary conditions.

We use a power series to approximate the solution in Eq. (8), i.e.,

v = v0 + pv1 + p2v2 + · · · (9)

For p = 1, equation (8) returns to the differential equation of the original problem,
i.e.,

H (v,1) = A (v)− f (r) = 0, (10)

and Eq. 9 becomes the approximate solution of the original problem, i.e.,

u = lim
p→1

v = v0 + v1 + v2 + · · · . (11)

4 Approximate analytical solution

4.1 General solution

To apply the homotopy technique, the governing equation (4) is firstly separated
into linear and nonlinear operators, i.e.,

L (u) =
d
dr

(
r

du
dr

)
(12a)

N (u) = Λ

(
du
dr

)2(du
dr

+3r
d2u
dr2

)
. (12b)

Introducing Eqs. (9), (12a), and (12b) into Eq. (8) and collecting common terms in
the order of parameter p, we obtain solutions of Eq. (8) for different orders below:

p

[
d
dr

(
r

dv1

dr

)
+

d
dr

(
r

dv0

dr

)
+Λ

(
dv0

dr

)2(dv0

dr
+3r

d2v0

dr2

)]
= 0 (13)

p2

{
d
dr

(
r

dv2

dr

)
+Λ

[(
dv0

dr

)2(dv1

dr
+3r

d2v1

dr2

)
+

+2
dv0

dr
dv1

dr

(
dv0

dr
+3r

d2v0

dr2

)]}
= 0 (14)

p3

{
d
dr

(
r

dv3

dr

)
+Λ

[(
dv0

dr

)2(dv2

dr
+3r

d2v2

dr2

)
+2

dv0

dr
dv1

dr

(
dv1

dr

+3r
d2v1

dr2

)
+

(
2

dv0

dr
dv2

dr
+
(

dv1

dr

)2
)(

dv0

dr
+3r

d2v0

dr2

)]}
= 0 (15)

· · · · · ·



174 Copyright © 2011 Tech Science Press MCB, vol.8, no.3, pp.169-193, 2011

We use

u0 =
(

r− 1
Rs

)2

(16)

as the initial approximate solution with Rs = 1−R, which is also the zeroth-order
solution. Introducing the zeroth-order solution into Eq. (13), we obtain the first-
order solution. We then use the zeroth-order and first-order solution to find the
second-order solution and so on so forth until a satisfied approximate solution is
obtained. The solutions for the first three orders are described below.

— First-order solution
Introducing Eq. (16) into Eq. (13) and integrating the resulting ordinary
differential equation, we obtain the first-order solution as

v1 =−
(

r− 1
Rs

)2

−2Λ

(
r− 1

Rs

)4

+
1+2Λ

ln(R)
ln(Rsr). (17)

— Second-order solution
Based on the zeroth-order and the first-order solutions, we obtain the second-
order solution by integrating Eq. (14) as

v2 = 24Λ

[
1
4

(
r− 1

Rs

)4

+
2
3

(
r− 1

Rs

)6

−C0

4
r
(

r− 4
Rs

)
− C0

2R2
s

ln(r)
]
+C2ln(r)+C3 (18)

where C0, C2, and C3 are integration constants defined by

C0 =
1+2Λ

ln(R)

C2 =
24Λ

ln(R)

[
C0

4Rs
(3−R)+

C0

2R2
s

ln(R)−
(

1
4
− 2

3
Λ

)]
C3 = C2ln(Rs)−

24C0Λ

4R2
s

[3+2ln(Rs)] .

— Third-order solution
Base on zeroth-order, first-order, and second-order approximate solutions,
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the third-order approximate solution can be obtained by integrating Eq. 15,

v3 =−8 ·24Λ
3
(

r− 1
Rs

)8

−80Λ
2
(

r− 1
Rs

)6

−6Λ

(
r− 1

Rs

)4

+240Λ
2C0

∫ 1
r

(
r− 1

Rs

)4

dr−12(C2−2C0)Λ
∫ 1

r

(
r− 1

Rs

)2

dr

−
6C2

0Λ

Rsr
+C4ln(r)+C5 (19)

where the integration constants C4 and C5 are given by

C41 = (192Λ
2 +80Λ+6)

C42 =−240
C0Λ

R4
s

[
ln(R)− Rs

12
(3R3−13R2 +23R−25)

]
C43 =

12
R2

s
(C2−2C0)

[
Rs

2
(3−R)+ ln(R)

]
C44 = 6C2

0

[
Rs

R
+ ln(R)

]
C4 =

Λ

ln(R)
(C41 +C42 +C43 +C44)

C51 = 240
C0Λ

R4
s

[
25
12

+ ln(Rs)
]

C52 =−12
R2

s
(C2−2C0)(

3
2

+ ln(Rs))+6C2
0 [1− ln(Rs)]

C5 = Λ(C51 +C52)+C4ln(Rs).

4.2 Convergence study

Whether the approximation of Eq. (9) will be considered as a solution to the orig-
inal problem Eq. (5) depends on whether it converges or not as p→ 1. A general
discussion of convergence requirements was given by He [18]. Here, for this par-
ticular case, we exam the convergence of the solution and applicable range of the
parameters numerically.

Up to the seventh-order analytical solutions have been obtained to exam the conver-
gence of the solutions numerically. The typical results are shown in Figs. 2 and 3
for the case of Λ = 0.125 and R = 0.15 and Λ = 0.1 and R = 0.2. The convergence
of the solution to Eq. (5) depends on Λ and R. From the numerical study, we found
that the applicable range of the obtained solution are Λ≤ 0.125 and 0.1≤R≤ 0.35.
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Figure 2: Normalized velocity field for different order approximation for the case
Λ = 0.125 and R = 0.15.
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Figure 3: Normalized velocity field for different order approximation for the case
Λ = 0.1 and R = 0.2.
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We will use the third-order approximate solution to study the velocity field around
the macromolecular chain in the following discussion.

5 Results and discussion

5.1 Fluid analysis

Velocity field of the fluid for three cases R = 0.1, 0.125, and 0.15 are analyzed for Λ

ranges from 0.01 to 0.225 as shown in Figs. 4-6. The velocity field forms into two
zones within the fluid pipe. The velocity near the inner boundary of the fluid pipe
decreases as Λ increases. The velocity gradient within this zone decreases with the
increase of R. The decreases in the velocity gradient contradicts with the zeroth-
order solution where the gradient increases with R. The reason for this contradiction
could be caused by the nonlinearity in the velocity field along radial direction. As
shown in Figs. 4 -6, the velocity do increase with R along radial direction, however,
the nonlinearity in the velocity field leads to the gradient decrease with R near the
inner boundary. The velocity within the zone near the outer boundary increases
with the increase of Λ. These results indicate that the magnitude of velocity field
tends to extend from inner boundary toward outer boundary as R increases.

5.2 Entropy generation

The fluid motion induced by macromolecular chain stretching causes energy dissi-
pation due to internal friction and generation of entropy. The volumetric entropy
generation by the fluid flow around the macromolecular chain can be calculated by
[19]

Ṡ =
µ∗V 2

0

R∗2θ0

(
dv
dr

)2
[

µ +Λ

(
dv
dr

)2
]

= ηsρ̇
2Vr (20)

in which we used

V0 = ρ̇L0, ηs =
µsL2

0

R∗2θ0
, Vr =

(
dv
dr

)2
[

µ +Λ

(
dv
dr

)2
]

,

where ρ̇ is chain stretching rate, L0 is the macromolecular chain length, θ0 is am-
bient temperature.

6 Application in cell mechanics

6.1 Constitutive relation

The macromolecular chain network model based on configurational entropy have
been developed to describe large strain, nonlinear elastic deformations of polymers
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Figure 7: Uniaxial stretch versus uniaxial stresses in X1, X2 and X3, respectively
(fluid factor = ηsVr).
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or polymer-like materials, including “3-chain” cubic unit cell model [20], “4-chain”
tetrahedral model [21, 22], and “8-chain” cubic model [23]. In addition to these
isotropic network models, orthotropic and anisotropic chain network models were
also proposed by Bischoff et al. [24] and Kuhl et al. [25], respectively. Here, we
extend 8-chain models, both isotropic and orthotropic, to include the interaction be-
tween cytoplasmic motion and cytoskeleton in the constitutive relation to describe
the mechanical behavior of cells.

6.1.1 8-chain isotropic model

The second Piola-Kirchhoff stress for the 8-chain isotropic model that includes the
effect of cytoplasmic motion is given by (see Appendix)

S ji =
1

J2/3

(
NkθC0 +

2
3

ηsVr

)(
Fi j−

1
3

BkkF−1
ji

)
+KJ(J−1)F−1

ji (21)

where N is the chain density, k the Boltzmann’s constant, θ is absolute temperature,
J = (detB)1/2, Bi j = FikFjk, Fi j is the deformation gradient, K is the bulk modulus,
and

C0 =
[

1+
Bkk

5J2/3λ 2
m

+
33(Bkk)2

525J4/3λ 4
m

+ · · ·
]
. (22)

with λm being a material constant.

6.1.2 8-chain orthotropic model

The second Piola-Kirchhoff stress tensor for 8-chain orthotropic model that in-
cludes the effect of cytoplasmic motion is given by (see Appendix)

S jk =
Nkθ

4

{
4

∑
i=1

P(i)
j P(i)

k

ρ(i) β
(i)
ρ −

βP√
n

[
a2

λ 2
a

a jak +
b2

λ 2
b

b jbk +
c2

λ 2
c

c jck

]}

+
4

∑
i=1

{
2θηsV

(i)
r P(i)

j P(i)
k

}
+

B
α

sinh[α(J−1)]
∂J

∂E jk
(23)

where ρ(i) =
√

P(i)T ·C ·P(i), β
(i)
ρ = L −1(ρ(i)

n ), βP = L −1(P
n ), L −1(x) is the in-

verse of Langevin function L (x) = coth(x)− 1
x , λa =

√
aT ·C ·a, λb =

√
bT ·C ·b,

λc =
√

cT ·C · c, (a,b,c) is the dimension of the unit cell in local coordinate sys-
tem, P(i) is chain vector in local coordinate system (a,b,c), am,bm,cm(m = i, j,k)
the coordinates of (a,b,c) in global system (X1, X2, X3), C is right Cauchy-Green
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tensor, B is the bulk modulus of the surrounding media of the chains, α governs the
curvature between pressure and volume variation, and

∂J
∂E jk

= (ε jyzδ1kCy2Cz3 + εx jzCx1δ2kCz3 + εxy jCx1Cy2δ3k)/J (24)

in which E is Lagrangian strain tensor, εi jk permutation tensor, and δi j is Kronecker
delta. Cauchy stress tensor can then be calculated by

T =
1
J

F ·S ·FT . (25)

For a special case in which local coordinate system (a,b,c) aligned with three or-
thotropic material orientation coincides with global reference system (X1,X2,X3),
the variation of the stresses with respect to principal stretch is studied to demon-
strate the effects of cytoplasmic motion on the constitutive relation. The material
under uniaxial stretching with and without fluid motion are analyzed and compared
with the results without fluid motion given by Bischoff et al. [24]. For uniaxial
case, an nonlinear equation test program - TESTNONLIN [26] is modified to in-
clude subroutines to calculate stresses. The parameter used in this case are: a = 2,
b = 3, c = 4; N = 8× 1024/m3; n = 7.25; B = 1Mpa; and θ = 2950K. For the
non-Newtonian fluid, µ∗ ≈ 4× 10−3 (Pa-s), µ = 1, and Λ is between 0.1 - 0.125.
Vr is estimated by considering the velocity gradient between 5 - 100 for Λ within
[0.1, 0.15] and R within [0.1, 0.2]. In this case, we used the value of 0.005 for
ηsVr. The results for uniaxial stretch versus stresses are shown in Fig. 7. These
results indicate that the cytoplasmic motion increases the magnitude of the stresses
at small or medium stretch. The effect of fluid motion also depends on the unit cell
geometric size a, b, and c. For example, the fluid motion increases the stress at
medium stretch along X1 direction and at small and medium stretch along X2 and
X3 directions.

7 Example

In this example, we use the modified 8-chain constitutive model to study the me-
chanical response of cells under externally applied forces of fluid flow. The con-
stitutive model was implemented into the finite element program Comsol Multi-
physics 3.5a [27] to model a rotating rheometer (TA Instruments, AR-G2) which
was used to measure cell adhesion strength [28]. The rheometer has two parallel
plates: upper and lower which are separated by a gap of 0.48mm. The upper plate
acts as a spindle rotated by a shaft controlled by a magnetic motor. The lower plate
is mounted on a bench table, on top of which the cell seeded polycarbonate sam-
ple is placed. The gap is filled with PBS. The spindle is loaded on the top of the
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(a) Rheometer used to measure cell adhesion. The
lower plate is in pink and the plate of spindle is con-
nected with the shaft inside the blue hood.

(b) Finite element model and mesh for 2D axisymmetric fluid.The
dense meshes are where the cells located.

(c) Finite element model of cells (in rings). The
cell density is high such that their distribution can
be considered as geometrically axisymmetric.

Figure 8: Finite element model for rotational fluid flow rehometer.



186 Copyright © 2011 Tech Science Press MCB, vol.8, no.3, pp.169-193, 2011

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  0.05  0.1  0.15  0.2  0.25

F
lu

id
 fl

ow
 fo

rc
es

 a
lo

ng
 r

, z
, a

nd
 φ

 (
P

a)

Position along the cell surface (mm)

Tr at rc = 10(mm) for ω = 4π
Tφ                                        

Tz                                        
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and φ directions at rotational velocity ω . rc is distance of the cell center from the
rotational axis.
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(a) σx (scale range is 1.0-1.4 Pa). (b)

(c) σy (scale range is 1.1 - 1.6 Pa). (d)

(e) σz (scale range is 0.95-1.45 Pa). (f)

(g) σxy (scale range is -0.14 to -0.02 Pa). (h)

(i) σyz (scale range is 0.35-0.5 Pa). (j)

Figure 10: Stresses variation within a across section of a cell.
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PBS and rotates to generate rotational flow with controllable angular shear stress
as shown in Fig. 8(a).

The finite element model for the apparatus is shown in Fig. 8(b) and 8(c), The
fluid flow is treated as 2-D axisymmetric swirl flow. The differential equations that
describe the axisymmetric swirl flow is given in cylindrical coordinate system by

ρ

(
u

∂u
∂ r
− v2

r
+w

∂u
∂ z

)
+

∂ p
∂ r

= µ

[
1
r

∂

∂ r

(
r

∂u
∂ r

)
− u

r2 +
∂ 2u
∂ z2

]
+Fr

ρ

(
u

∂v
∂ r
− uv

r
+w

∂v
∂ z

)
= µ

[
1
r

∂

∂ r

(
r

∂v
∂ r

)
− v

r2 +
∂ 2v
∂ z2

]
+Fφ (26)

ρ

(
u

∂w
∂ r

+w
∂w
∂ z

)
+

∂ p
∂ z

= µ

[
1
r

∂

∂ r

(
r

∂w
∂ r

)
+

∂ 2w
∂ z2

]
+Fz

where ρ and µ are the density and the dynamic viscosity of the fluid, respectively;
u, v, and w are the velocity components in r, φ , and z directions, respectively; p is
the fluid pressure; and Fr, Fφ , and Fz are the components of the body forces in r, φ ,
and z directions, respectively. The viscous stress tensor and the total stress tensor
are defined, respectively, by

τ = µ (∇u+u∇) (27)

and

σ =−pI + µ (∇u+u∇) . (28)

The finite element simulation was conducted in two steps. The first step was to
obtain the external forces of fluid flow applied on the cell surfaces by carrying out
2D steady state fluid flow analysis. These forces as shown in Fig. 9 were then
spanned into 3D distributions and mapped onto the 3D cell surfaces as shown in
Fig. 8(c). The second step was to analyze the mechanical response of the cells
under the passive forces applied by the fluid flow. The stress distributions (σx, σy,
σz, σxy, σyz) along a cross section of a cell were shown in Figs. 10(a) to 10(j). The
variation of the normal stresses σx, σy, and σz are quite similar and the magnitude
are close. The variation of the magnitude of these normal stresses is about 0.5 Pa.
The variation of the magnitude of shear stresses τxy and τyz is about 0.15 Pa.

8 Conclusion

The reduced nonlinear equation from fluid momentum equation and the constitutive
relation of non-Newtonian fluid can be solved analytically for cytoplasmic motion
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induced by macromolecular chain stretching using homotopy method. The veloc-
ity field around macromolecular chain forms two zones with different flow patterns
that depend on spatial dimension and the properties of non-Newtonian fluid. The
velocity gradient near the inner boundary decreases with the decrease of the thick-
ness of the fluid pipe, which could be caused by the nonlinearity of the velocity
field. The drag due to the fluid motion, represented by the entropy generation in
this case, strengthens the cytoskeleton response to external forces. Incorporation
of the interaction between cytoplasmic motion and cytoskeleton into the consti-
tutive relation improves the model capability in studying cell motility, amoeboid
movement, cytoplasmic streaming, and cell adhesion which are important in the
development of biomaterials, bioenergy, and biotechnology.

Appendix A. 8-chain isotropic model

The 8-chain isotropic model characterizes the macromolecular network with a cu-
bic unit cell consisting of 8 chains arranged diagonally and deformed with the unit
cell [23] and the cytoplasmic fluid. The rate form of the strain energy function con-
sists of the part due to configurational entropy of the chains and the part due to the
fluid motion induced entropy, i.e.,

Ẇ = Ẇ8ch +θ Ṡ f luid =
∂W8ch

∂Fi j

dFi j

dt
+θ Ṡ f luid . (A-1)

where Ṡ f luid is given in Eq. 20.

The strain energy function due to configurational entropy can be simply expressed
as [23]

W8ch = Nkθ
√

n
{

βchainλchain +
√

nln
[

βchain

sinh(βchain)

]}
+

K
2

(J−1)2 (A-2)

in which n the number of rigid links in a chain, βchain = L −1
(

λchain√
n

)
, λchain =

1√
3

(
λ 2

1 +λ 2
2 +λ 2

3
)

=
√

I1
3 is the stretch of each chain expressed as the stretch of

the unit cell, and K bulk modulus.

By Taylor expansion of βchain, the strain energy function can be approximated by

W8ch =
n

∑
i=1

Ci
(
Ii
1−3i)+ K

2
(J−1)2 (A-3)

where Ci are determined a priori as functions of the material properties n and N.
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Since Ī1 = I1/J2/3 and I1 = Bkk, we have

˙̄I1 =
dĪ1

dt
=

∂ Ī1

∂Fi j

dFi j

dt
=

∂ Ī1

∂Fi j
Ḟi j, (A-4)

and

Ṡ f luid = ηs

˙̄I1

3
Vr =

ηs

3
Vr

∂ Ī1

∂Fi j
Ḟi j. (A-5)

The rate form of strain energy function Eq. A-1 can be rewritten as

Ẇ8ch =
(

∂W8ch

∂Fi j
+

ηs

3
Vr

∂ Ī1

∂Fi j

)
Ḟi j = (RS ji + DS ji) Ḟi j = Si jḞi j. (A-6)

Considering

RS ji =
Nkθ

J2/3

[
1+

Bkk

5J2/3λ 2
m

+
33(Bkk)2

525J4/3λ 4
m

+ · · ·
]

×
(

Fi j−
1
3

BkkF−1
ji

)
+KJ(J−1)F−1

ji (A-7a)

and
∂ Ī1

∂Fi j
=

2
J2/3

(
Fi j−

1
3

BkkF−1
ji

)
, (A-7b)

we obtain the second Piola-Kirchhoff stresses

S ji =
θ

J2/3

(
NkC0 +

2
3

ηsVr

)(
Fi j−

1
3

BkkF−1
ji

)
+KJ(J−1)F−1

ji . (A-8)

Appendix B. 8-chain orthotropic model

The rate form of strain energy function for the 8-chain orthotropic model consists
of two parts: rate form of the strain energy function from Bischoff’s model [24]
and entropy generation induced by fluid motion, i.e.,

Ẇ = Ẇ8ch +ẆD =
∂W8ch

∂E
: Ė +θ Ṡ = RS : Ė + DS : Ė = S : Ė. (B-1)

W8ch consists of three components: configurational entropy of the chains (Wentropy),
the interchain repulsive energy (Wrepulsive), and the bulk strain energy of the isotropic



Cytoplasmic Motion Induced by Cytoskeleton Stretching 191

interstitial fluid (Wbulk) [24], i.e.,

W = Wentropy +Wrepulsive +Wbulk

= W0 +
Nkθ

4

{
n

4

∑
i=1

[
ρ(i)

n
β

(i)
ρ + ln

(
β

(i)
ρ

sinh(β (i)
ρ )

)]

− βP√
n

ln(λ a2

a λ
b2

b λ
c2

c )
}

+
B
a2 {cosh[α(J−1)]−1} (B-2)

in which W0 is the reference strain energy. RS is then given by

RS jk =
Nkθ

4

{
4

∑
i=1

P(i)
j P(i)

k

ρ(i) β
(i)
ρ −

βP√
n

[
a2

λ 2
a

a jak +
b2

λ 2
b

b jbk +
c2

λ 2
c

c jck

]}

+
4

∑
i=1

{
2θηsV

(i)
r P(i)

j P(i)
k

}
+

B
α

sinh[α(J−1)]
∂J

∂E jk
. (B-3)

For the rectangular prism unit cell, the second part of the rate form of strain energy
function is given by

ẆD = θ Ṡ =
µ∗L2

0
R∗

4

∑
i=1

[
ρ̇

(i)
]2
(

dv(i)

dr(i)

)2
µ +Λ

(
dv(i)

dr(i)

)2
. (B-4)

Considering [ρ̇(i)]2 = 2P(i)
j P(i)

k Ė jk, we

ẆD =
µ∗L2

0
R∗

4

∑
i=1

P(i)
j P(i)

k E jk

(
dv(i)

dr(i)

)2
µ +Λ

(
dv(i)

dr(i)

)2
= DS : Ė. (B-5)

where

DS jk =
µ∗L2

0
R∗

4

∑
i=1

P(i)
j P(i)

k V (i)
r . (B-6)

The second Piola-Kirchhoff stress tensor S = RS + DS is given by

S jk =
Nkθ

4

{
4

∑
i=1

P(i)
j P(i)

k

ρ(i) β
(i)
ρ −

βP√
n

[
a2

λ 2
a

a jak +
b2

λ 2
b

b jbk +
c2

λ 2
c

c jck

]}

+
4

∑
i=1

{
2θηsV

(i)
r P(i)

j P(i)
k

}
+

B
α

sinh[α(J−1)]
∂J

∂E jk
. (B-7)
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