
Copyright c© 2005 Tech Science Press MCB, vol.2, no.4, pp.217-233, 2005

Systolic Modeling of the Left Ventricle as a Mechatronic System: Determination of
Myocardial Fiber’s Sarcomere Contractile Characteristics and New Performance

Indices
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S-J Chua3

Abstract: Background: In this paper, the left ventri-
cle (LV) is modeled as a cylinder with myocardial fibers
located helically within its wall. A fiber is modeled into
myocardial structural units (MSUs); the core entity of
each MSU is the sarcomeric contractile element. The re-
lationship between the sarcomere unit’s contractile force
and shortening velocity is expressed in terms of the LV
model’s wall stress and deformation, and hence in terms
of the monitored LV pressure and volume. Then, the LV
systolic performance is investigated in terms of a mecha-
tronic (excitation-contraction) model of the sarcomere
unit located within the LV cylindrical model wall. Meth-
ods: The governing equation of dynamics of the LV
myocardial structural unit (MSU) is developed, involv-
ing the parameters of the series-elastic element (SE), the
viscous element (VE) and the contractile element (CE).
We then relate the MSU’s force and displacement vari-
ables (in terms of SE, VE and CE parameters) to the LV
pressure and volume, using the patient’s catheterization-
ventriculogram data. We thereby evaluate the MSU el-
ements’ parameters. Results: We then determine the
sarcomere (CE) ‘force vs. shortening-velocity’ charac-
teristics as well as the power generated by the sarcom-
ere (or CE) element. These are deemed to be impor-
tant LV functional indices. When our computed sarcom-
eric peak-power is compared against the traditional LV
contractility indices (by linear regression), a high degree
of correlation is obtained. Conclusions: We have pro-
vided herein, a LV systolic-phase (cylindrical geometry)
model whose wall contains the myocardial fibers having
sarcomere units. We have expressed the LV myocardial
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sarcomere’s CE (force vs. shortening-velocity) charac-
teristics in terms of the LV pressure-volume data. These
CE properties express the intrinsic performance capacity
of the LV. Hence, indices containing these properties are
deemed to reflect LV performance. In this regard, our
new LV contractility index correlates very well with the
traditional LV contractility index dP/dtmax.

keyword: Excitation-contraction, Contractile element,
Power, Contractility, Left ventricle.

1 Background

In physiology, several systems are mechatronic in their
functional operation, such as the skeletal muscle (SM)
excitation-contraction unit (Buckwalter, Einhorn and Si-
mon, 2000), the myocardial sarcomere (Guyton, 1991),
the gastro-intestinal (GI) motility system (Hoilet, 1977),
and the uterus (UT) contractile apparatus (Bulletti,
2001). The innervated skeletal muscle operates as a cou-
pled excitation-contraction system, whereby the nerve
electrically simulates and depolarizes the muscle, which
responds to the stimulation by contracting. A contracted
muscle develops internal force and shortens if its internal
force is greater than the force acting on it. For example,
when we want to lift a heavy load (W), we contract our
biceps muscle. In this process, the muscle’s sarcomere
contractile element (CE) develops force (FCE), which is
transmitted to the muscle’s elastic-element (EE) in series
with it and hence to the load. When the developed force
FCEexceeds W, the biceps muscle shortens, causing the
arm to flex at the elbow and lift the load W (Tan, Zhong,
Fuss and Ghista, 2004).

We can extend this simple mechanism to the heart my-
ocardium. Herein, the bioelectrical depolarization wave
is generated from the pacemaker cells and spreads over
the heart muscle, thereby stepwise depolarizing the heart
muscle (or the myocardium) (Guyton, 1991). So, as the
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Figure 1 : (a) The actin and myosin filaments constituting the contractile components of the myocardial fibril;
(b) Myocardial fibril model composed of two symmetrical myocardial structural units (MSUs), which are mirror
images of each other. Each MSU is composed of (i) an effective mass (m) that is accelerated; (ii) connective-tissue
series element having parameter k (elastic modulus of the series element) and the force FSE ; (iii) the parallel viscous
element of the sarcolemma having viscous damping parameter Bv and force FV E ; (iv) the contractile element (CE),
which generates contractile force FCE between the myosin (thick) and actin (thin) filaments. When the contractile
element shortens (by amount x2), the series element lengthens (i.e., x1 increases). During ejection the MSU xT

decreases, and during filling the MSU xT increases.

bioelectrical wave spreads and propagates through the
heart myocardial wall, it causes an analogous myocar-
dial sarcomeric (CE) contractile force wave to propagate
through the myocardium. The resulting induced radial
stress acting on the inner surface of the heart left ventric-
ular (LV) chamber equilibrates the pressure of the blood
in the LV, thereby raising the LV pressure. When the LV
chamber pressure exceeds the pressure of blood in the
aorta, then the aortic valve opens and the blood is ejected
into the aorta and then pumped to the various organs.

2 Purpose, Scope and Assumptions

We note that in all of bio-electro-mechanical physio-
logical systems, the key phenomenon is the excitation-
contraction coupling mechanism of the myocardial sar-
comere. In this paper, we present a model of myocardial
structural unit (MSU), composed of the sarcomere, sar-
coplasmic reticulum and the connective tissue. We first
analyze the MSU’s dynamics in terms of the CE short-
ening velocity response to contractile force. We then
link the MSU’s sarcomere contractile force and shorten-
ing velocity to the LV monitored pressure and volume
data, and derive therefrom indices for left ventricle (LV)



Systolic Modeling of the Left Ventricle 219

contractility and power.

In order to express the LV myocardial fiber’s contractile
force and shortening velocity in terms of the monitored
pressure and volume, we assume that the cylindrical heli-
cally model wall contains N number of myocardial fibers
with one set of N/2 fibers wound clockwise and another
set counter-clockwise at pitch angle α.

Now, it is not possible for us to determine the invivo
value of α across the wall, nor its variation during the
cardiac cycle. Hence, herein, we determine the intrin-
sic equivalent value of α, based on the concept that the
force induced in the LV wall’s myocardial fibers equili-
brates the LV internal pressure. Contraction of the LV
is deemed to occur by contraction of one set helically
wound α-angled myocardial fibers. When these α-angled
helically-wound myocardial fibers contract, they also im-
part a twist (θ) to the LV which can be monitored by
MRI-tagging.

While in this paper, we have not got around to monitor-
ing the twist angle θ for the same patient, yet the order of
magnitude of the calculated value of θ based on the con-
tractile force generated in the α-angled myocardial fiber
corresponds to the monitored value. This provides credi-
bility to determination of the value of the pitch angle α.

3 Methods

3.1 LV myocardial model

In Figure 1-a, the sarcomere unit of MSU consists of
overlapping myosin and actin filaments. The myosin fil-
ament is symmetrical about its midpoint, and contains
two sets of regular arrays of myosin heads. Muscle con-
traction is driven by the motor protein II, which binds
transiently to an actin filament, generates a unitary fil-
ament displacement or “working stroke”, then detaches
and repeats the cycle (Reconditi, Linari, Lucii, Stewart
and Sun, 2004). Sarcomere shortening is generated by
the relative sliding of the two filaments, driven by the
working stroke of the myosin head.

In Figure 1-b, we define the myocardial fibril model,
composed of two myocardial structural units (MSUs)
in series. Based on the Hill three-element model (Hill,
1938) and Huxley cross bridge theory (Huxley and
Niedergerke, 1954; Huxley, 1974), the sarcomere actin-
myosin filaments can be represented by the contractile el-
ement of a 3-element MSU model, the connective tissue
can be represented by the series-elastic element, while

the sarcolemma can be represented by a parallel viscous
element, as illustrated in Figure 1-b.

Hence, the biomechanical model of the myocardial struc-
tural unit (MSU) consists of the MSU mass, a series-
elastic element (SE), a parallel-viscous element (VE)
and a contractile-element (CE) (Zhong, Ghista and Ng,
2004). The sarcomere represents the fundamental func-
tional structure of contraction of the MSU. It makes the
muscle fiber contract, and generates stress within the
wall.

In Figure 1-b, m denotes the myocardial structural unit
(MSU) mass; Bv is the viscosity parameter; k is the con-
nective tissue elasticity parameter; xT is the displacement
of the MSU relative to the center line; x2 is the displace-
ment of the MSU mass due to contraction and result-
ing shortening of its CE; x1 is the displacement of SE
(=x2 − xT ); FCE denotes the force generated by the CE;
FV E denotes the force in the VE; Ft denotes the resulting
total MSU force which is related to the chamber pressure
of LV.

3.2 LV Cylindrical Model (incorporating the myocar-
dial fibers within its wall)

In this study, the left ventricle (LV) is represented as a
thick-walled cylindrical shell. Transverse isotropy is as-
sumed with respect to the axis of the cylinder (Shoucri,
1990, 1998, 2000). In Figure 2, we depict the LV model
cylinder, whose wall is composed of N myocardial fibre
units (as shown in Figure 2), oriented as helixes of pitch
angle α. Half of these (i.e., N/2) fibres are wrapped in a
clockwise fashion, and N/2 fibers in counter-clockwise
fashion. The biomechanical model ultra-structure of each
fiber is the MSU, as depicted in Figure 1.

For our LV cylindrical model, we assume that each my-
ocardial model fiber is helically wrapped within the LV
cylindrical model wall (as illustrated in figure 2), and
composed of two in-series MSUs, as illustrated in Fig-
ure 1. In actuality, there will be many myocardial struc-
tural units (MSUs) along any one myocardial fiber from
bottom to top. However, herein, for convenience of anal-
ysis, we adopt each myocardial fiber to be composed of
two MSUs in series.

Now although there are a number of myocardial fibers
across the LV wall thickness, it is assumed that, within
the wall of our LV model, one set (N/2 number) of fibers
are oriented in a clockwise fashion, while another equal
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Figure 2 : (a) Schematic of LV myocardial structure,
(b) LV cylindrical model, depicting a typical myocardial
fiber arranged as a helix within the LV model wall; L,
Ri & Ro are the length, inner and outer radii of the LV
cylindrical model.

number (N/2) of fibers are oriented counter clockwise.
Hence across the LV wall thickness, we have two fibers,
or the LV wall thickness equals two fibers thickness.

The geometric parameters of the LV cylindrical model
are defined in Figure 2. The volumes of myocardial wall
(MV) and of the LV are given as:

MV = π(R2
o −R2

i )L = π(2Ri +h)hL (1)

V = πR2
i L (2)

where (i) Ri and Ro are inside and outside radii of the
cylindrical model, and (ii) L and h are length and wall-
thickness of the model. Herein, the LV volume (V), wall
thickness (h) and myocardial volume (MV) are obtained
by cineventriculography. Using equations (1 & 2), we
can calculate the instantaneous radii Ri(t)and length L(t)
(or any time instant t) in terms of the measured MV, V
and h, as

Ri =
2Vh/MV +

√
(2Vh/MV)2 +4Vh2/MV

2
,

L = V/πR2
i (3)

Then Ro = Ri +h and Rm = (Ro +Ri)/2.

3.3 Determination of (a) fiber density length and force
(b) equivalent value of the angle (α) for the LV
model, MSU force (Ft ), and (c) torque (produced
on the LV) due to fiber activation

Now, it is known that the LV twists during systole and
unwinds thereafter. This twist is due to the contraction of

the myocardial fibers. It is accepted that the fiber angle
will vary across the wall thickness and also with time dur-
ing a cycle. Herein, our LV model, we have adopted that
there are two adjacent sets of fibers within the wall thick-
ness, one set oriented clockwise and another set oriented
counter clockwise. Each myocardial fiber is assumed to
be oriented helically within the LV myocardial wall, at a
pitch angle α (as illustrated in Figure 2), with N/2 fibers
are oriented helically clockwise at pitch angle α, and the
other N/2 fibers are oriented anticlockwise at the same
pitch angle, analogous to that adopted by Pietrabissa et
al (1988). We will now determine this fiber angle for our
LV model.

A) Fiber density, length and force:

During filling, the fibers will extend as the LV cylindrical
model fills with blood. During systole, the fibers will
contract and shorten, and twist the LV cylindrical model.
Thus the LV will twist and unwind during a cardiac cycle.

In this cylindrical model, there are N myocardial fibres
within the LV wall (as shown in figure). Hence:

N/2 =
Acylinder

2Amsu
(4)

wherein Acylinder (the cross-section area of cylindrical
model myocardium) =π(R2

o − R2
i ) and Amsu (the cross-

section area of MSU) approximately equals 7.85 ×
10−5cm2 (Paladino and Noordergraf, 1988). Although
Acylinder varies during a cycle, the number of fibers is
deemed to remain constant. Hence we determine the
value of N, at say the start of isovolumic contraction,
from equation (4).

The activation of these fibers develops active force (FCE)
in the sarcomere unit of MSU, which in turn generates
wall stress and thereby raises the intra-ventricular pres-
sure. When the pressure exceeds the pressure in the aorta,
then the aortic valve opens, the LV shortens (and its wall
thickens) to pump an appropriate stroke volume.

The instantaneous length of each myocardial fiber (or
myofiber) is given by:

lt = Lt/sinαt (5)

For instantaneous pressure P(t), the force in a myofiber
is given by (with reference to Figure 3)

Ft = πR2
i Pt/(N/2) sinαt (6)
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Figure 3 : (a) Equilibrium of fiber force and LV pressure
on the top circular plane of the LV cylindrical model, b)
Equilibrium of fiber force and LV pressure in the circum-
ferential direction, c) Location of two sets of fibers across
the LV wall thickness.

where Ri denotes the instantaneous value of the inner ra-
dius of the model obtained from equations (1 & 2)

Therefore, because we have 2 MSUs in series along each
myofiber, the axial displacement xT of a MSU (shown in
Figure 1) can be related to the change of length (∆lt) of a
MSU, and hence to the change in length (∆Lt) of the LV
cylinder model as:

xT = ∆lt/2 = ∆Lt/(2sinαt) (7)

where ∆L = Lt+1 − Lt , Lt+1 and Lt refer to successive
time instants, and Lt is given by equation (3).

B) Determining the fiber pitch angle α:

We refer to the paper of Pietrabissa et al (1988), wherein
the authors demonstrate that the fiber angle for a cylin-
drical model can be shown to be independent of the LV
instantaneous dimensions, and hence can be assumed to
be constant throughout the cycle. We now determine this
fiber angle α.

u

d

Figure 4 : calculation of u and d.

At any instant, it is assumed that the depolarization wave
is travelling along one set of myocardial fibers, i.e. ei-
ther N/2 clockwise or N/2 anticlockwise oriented fibers.
The contraction of one set (N/2) of these fibers hence re-
sults in a clockwise or anti-clockwise twist of the LV. The
distance (d) along a circumference between two adjacent
fibers arranged in the same direction (i.e., clockwise or
counter-clockwise) is given by (with reference to Figure
4):

d = 2πRi/(N/2) = 4πRi/N (8)

The axial pitch (u) between the fibres arranged in the
same direction intersected by a cylinder generatrix is
given by:

u = L/(n/2) = 2L/n (9)

wherein n/2 is the number of fibers arranged in the same
direction intersected by a cylinder generatrix

From equations (8) and (9)

u
d

= tanα =
LN

2πRin
(10)

In Figure 3(a), the equilibrium of axial forces in one set
of fibers arranged in the same direction, acting on the bot-
tom or top circular plane surface of the LV model cylin-
der, requires that the sum of the vertical components of
the fiber forces equilibrates the force due to LV pressure
acting on the LV top (or bottom) surface. Hence, as indi-
cated before (by equation 6)

πR2
i P = (N/2)(Ft sinα) (11)
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where P is the LV cavity pressure and Ft is the force
within each of the N fibres.

In Figure 3(b), the equilibrium of the cylinder in cir-
cumferential direction, under the action of fiber forces
arranged in the same direction, requires that:

(2LRi)P = nF cosα (12)

Upon substituting equations (11) and (12) into equation
(10), we obtain the equivalent fiber-angle (α) for the LV
as follows

tanα = 1/
√

2 (13)

which yields α=35.26.̊

C) Torque impacted to the LV by fiber contraction:

At this point, it is noteworthy that (on the basis of figure
3-a), while the vertical components of the fiber forces
equilibrate the pressure in the chamber (as per equation
7), their horizontal components produce a torque (T) in
the LV, given by:

Tt = (N/2)Ft cosαt

=
(N/2)πR2

i Pt cosαt

N/2sinαt

= πR2
i Ptctgαt (14)

This torque (Tt) will result in a twist of the LV by angle
θt given by:

θt =
TtLt

JG
=

πR2
i PtLt(ctgαt)

JG
(15)

where Lt is the instantaneous length of the LV cylindri-
cal model, αt (=α) is given by equation (13), J (the polar
moment of inertia)=π(R4

o−R4
i )/2, and G (the shear mod-

ulus of the LV myocardium)∼= 100 Gpa (Ionescu et al,
2005). This means that for a 60 mmHg pressure rise dur-
ing isovolumic contraction, a LV model (having Ri=2cm,
Ro=3cm and L=14cm) will twist by an amount of 10 ˚ ,
and by 20 ˚ up to the instant when the LV pressure be-
comes maximum. After that, the LV will rewind. These
calculated twist angles correspond to the monitored val-
ues (Xia et al, 2005), thereby linking some credibility to
our model.

Equation (15) indicates that if we can measure the twist
angle θ (of the apex of the LV with respect to its base)
by MRI-tagging, then we can also determine the value of
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Figure 5 : Dynamic model of MSU having effective
mass m; k is the elastic modulus of series element; Bv

is the viscous-damping parameter of parallel viscous el-
ement; Ft denotes the total generated force caused by the
contractile stress FCE ; FSE is the force in the series ele-
ment (= k(x1 + x1ed)), where x1ed is the deformation of
the SE at end-diastole; FV E is the force in the viscous ele-
ment (= Bvẋ2); x1 then represents the added deformation
of the SE during systole (over and above its deformation
during the filling phase) due to the development of FCE .
As shown in Figure 5, each myocardial fiber from bottom
to top edge of the LV myocardial model is composed of
two MSUs. The governing differential equation for this
model is given by equations (16 & 17).

the fiber angle α corresponding to the monitored LV pres-
sure. Hence, we do not need to adopt α to stay constant
during a cardiac cycle. Hence, although in this paper,
we have taken α to be constant during a cardiac cycle, in
our subsequent works we can compute the instantaneous
value of α from equation (15). However, at this stage, we
are in a position to only obtain data on LV pressure and
volume and not on the twist angle. We have started to
determine this twist angle θ, and found that it varies by
about 10o during systole, which corresponds to the value
obtained from equation (15).

It can be conceptually noted that for certain Ri and Li,
the in-vivo value of θ during a cardiac cycle influences
the value of Pt generated. However, for the sake of
demonstrating the prime purpose of this model-analysis
(namely to demonstrate how we can relate the sarcomere
contractile force and shortening velocity to LV pressure
& volume data and compute these sarcomere parame-
ters), we adopt the angle α to remain constant throughout
the cycle (even though we concede that this is not true in
practice).

3.4 Dynamics of a myocardial structural unit

A) Governing equation of MSU dynamics and its so-
lution
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Figure 6 : Schematic of LV pressure and aortic pressure variation during a cardiac cycle.

From Figure 5, the governing differential equation for a
MSU dynamics, due to the generated contractile force
(FCE), can be expressed as:

mẍ2 +Bvẋ2 −FCE +kx1 = 0 (16)

or,

mẍ1 +Bvẋ1 +kx1 = FCE −BvẋT −mẍT (17)

where,

FCE is the applied force exerted by the contractile-
element of MSU;

m is the muscle mass per unit cross-section area =
π(R2

o−R2
i )Lρ/2N, ρ is muscle density;

Bv is the viscous damping parameter of the parallel vis-
cous element (VE);

k is the elastic stiffness (or modulus) of the series-
elastic element (SE);

xT is the shortening displacement of the myocardial-
fiber unit relative to its centre-line;

x1 is the stretch of the SE element, = x2 −xT ;

x2 is the displacement of muscle mass m (relative to
centre-line) due to CE contraction, =xT +x1;

FV E = Bvẋ2, and FSE = k(x1 +x1ed);

x1ed is x1 at end-diastole (= Fted/k);

Fted is the fibre force at end-diastole, obtainable from
equation (12) corresponding to Ri and P at end-diastole.

Because the terms mẍ1 and mẍT can be neglected due to
their small values compared to other terms (for instance,
mẍ1 and mẍT are of the order of 100−1while the other
terms are of the order of 103−4) (Zhong et al, 2004),
equation (17) can thus be rewritten as:

Bvẋ1 +kx1 = FCE −BvẋT (18)

Now, let us consider myocardial contraction during the
systolic phase. The systolic contraction can be consid-
ered to comprise of two temporal phases. Phase I, de-
noted by tiso (and measured in seconds), corresponds to
isovolumic contraction; it comprises the interval from the
closing of the mitral valve until the opening of the aortic
valve. Phase II, denoted by te, corresponds to the ejection
phase, as shown in Figure 6.

Now let us discuss the right-hand terms of equation
(18). As the MSU (and LV) depolarizes, excitation-
contraction coupling leads to sarcomere contraction and
the development of ventricular wall stress, along with a
rapid increase in intraventricular pressure as shown in
Figure 6. During this phase of systolic contraction, let
us express the generated MSU-CE force (FCE ) function
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(analogous to the LV pressure wave shape) as:

FCE = FCE0 sin(ωcet)e−zcet (19)

where ωce = π/ts; ts is the contraction duration, to be
determined; FCE0 and zce are the additional parameters, to
be determined; t=0 corresponds to the start of isovolumic
contraction phase. It should be noted that this expression
for FCE is similar to that for the active elastance of our
earlier paper (Zhong et al, 2005).

Let us now discuss the xT terms on the right hand
side of equation (18). During the filling phase, the MSU
will stretch passively due to LV enlargement. Concern-
ing the xT term, during the filling phase, xT will be neg-
ative and its absolute value will increase due to passive
stretching of the myocardial fibers caused by LV volume
increase. During this phase, within reference to Figure 5,
the SE element will stretch while x2=0, and hence x1=-
xT . At the end of filling phase, we denote x1 by x1ed.
Further increase in x1 now occurs during isovolumic con-
traction due to development of FCE and the generation of
CE shortening (x2). However, in this phase xT =0, and
hence xiso

1 is only due to x2 caused by FCE .

During the ejection phase, xT is positive and is caused by
LV ejection and volume decrease. At the same time, x2 is
being generated by CE contraction and FCE development.
Somewhere during the ejection phase, x2 will reach its
maximum value and thereafter decrease. Now during the
isovolumic relaxation phase, x2 keeps decreasing, while
xT does not change from its end-ejection value.

When the filling phase starts, xT again becomes nega-
tive and |xT | starts increasing as the LV volume increases.
Meanwhile x2 keeps decreasing and reaches a zero value,
a short while after the start of filling phase at t=to. This
time period to is designated as the LV suction phase
caused by deceasing FCE , before the left atrium starts to
contract and pump blood with the LV. Herein, we will
demonstrate this suction effect in terms of t0.

Phase I: Solving equation (18) for isovolumic contrac-
tion phase (during 0 < t < t iso):

Since both the mitral and aortic valves are closed, the
volume of blood in the ventricle is constant. Yet the
pressure inside LV is increasing due to the sarcomere
contraction, i.e., due to FCE generation. Hence putting
xT = ẋT = ẍT = 0, and employing FCE from equation
(19), we can rewrite equation (18) as:

Bvẋ1 +kx1 = FCE0 sin(ωcet)e−zcet (20)

The solution of equation (20) is given by x1(= xiso
1 ), as

follows:

x1(t) = xiso
1 (t)

= C1e−k/Bvt +[asin(ωcet)+bcos(ωcet)]e−zcet (21)

where a = FCE0(k−zceBv)
(k−zceBv)2+(Bvωce)2 , b = − FCE0Bvωce

(k−zceBv)2+(Bvωce)2 .

For this phase of contraction, the initial condition that we
will impose is:

xiso
1 (0) = C1 +b = 0 (22)

from which

C1 = −b (23)

Hence, x1 (=xiso
1 ) during the isovolumic contraction

phase is given by

x1(t) = xiso
1 (t)

= (−b)e−k/Bvt +[asin(ωcet)+bcos(ωcet)]e−zcet (24)

Phase II: Expression for xT and solving equation (18)
for ejection phase to determine parameters xT0 and ze

For mathematical convenience, we make a shift in the
time variable and redefine it as ta = t − tiso, such that

0 ≤ ta ≤ te (25)

where te is the ejection phase duration.

In this phase,xT is no longer zero, and hence we need to
relate it to the LV dimensional change, as per equation
(13), as:

xT = ∆lt/2 = (L(t+1) −Lt)/2sinα (26)

wherein Lt and Lt+1 refer to successive time instants ti
and ti+1, and Li (or L) is given by equation (3) in terms
of V , MV and h.

We now adopt a functional expression for ẋT function
(to correspond to the shape of the LV flow-rate V̇), as per
our earlier formulation for V̇ to be (Zhong et al, 2004),
as follows:

ẋT = xT 0 sin(ωeta)e−zeta (27)

where ωe = π/te, te is the duration of ejection as shown in
Figure 6; xT 0 and ze are the (to-be-determined) parame-
ters, and ta = 0 corresponds to the start-of-ejection phase.
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By integrating equation (27), and employing the initial
condition of xT (ta = 0) = 0, we get

xT = − xT0

z2
e +ω2

e
[ze sin(ωeta)+ωe cos(ωeta)]e−zeta

+
xT 0ωe

z2
e +ω2

e

= ∆lt/2 = (Li+1 −Li)/2sinα (28)

Now, based on equation (29), xT can be evaluated in
terms of ∆lt and hence in terms of monitored h(t), V(t)
and MV. Hence, the parameters xT 0 and ze (of ẋT in
equation 28) can be obtained by matching the xT ex-
pression of equation (29) with the clinically obtained
MSU length-change ∆lt/2, as indicated by equation (29).
This then enables us to also determine the expression ẋT

(equation 28) in terms of its now evaluated parameters
xT 0 and ze.

Then, by substituting equations (20 & 28) into the gov-
erning equation (18), we have:

Bvẋ1 +kx1 = FCE0 sin(ωce(ta + tiso))e−zce(ta+tiso)

−BvxT 0 sin(ωeta)e−zeta (29)

where ta is the time variable. The solution of equation
(29) is given by x1(= xe

1), as follows:

x1(ta) = xe
1(ta) = C2e−k/Bvta

+[asin(ωce(ta + tiso))+bcos(ωce(t + tiso))]e−zce(ta+tiso)

+ [csin(ωeta)+d cos(ωeta)]e−zeta (30)

where,

a =
FCE0(k− zceBv)

(k− zceBv)2 +(Bvωce)2 ,

b = − FCE0Bvωce

(k− zceBv)2 +(Bvωce)2 ,

c = − BvxT 0(k−Bvze)
(k−Bvze)2 +(Bvωe)2 ,

d =
B2

vxT 0ωe

(k−Bvze)2 +(Bvωe)2

In equation (31), the unknown parameters are k,
Bv,FCE0,ωce and zce.

Now x1(t)between phases I and II is continuous, i.e.,
xe

1(ta = 0) = xiso
1 (t = tiso). This determines the initial con-

dition for phase II. Hence, from equations (25 & 31), we

get:

xe
1(0) = C2 +[asin(ωcetiso)+bcos(ωcetiso)]e−zcetiso +d

= xiso
1 (t = tiso)

= −be−k/Bvtiso +[asin(ωcetiso)+bcos(ωcetiso)]e−zcetiso

(31)

Solving equation (32), we get

C2 = −be−k/Bvtiso −d (32)

Hence, the total SE deformation x1(= xe
1)during the

ejection phase (on top of x1 at t iso the end of isovolumic
contraction, given by equation 25) can be written as:

x1(ta) = xe
1(ta) = (−be−k/Bvtiso −d)e−k/Bvta

+[asin(ωce(ta + tiso))+bcos(ωce(ta + tiso))]e−zce(ta+tiso)

+ [csin(ωeta)+d cos(ωeta)]e−zeta (33)

B) Obtaining solutions for the model parameters (k,
Bv, FCE0, ωce, zce)

Having determined the parameters xT 0 and ze from equa-
tion (29), by matching xT with ∆l, we will now deter-
mine the remaining parameters k, Bv,FCE0 , ωce and zce

(in equation 21) On the basis of Figures 2 & 3 and equa-
tions (12 & 18), we put down

FSE = Ft = k(totalSEde f ormation)
= k(x1ed +xe

1) = Fted +kxe
1 (34)

where (i)xe
1 during the ejection phase is given by equa-

tion (34), (ii)x1ed (x1 at end-diastole) is given by equa-
tion (18), and (iii) Ft and Fted are obtained in terms of LV
pressure, model geometry, fiber angle (α) and N from
equation (12). Hence,

k · xe
1 = Ft −Fted = 2πR2

i (P−Ped)/(N sinα) (35)

wherein the xe
1 expression is given by equation (34). We

now match the expression for kxe
1 (of equation 34) with

the evaluated value of the right-hand side term of equa-
tion 36 in terms of clinical-derived data (of LV pressure,
Ri and N) of the subject. By carrying out parameter-
identification, we can determine the corresponding pa-
rameters kas well asBv,FCE0,ωce and zce(in equation 34).
Once we know the values of these parameters, we can
determine the values of the xe

1 during the ejection phase.
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3.5 Sarcomere force, shortening velocity, power and
contractility

A) Determining sarcomere contractile FCE and x2,
and their physiological implications

Having evaluated the parameters (k, Bv, FCE0, ωce, zce)
in section 2.4(B), we can determine the CE contractile
force FCE from equation (19), as well as x1 during isovo-
lumic contraction (from equation 25) and during ejection
(from equation 34). The shortening displacement of CE,
x2 (=x1 + xT ) can also be computed by employing (i) x1

from equation (34) in terms of its evaluated parameters
k, Bv,FCE0, ωce and zce, and (ii) xT from equation (29) in
terms of its evaluated parameters xT 0 and ze. Now, for a
total variation of x2 during a cardiac cycle, we adopt the
x2 expression as:

x2 = x2o sin(ωcet)e−z2t = x1 +xT (36)

where x1 has been computed based on equation (34), xT

is given by equation (29), and t=0 corresponds to the
start of isovolumic contraction phase. Hence, in equa-
tion (31), we can now evaluate the additional parameters
x2o and z2 by parameter-identification.

Myocardial fiber shortening x2 is an important cardiac
performance variable. It would be interesting to deter-
mine the instant (to) within the filling-phase, when x2

becomes zero. From a cardiac physiological viewpoint,
during this time-interval (from the start of filling up to in-
stant to), the left ventricular pressure value will be below
the value at the start of filling phase. This time period
from the start of filling phase up to to is denoted as the
LV suction phase [19].

Hitherto, it has been difficult to provide an explanation
for this suction phase. However, it can be explained in
terms of the continuing activation of FCE into the filling
phase from equations (36, 20 & 37), as follows:

2πR2
i (Pt −Ped)/N sinα = Ft −Fted

= FSE −Fted = FCE +FV E −Fted

= FCE0 sin(ωcet)e−zcet +Bv[x20 sin(ωcet)]e−z2t −Fted

(37)

In equation (37), we have determined the parameters of
FCE and FV E from the monitored LV pressure Pt . As per
equation (37), it is FCE (due to sarcomere contraction)
that intrinsically governs the generation of this pressure

Pt . Hence it is the continuing activation of CE into the
filling phase that causes LV suction and temporal dip in
LV pressure before the left atrium contracts and pumps
blood into the LV. Later on, we will demonstrate the suc-
tion effect in terms of t0.

B) Power Generated by the Sarcomere Contractile-
element

Now, because we have incorporated 2 MSU(s) in each
myocardial fibre (as illustrated in Figure 2), we now de-
fine the LV myocardial instantaneous power in terms of
the MSU CE force causing shortening by amount x2 and
shortening rate of ẋ2, as:

Power = 2× (N/2)(FCE × ẋ2) = N(FCE × ẋ2) (38)

where (i) both FCE and ẋ2 are functions of time, (ii)FCE

is the contractile force generated by each contractile el-
ement, and (iii) ẋ2 is the shortening velocity of the CE
element. In this equation, N is computed from equation
(10);FCE is computed from equation (19), with its param-
eters (FCE0, ωceand zce) obtained from equation (35) by
parameter-identification scheme; x2 = x1 + xT , with x1

and xT computed from equations (34) & (29), respec-
tively. The total Contractile Power-Input (TCPI) is then
obtained as:

TCPI = N
Z

FCEdẋ2 (39)

i.e., by the area under the FCE vs. ẋ2 curve.

C) Defining a New Contractility Index based on the
Contractile Power

Herein, in quantifying the contractile performance of the
LV, we define contractility (corresponding to the tradi-
tional contractility index of dP/dtmax) as the ability of
the LV myocardium to produce a contractile force with
a high shortening-velocity capability, so as to exert max-
imum contractile power (Powermax). In order to compare
Powermax among patients of differing LV size and mass,
we now define a new LV contractility index in terms of
myocardial sarcomere power (MSPI), as:

MSPI = Powermax/MV (40)

where MV is LV wall-volume, and Powermax is the max-
imal value of power (equation 38). If MV is in cm3, we
can evaluate MSPI in Watt/litres.
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Figure 7 : LV Pressure variation and LV (thick-wall cylinder) model dimensions variations, during a cardiac cycle
for subject HEL. MV=185 ml.

Table 1 : Clinical history, measured hemodynamic data from subjects (HEL, DDM and TPS). Where LVP: left ven-
tricle chamber pressure, AOP: aortic pressure, EDV: end-diastolic volume, ESV: end-systolic volume, EF: ejection
fraction, MI: myocardial infarct, DVD: double vessel disease, HTN: hypertension, LAD: left artery disease

Subject HEL DDM TPS
Disease MI, DVD DVD, HTN LAD, and Ischemia
LVP (mmHg) 122/18 170/24 147/22
AOP (mmHg) 125/75 169/99 140/71
EDV/ESV (ml) 132.5/84.3 121.7/41.3 112/35.5
EF 0.36 0.66 0.68

4 Clinical Application and Results

The analysis is now applied to the clinically obtained data
of the subject’s left ventricular (instant-of-instant) di-
mensions (obtained by cineangiocardiograph) and cham-
ber pressure (obtained by cardiac catheterization). In so
doing, for each subject’s left ventricular data, we evaluate
the model parameters FCE and x2, the contractile power
input (CPI) and the new contractility index MSPI.

Table 1 lists the measured hemodynamic variables for
three subjects (subject HEL, DDM, and TPS). Subject
HEL serves as a representative of a patient with my-
ocardial infarct. Subject DDM is an example of a pa-
tient with double vessel disease (DVD) and hypertension,
treated with PTCA. Subject TPS corresponds to a patient
with native LAD, ischemia in anterior territory and mi-

tral regurgitation (MR). These three subjects have also
been studied by our earlier analysis of passive and active
elastance computation [17]. Figure 7 depicts one-sample
cineangiocardiographically-derived LV dimensions and
the derived cylindrical model dimensions during a car-
diac cycle.

4.1 Evaluation of the model parameters

From the clinical data shown in Figure 7, we calculate
the LV model xT , using equation (26). This ‘xT versus
time’ function during ejection is shown in Figure 8, as il-
lustrated by the round points. We then use the expression
of xT given by equation (29) to fit this clinical derived
data of ‘xT versus t ′, and determine the parameters xT 0

and ze, as shown in Figure 8. The model computed xT

matches the xT (=(Li+1 − Li)/2sinα) clinical data very
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Figure 8 : Computed xT (t) during the ejection phase
(t=0 corresponds to start-of-ejection): From the data
shown in Figure 8, we calculate the model xT during
the ejection phase by using equation (11), as shown
by the round points in the figure. This data is now
fitted with equation (29). The resulting values of the
parameters (xT 0 and ze) are shown in the figure and
also listed in Table 2. Here t=0 corresponds to start-
of-ejection.
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Figure 9 : Computed kxe
1 and its parameters dur-

ing the ejection phases (t=0 corresponds to start-
of-ejection). From the data shown in Figure 7, we
calculate the LV model myocardial force Ft and
Fted using equation (10). Then we computekxe

1(=
(Ft −Fted)/N) = 2πR2

i (P− Ped)/N sinα, as shown
by the round points in this figure, with N = 2.24×
105 from equation (8). This clinical-derived data
of (Ft − Fted)/N is now fitted with kxe

1 expression
(based on equation 34), to obtain the values of kxe

1
parameters (FCE0, zce, k, Bv, ωce) listed in the fig-
ure as well as in Table 2. Herein, t=0 corresponds to
start-of-ejection.

well, with R-square=0.9944 and RMS=0.02 cm. The
solid line is the model-computed displacement xT (equa-
tion 29), while the round points constitute the clinical
derived xT .

Now, we use the LV pressure and Ri data in Figure 7,
along with calculating N (by equation 10), to obtain the
right-hand side of the equation (35), and to hence evalu-
ate the term kxe

1. Since the expression for xe
1 is given

by equation (34), we can now employ the parameter-
identification scheme to make the kxe

1 expression (equa-
tion 34) fit the values of kxe

1 (=2πR2
i (P−Ped)/N sinα),

and compute the other parameters k,Bv,FCE0 , ωce and zce,
(as listed in Table 2). In Figure 9, we have shown how
the kxe

1 expression (34) matches the computed values of
kxe

1, to evaluate the parameters k,Bv,σCE0,ωce and zce.

4.2 Determination of CE force FCE and shortening x2

characteristics, with determination of the LV suc-
tion effect

Shown in Figure 10 are the computed values of MSU
dynamics terms for subject HEL. Figure 10-a provides
the measured data of LV pressure in one cardiac cycle.
By means of the values of the parameters (k,Bv,σCE0,ωce

and zce) in Table 2, we have determined and plotted x1

vs time, x2vs time, and xT vs time, in Figure 10-b. The
computed CE shortening-velocity (ẋ2) and force (FCE)
are shown in Figures 10-c & 10-d respectively. Notice
that the CE force variation during systole is similar to
that of LV active elastance in our earlier paper (Zhong,
2005).

Now we adopted the expression x2 given by equation (36)
in order to project the time-duration (t0) of sarcomere
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Table 2 : Computed values of MSU terms xT and x1, and of their parameters related to the subject HEL shown in
Figure 7, during ejection phase (N=2.24×105).

Variable Parameters Values How obtained RMS

xT

xT 0(cm) 10.28±1.71
xT fit using equation (29)

0.02 cm

ze (s−1) 6.50±1.83
R-square
0.99

xe
1

FCE0 (Pa · cm2) 5.66±1.61

kxe
1 fit using equation (35)

RMS
0.028 Pa · cm2

zce (s−1) 3.95±1.06
R-square

Bv (Pa · cm · s) 0.12±0.069
k(Pa · cm) 3.95±1.28

0.97ωce (s−1) 7.14±1.95

x2
x20 0.55±0.01

x2 fit using equation (36)
0.01

z2 -3.03±0.12 0.99

Figure 10 : Computed results of MSU model-dynamics
terms x1, x2, xT , ẋ2 and FCE , for subject HEL. Dias-
tolic phase: 0-0.32s; isovolumic contraction phase: 0.32-
0.4s; ejection phase: 0.4-0.64s; isovolumic relaxation
phase: 0.64-0.72s. Here t=0 corresponds to start-of-
filling. Note that FCE and x2 extend into the filling
phase; t0=0.04seconds.

shortening continuing into the filling phase. We can now
see, from Figure 10-b, that this duration is 0.04 seconds.

This validation and quantification of the LV suction ef-
fect is an important added finding of our model analysis.

4.3 Computing total CE contractile power input
(TCPI) and contractility index (MSPI)

Next, we also plot the ‘force vs. shortening’ and the
‘force vs. shortening velocity’ for the contractile-element
(CE) after the initiation of isovolumic contraction phase,
as shown in Figures 11 & 12.

Figure 11 is the “CE force vs shortening” characteris-
tic. The CE shortening (x2) reaches its maximum value
late in the ejection phase. The area encircled by force-
displacement curve and x-axis represents the CE energy
input.

In Figure 12, the CE shortening velocity increases, along
with increasing CE force. They both reach their max-
imum values at about one-third ejection, and thereafter
decrease. The area encircled by the curve, multiplied by
the number of fibers (N) gives us the TCPI.

From this figure, we can again note that the contractile el-
ement stays activation for 0.04 (=0.76-0.72) seconds into
the filling phase. This causes LV suction of blood, even
prior to the initiation of left atrial contraction

From Figure 12, we calculate total contractile power in-
put (TCPI) to be 5.40W . The maximum value of instan-
taneous power, Powermax (equation 38), is computed to
be 3.32 W . Using this value, we now calculate the con-
tractility index MSPI (equation 40) to be 17.94 W/l.



230 Copyright c© 2005 Tech Science Press MCB, vol.2, no.4, pp.217-233, 2005

Figure 11 : CE Force (FCE ) vs. displacement (x2) re-
lationship for subject HEL. The arrow direction indi-
cates progression of time, starts from diastolic-filling
phase. Here, t=0 corresponds to start-of-filling, the
time t=0.32 corresponds to the start of isovolumic-
contraction phase. The CE shortening (x2) becomes
zero at t=0.76 second, about 0.04 seconds into the filling
phase.

Figure 12 : CE Force (FCE ) vs. shortening-velocity
(ẋ2) relationship for subject HEL. The arrow direction
indicates progression of time, starts from diastolic fill-
ing phase. Here, t=0 corresponds to start-of-filling,
the time t=0.32 corresponds to the start of isovolumic-
contraction phase. The next-cyclic filling phase starts
at t=0.72second, while FCE becomes zero at t=0.76. In
other words, the LV suction effect lasts for about 0.04
second into the filling phase. If we observe the LV pres-
sure variation in Figure 11-a, we can note that the LV
pressure in fact decreases after initiation of filling phase
and recovers to the level of the start of filling phase after
about 0.04 second. To determine the LV Power-Input,
we determine the area under this curve and multiply it
by N. This gives LV Power-Input=5.40W.

Figure 13 : CE Force (FCE )-displacement (x2) for sub-
jects HEL, DDM and TPS. Of the three subjects, TPS
has the biggest area encircled by the FCEvs x2curve;
hence, this subject’s CE is generating higher energy rel-
ative to the other two subjects.

Figure 14 : CE Force (FCE)-velocity (ẋ2) relationships
for subjects HEL, DDM and TPS. Of the three subjects,
the subject TPS has the biggest area encircled within the
FCE vs ẋ2 curve, and hence has the bigger contractile
power input.
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Table 3 : Table 3: Clinical history, (dP/dt)max, Maximal contractile force,FCE , shortening velocity ẋ2 of CE, area
under FCE vs. x2, calculated maximum Power (Powermax), TCPI, myocardial volume (MV), left ventricular contrac-
tility index (MSPI), from subjects (HEL, DDM, and TPS).

Subject HEL DDM TPS
Disease MI, DVD DVD, HTN LAD, Ischemia
EF 0.36 0.66 0.68
dP/dtmax(mmHg/s) 984 1475 1478
MV (ml) 185 138 140
Maximum FCE (Pa · cm2) 2.74 4.12 3.98
Maximal shortening velocity ẋ2(cm/s) 5.55 6.84 7.82
TCPI (W) 5.40 5.97 6.33
Powermax (W) 3.32 5.18 5.48
MSPI ((W/l) 17.94 37.53 39.14

5 Discussion: comparison of CE performance char-
acteristics for 3 patients, and correction of MSPI
with dP/dtmax

5.1 Computation of CE performance characteristics
for other subjects

This analysis is now carried out for two other subjects
(DDM and TPS) listed in Table 1, and the results are pro-
vided in Table 3. For these subjects, the TCPIs are 5.18W
and 5.48 W. Figures 13 and 14 depict the computed CE
force vs shortening and CE force vs shortening-velocity
characteristics for subjects HEL (with MI, DVD), DDM
(DVD, HTN) and TPS (LAD, MR, Ischemia). Figure 13
shows the CE force-shortening for these three subjects
with different heart diseases. The area encircled by the
curve and the x-axis indicates the amount of energy gen-
erated by the CE.

In Figure 14, it is seen that the CE force-shortening ve-
locity curve follows the same trend for all the subjects.
The CE force and shortening-velocity both reach their
maximal values at about one-third ejection. However, the
loop made by HEL has the least area encircled within it,
and correspondingly has the least contractile power input
of the 3 subjects (as seen in Table 3).

5.2 Computation of the new contractility index, in
comparison with the traditional contractility in-
dices

Finally, we compute the traditional indices of contractil-
ity (EF and dP/dtmax), and compare them with our pro-
posed contractility index MSPI. Figures 15 and 16 show
the correlation between MSPI and EF, and between MSPI

and dP/dtmax. The respective correlations are as follow-
ings: MSPI = 55EF −2.4, (r=0.8905); dP/dtmaxMSPI =
0.04dP/dtmax−22, (r=0.9054). These good correlations
hence added credence to our newly formulated contrac-
tility index.

6 Concluding Remarks

In this study, LV systolic performance is investigated by
means of a LV cylindrical-model mechatronic system of
myocardial fiber located within the LV model wall The
myocardial fibers are helically oriented within the LV
model wall. Each myocardial fiber sarcomere unit is
composed of three-elements: series element (analogue
to connective tissue), viscous element (analogue to sar-
colemma) and contractile element (analogue to sarcom-
ere). The sarcomere contraction is associated with the
relative sliding of the actin-myosin filaments.

The contractile force FCE and shortening x2of the LV
myocardial-sarcomere unit are related to the LV pressure
and volume data, and evaluated in terms of the model’s
parameters (k, Bv), and hence we can evaluate them. Af-
ter that, we determine the in vivo characteristics of the LV
sarcomere (CE), in terms of ‘FCE vs x2’ and ‘FCE vs ẋ2’,
as well as the power generated by the sarcomere (CE).
Both ‘FCE vs. ẋ2’ characteristics and the total contrac-
tile power input (TCPI) can be regarded as important LV
functional indices.

Our evaluated in vivo CE force vs shortening and force
vs shortening-velocity characteristics are seen to depict
LV contractile function features: Less area encircled by
the force-displacement and x-axis is associated with im-
paired LV contractility; Also, decreased area within the
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Figure 15 : Correlation of the myocardial sarcomeric
power index (MSPI) to EF, the correlation coefficient
r=0.8905.

Figure 16 : Correlation of the myocardial sarcomeric
power index (MSPI) to the traditional contractility index
dP/dtmax,,with the correlation coefficient r=0.9054.

force-shortening velocity curve is associated with less
contractility; this indicates that a LV with impaired con-
tractility is not able to generate as much power required
to provide adequate EF and stroke volume as a properly-
contracting LV.

Subject HEL has myocardial infarct, and hence has a
weaker contracting myocardium. This is manifested by
a lower CE maximal force and shortening-velocity, in
comparison with subjects DDM and TPS (shown in Ta-
ble 3). Correspondingly, its values of maximum power
generated by CE, and the contractility index (MSPI) are
lower than for the other two subjects. Also, the area of
CE force-displacement curve for subject HEL is signifi-
cantly less compared with the other two subjects. These
results quantify how myocardial infarct impairs the left
ventricular performance in terms of our model’s contrac-
tile power-generated and contractility indices.

Subject TPS (with myocardial ischemia) has the max-
imal area encircled within its FCE and ẋ2 curve. This
perhaps reflects an adaptive mechanism attempting to re-
store the LV performance, which is in agreement with its
ejection fraction value (EF=0.68).

Table 3 summarizes all of these results. Figure 16 enables
us to compare our MSPI index with the traditional con-
tractility index dP/dtmax. Even more significantly, our
case studies for 30 subjects show that our new contrac-
tility index MSPI can be correlated with the traditional
contraction index dP/dtmax, and hence can merit clinical

employment.
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