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A Stochastic Analysis of a Brownian Ratchet Model for Actin-Based Motility

Hong Qian1

Abstract: In recent single-particle tracking (SPT)
measurements on Listeria monocytogenes motility in
cells [Kuo and McGrath (2000)], the actin-based stochas-
tic dynamics of the bacterium movement has been ana-
lyzed statistically in terms of the mean-square displace-
ment (MSD) of the trajectory. We present a stochastic
analysis of a simplified polymerization Brownian ratchet
(BR) model in which motions are limited by the bac-
terium movement. Analytical results are obtained and
statistical data analyses are investigated. It is shown
that the MSD of the stochastic bacterium movement is
a monotonic quadratic function while the MSD for de-
trended trajectories is linear. Both the short-time relax-
ation and the long-time kinetics in terms the mean veloc-
ity and effective diffusion constant of the propelled bac-
terium are obtained from the MSD analysis. The MSD of
the gap between actin tip and the bacterium exhibits an
oscillatory behavior when there is a large resistant force
from the bacterium. For comparison, a continuous dif-
fusion formalism of the BR model with great analytical
simplicity is also studied.

keyword: Actin polymerization, exit problem, mean
first passage time, nano-biochemistry, single-particle
tracking, stochastic processes.

1 Introduction

Actin polymerization plays many important roles in non-
muscle cell mechanics, motility, and functions [Korn
(1982); Frieden (1985), Pollard, Blanchoin, and Mullins
(2000); Pantaloni, Boujemaa, Didry, Gounon, and Car-
lier (2000)]. In recent years, quantitative analyses of
the molecular mechanism for actin-based motility have
been made feasible by both laboratory experiments on
Listeria monocytogenes (see van Oudenaarden and The-
riot (1999); Theriot (2000); Kuo (2001) and the refer-
ences cited within) and a series of insightful mathemat-
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ical models [Oosawa and Asakura (1975); Hill (1981);
Hill and Kirschner (1982); Hill (1987); Peskin, Odell,
and Oster (1993); Mogilner and Oster (1996)]. Interac-
tions between experimental observations and theoretical
ideas have generated exciting research in both biophysics
and mathematical biology [Mogilner and Oster (2003)].
The molecular theory of actin polymerization also pro-
vides a unique opportunity in which the mechanics and
chemistry of a biological system are integrated. At the
mesoscopic level, mechanics and chemistry are often two
perspectives of a single physical process we call chemo-
mechanics [Qian and Shapiro (1999); Qian (2000a); Qian
(2002b)].

Following the seminal work of Peskin, Odell, and Os-
ter (1993), a sizable literature now exists on mathemat-
ical models and analyses of the polymerization-based
motility, known as Brownian ratchet (BR). Even though
the original model on fluctuations is clearly a proba-
bilistic one, it was cast mathematically in terms of dif-
ference and differential equations with only a minimal
stochastic interpretation. In the subsequent development,
this stochastic nature of the model often has been ob-
scured. In experimental laboratories, on the other hand,
researchers often use Monte Carlo simulations to model
the biological problem, partly because the data are in-
evitably stochastic.

This situation has prevented a truly quantitative under-
standing of actin-based motility and a closer interaction
between the experimental measurements and mathemati-
cal modeling. In a recent experiment, Kuo and McGrath
(2000) used the highly sensitive single-particle tracking
(SPT) methodology [Qian, Sheetz, and Elson (1991)]
to measure stochastic movement of L. monocytogenes
propelled by actin polymerization. The seemingly ran-
dom data were then analyzed statistically in terms of the
mean-square displacement (MSD, see Qian, Sheetz, and
Elson (1991)). The exquisite data with nanometre preci-
sion reveals the discrete steps in the bacteria movement,
presumably due to the actin polymerization, one G-actin
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monomer at a time.

The stochastic nature of the BR, and the statistical treat-
ment employed in experimental data analyses, necessi-
tate a mathematical analysis of the BR model in fully
stochastic terms. This is the main objective of the present
work. A unique feature of the stochastic modeling anal-
yses is that one deals with a single BR rather than a polu-
lation, and can derive theoretical MSD to compare with
experiments.

In order to clearly present the stochastic approach to the
BR, we only study a special, but relevant case of the
generic BR model proposed by Peskin, Odell, and Oster
(1993). This restriction allows for an analytical treatment
of the model. Our analysis indicates that the BR model
predicts a linear relationship between detrended MSD
and time. The result seems to be consistent with experi-
mental findings of Kuo and McGrath (2000). This study
demonstrates the importance of carrying out stochas-
tic modeling analysis for comparing theory with exper-
iment.

Interestingly, the mathematical model is also identical to
one for a stochastic integrate-and-fire neuron proposed
many years ago by Gerstein and Mandelbrot (1964). In
recent years, integrate-and-fire model has become one of
the essential components in neural modeling [Hopfield
and Herz (1995)]. The stochastic analysis for the present
model, therefore, is expected also to have applications in
other branches of biophysics and mathematical biology.
The fractal nature of such models has been discussed re-
cently [Qian, Raymond, and Bassingthwaighte (1999)].

All the mathematical background on stochastic processes
used in this work can be found in the elementary text by
Taylor and Karlin (1998). To help the readers who are not
familiar with some of the stochastic mathematics, italic
font is used for the key terms when they first appear in
the text.

2 Stochastic Formulation of a Brownian Ratchet
Model

(i) We consider an F-actin polymerizes in a 1-
dimensional fashion with the rate of monomer addition
α and the rate of depolymerization β. α is a pseudo-first
order rate constant which is proportional to the G-actin
monomer concentration. Each G-actin monomer has a
size of δ. Hence the actin polymerization is modeled as
a continuous-time biased random walk [Hill (1987)]. We

shall take the growing direction as positive, and denote
the position of the tip of the actin filament by X(t) which
is a stochastic process taking discrete values kδ, where
k is an integer. Bold face symbols are used to represent
random variables throughout this paper.

(ii) We assume that a bacterium is, in the front of the
growing actin filament, located at Y(t): X(t)≤Y(t). The
bacterium has an intrinsic diffusion constant Db, and ex-
periences (or actively exerts) a resistant force F in the
direction against actin polymerization. In the absence of
the actin filament, the bacterium movement is a Brown-
ian motion with a constant drift rate −F/ηb where η is
the frictional coefficient. Since a bacterium is a living or-
ganism, the Db and the ηb are not necessarily related by
the Einstein relation ηbDb = kBT as for inert equilibrium
objects.

(iii) The F-actin and the bacterium interact only when
they encounter: X(t) = Y(t). The actin filament, how-
ever, can not penetrate the bacteria wall. Therefore,
the motion of the bacterium and the actin polymeriza-
tion are coupled via a reflecting boundary condition at
X(t) = Y(t).

(i)-(iii) are the basic assumptions of the generic BR
model first proposed by Peskin, Odell, and Oster (1993).
In the present work, we shall further assume that

(iv) the α is sufficiently large, and

(v) β ≈ 0.

Therefore, whenever the gap ∆(t) � Y(t)−X(t) = δ, the
gap will be immediately filled by a G-actin monomer,
and the polymer does not depolymerize. These two
assumptions correspond to a rapid polymerization con-
dition under which the bacteria movement is the rate-
limiting process in the overall kinetics.

Fig. 1 shows the basic, stochastic behavior of X(t),
Y(t), and ∆(t). Kuo and McGrath (2000) also used a de-
trended Y(t). Let v be the mean velocity of the bacterium
movement Y(t), then we define the detrended Ŷ(t) as
Ŷ(t) � Y(t)−vt.2

Let ξk be the time for incorporating the kth G-actin
monomer. Then at time ξk, X(ξk) = Y(ξk) = kδ. When
t > ξk, Y(t) follows a Brownian motion with diffusion
constant Db, drift rate −F/ηb, and reflecting boundary
at kδ. Y(t) moves stochastically and when it reaches

2 Dr. S. Kuo has informed us that the method of detrend in Kuo
and McGrath (2000) is slightly different from our definition. The
significance of this is under current investigation.
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Figure 1 : A set of examples, from Monte Carlo simu-
lations, for the stochastic trajectories of Y (t), the move-
ment of the bacterium, X(t), the movement of the tip of
the actin filament (A), ∆(t) � Y (t)−X(t), the gap (B),
and Ŷ (t), the detrended Y (t) (C). Among the four types
of data, only the ∆(t) approaches stationarity. Ŷ (t) has
zero expectation but with a linear MSD, a characteristic
of Brownian motion without drift. Both X(t) and Y(t)
show the typical diffusion with a drift [Qian, Sheetz, and
Elson (1991)].

(k +1)δ, denoted by ξk+1, the (k+1)th G-actin monomer
is incorporated. Then the process repeats. The waiting
time for the next monomer to be incorporated is a ran-
dom variable, we shall denote it by T: ξk+1 = ξk + T.
This is our stochastic formalism for the BR model. The
present analysis focuses on the stochastic properties of
the random variable T.

Fig. 2 shows the mean-square displacement (MSD) of
the stochastic data in Fig. 1. The MSD for a stochastic
processes X(t) is defined as

MSD(τ) = E
[
(X(τ+ t)−X(t))2] (1)

which is a powerful analytical tool for analyzing stochas-

            

Figure 2 : The MSD, as functions of delay time, for the
four types of data in Fig. 1: The movement of the bac-
terium Y (t), the tip of the actin filament X(t), the gap
∆(t), and the detrended Ŷ (t). As expected, after a brief
period of time, the Y (t) and the X(t) are almost indis-
tinguishable; the gap between them quickly reaches sta-
tionarity. The detrended Ŷ (t) shows a linear MSD, as
observed in the experiments Kuo and McGrath (2000).

tic processes with independent increments or stationar-
ity. The E[. . .] in Eq. 1 denotes the expectation of
random variables. For a stochastic process with inde-
pendent increments, MSD(τ) is further simplified into
E

[
(X(τ)−X(0))2

]
. In the case of a stationary process,

its MSD is directly related to the autocorrelation func-
tion:

E[X(τ)X(0)]= E[X2]− 1
2

MSD(τ). (2)

The significance of MSD is that it can be obtained
through a statistical analysis of stochastic experimental
data [Qian, Sheetz, and Elson (1991)]. Therefore it is the
essential link between the experimental measurements on
fluctuations and stochastic mathematical models. For an
experimental time series {xn|0 ≤ n ≤ N}, the MSD is de-
fined as:

MSD(m) =
1

N −m+1

N−m

∑
k=0

(xk+m −xk)
2 . (3)

The statistical relation between the experimentally deter-
mined MSD in Eq. 3 and the theoretical MSD in Eq. 1
can be found in Qian, Sheetz, and Elson (1991).
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3 Basic Properties of the Model: Analytical Results

3.1 Mean Waiting Time and Waiting Time Distribu-
tion.

The time interval T between the repeated incorporation
of successive actin monomer is the exit time of a diffusion
process. By exit time Tz, we mean the time a Brownian
particle takes to reach δ the first time, starting at z (0 ≤
z ≤ δ). Clearly Tz is a random variable; its expectation
T (z) = E[Tz], known as mean first passage time, is the
solution to the differential equation [Taylor and Karlin
(1998)]

Db
d2T
dz2 − (F/ηb)

dT
dz

= −1 (4)

with boundary conditions dT
dz (0) = 0 and T (δ) = 0.

Hence

T (z) =
η2

bDb

F2

(
eFδ/ηbDb −eFz/ηbDb

)
+

ηb(z−δ)
F

. (5)

Therefore,

E[T] = T (0) =
(

δ2

Db

)
eω −1−ω

ω2 , (6)

where ω = Fδ/(ηbDb) is the nondimensionalized resis-
tant force.

The probability density function (pdf) fTz(t) for the wait-
ing time, Tz can be obtained in terms of its Laplace
transform, also known as the characteristic function
of the random variable Tz, QT(z,ν) =

∫ ∞
0 fTz(t)e−νtdt

which satisfies the following differential equation [Weiss
(1966)]

Db
∂2QT(z,ν)

∂z2 − F
ηb

∂QT(z,ν)
∂z

= νQT(z,ν) (7)

with boundary condition ∂QT(0,ν)/∂z = 0 and
QT(δ,ν) = 1. Note Eq. 4 is a special case of Eq.
7 for T (z) = −∂QT(z,0)/∂ν.

Eq. 7 can be analytically solved:

QT(0,ν) =
λ−−λ+

λ−eλ+δ−λ+eλ−δ (8)

where

λ± =
ω
2δ

±
√( ω

2δ

)2
+

ν
Db

.

Therefore, the variance in the waiting time

Var[T] =
(

δ4

D2
b

)
3e2ω − (10ω−6)eω +ω2 −2ω−9

ω4 .

(9)

If there is no resistant force from the bacteria, ω = 0 and
we have a simple expression

QT(0,ν) =
(

cosh
√

δ2ν/Db

)−1

. (10)

3.2 Renewal Processes, The Statistical Properties of
X(t) and Y(t).

With T as the waiting time, the tip of the rapidly grow-
ing actin filament, X(t), is a renewal process [Taylor and
Karlin (1998)]. There is a large literature on this subject.
The most relevant result to our model is the elementary
renewal theorem for large t

E[X(t)]≈ δ
E[T]

t (11)

Therefore as a renewal process, a BR executes succes-
sive steps with size δ and average time E[T]. The mean
velocity of the BR, thus, is

v =
δ

E[T]
=

(
Db

δ

)
ω2

eω −1−ω
. (12)

This result is in agreement with that of Peskin, Odell, and
Oster (1993).

Furthermore from the theory of renewal processes [Tay-
lor and Karlin (1998)]

Var[X(t)]≈ δ2Var[T]
E3[T]

t � σ2t, (13)

where, according to Eqs. 6 and 9,

σ2 =
3e2ω − (10ω−6)eω +ω2 −2ω−9

(eω −1−ω)3 ω2Db. (14)

The MSD for X(t), therefore, is

E
[
(X(t)−X(0))2] ≈ σ2t +(vt)2 (15)

which is a quadratic function of t. The expression for σ2

is a new result of the present work, which is comparable
with experimental data. Fig. 3 shows the dependence of
v and σ2 as functions of ω = Fδ/ηbDb, the resistant force
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Figure 3 : The velocity vδ/Db and MSD σ2/Db, nondi-
mensionalized, as functions of the resistant force on bac-
terium, ω = Fδ/ηbDb. In the SPT experiments, the ve-
locity can be obtained as the quadratic term in the MSD
of Y(t), the σ2 can be obtained either as the linear term in
the MSD of Y (t), or the MSD of the detrended Ŷ(t). The
velocity v is given in Eq. 12 and the σ is given in Eq. 14.

from the bacterium. If ω = 0, then v = 2Db/δ and σ2 =
14Db/3.

Since Y(t)−X(t)< δ while both increase linearly with t,
for large t Y(t) ≈ X(t) with an error less than δ, the size
of a single actin monomer. Strictly speaking, the Y(t)
is not a stochastic process with independent increments.
However, the error involved, again, is only on the order of
the size of a single G-actin. To understand the statistical
correlation of Y(t) within each “step”, see the section
below on the gap.

3.3 Detrended Y(t) and Its Statistical Properties.

We define the detrended Y(t) as Ŷ(t) � Y(t)−vt, where
v is the mean velocity. For nδ ≤ Y(t)≤ (n+1)δ,

Ŷ(t) � Y(t)−vt

= Y(t)−Y(ξn)+nδ−vξn −v(t −ξn)
= Y(τ)−vτ+nδ−vξn

in which random variable ξn is the time for Y(t) to reach
nδ the first time, τ = t − ξn, and v is given in Eq. 12.
Hence, 0 ≤ τ ≤ ξn+1 −ξn = ξ1 = T, with its expectation,
variance, and characteristic function given in Eqs. 6, 9,
and 8, respectively.

The statistical properties of Ŷ(t) are readily calculated:

E
[
Ŷ(t)

]
= E (Y(τ)]−vτ ≈ 0, (16)

Var
[
Ŷ(t)

]
= Var [Y(τ)]+nvVar [T] ≈ σ2t. (17)

Thus, we see that the detrended Ŷ(t) does not become
stationary with increasing time. While its expectation is
zero, its variance increases linear with the time t, the epit-
ome of a symmetric random movement. The parameter
σ2

2 is the effective diffusion constant of the BR.

3.4 Statistical Properties of the Gap Y(t)−X(t).

The gap between the bacteria, Y(t), and the tip of the
actin filament X(t), ∆(t) � Y(t)− X(t) behaves com-
pletely differently from the detrended Ŷ(t). It reaches
asymptotically to stationarity.

We can provide a reasonable estimation for the relaxation
time for the gap to reach its stationarity from the largest
nonzero eigenvalues (µ) of the diffusion operator

(
Db

d2

dx2 +
F
ηb

d
dx

)
u(x) = µu(x) (18)

under the boundary condition Db
du
dx(0)+ (F/ηb)u(0) =

u(δ) = 0. See Appendix for details. All the eigenval-
ues are real and ≤ 0, µ(z) = − Db

4δ2 (z2 + ω2), where the z

are the roots of the transcendental equation cos z = ω2−z2

ω2+z2 .
Fig. 4 suggests that the largest eigenvalue corresponds
to the exit time which increases with the resistant force.
For resistant force F � 2ηbDb/δ, there is a separation
between the time scale for the exit and the time scale
for establishing a quasi-stationary distribution for ∆(t)
(Appendix). Fig. 5 shows the MSD for ∆(t), which is
directly related to the correlation function for the station-
ary process (Eq. 2). After normalization by 2Var[∆], the
MSD are approximately the same for 0 ≤ ω ≤ 6. The
correlation time decreases with ω for ω = 2, 4, 6, and 12
(i.e., the probability for a biased random walk p = 0.55,
0.6, 0.65, and 0.8), corresponding to the second largest
eigenvalue in Fig. 4,

When there is a large resistant force F , the exit time T
has a small relative variance (Eqs. 9, and 6) and the exit
becomes an event with sufficient regularity. This is re-
flected in the oscillation of the MSD in Fig. 5.
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Figure 4 : Numerical computation for the three smallest
eigenvalues (in magnitude, all eigenvalues are negative)
of Eq. 18,

∣∣µδ2/Db

∣∣, as function of the resistant force
ω. These are the most relevant modes in the relaxation
(and correlation function) of the gap, ∆(t), approaching
to stationarity. The smallest eigenvalue corresponds to
the exit time, shown in the figure (labeled 1/E[T ]).

4 An Analytical Analysis of a Continuous Stochastic
Formalism of BR

We can replace the assumptions (iv) and (v) in Section 2
with a continuous model for the discrete polymerization.
In other word, we approximate the biased random walk
with α, β and δ by a diffusion process with diffusion con-
stant and drift rate [Feller (1957); Hill (1987)]:

Da = (α+β)δ2/2, Va = (α−β)δ. (19)

where β and α are first-order and pseudo-first-order rate
constants for the depolymerization and polymerization, δ
is the size of a G-actin monomer. The dynamic equation
governing the probability density function (pdf) PX(x, t)
for the stochastic processes X(t) is:

∂PX(x, t)
∂t

= Da
∂2PX(x, t)

∂x2 −Va
∂PX(x, t)

∂x
(20)

where PX(x, t) has the probabilistic meaning of
PX(x)dx = Prob{x < X ≤ x+dx}. Similarly, the dynam-
ical equation for Brownian motion of the bacterium Y
with resisting force F is, as before,

∂PY(y, t)
∂t

= Db
∂2PY(y, t)

∂y2 +
F
ηb

∂PY(y, t)
∂y

. (21)

            

Figure 5 : The normalized MSD for the ∆(t), from
Monte Carlo simulation, for different resistant force F
which is related to the probability (p) shown in the fig-
ure: F/(ηbδ) = 0.1(2p− 1). A standard MSD for a
stationary process is directly related to its time correla-
tion function 2(E[∆2(t)]− E[∆(t)∆(0)]), with its asymp-
tote being the 2Var[∆] when t → ∞. In the simulations,
the diffusion constant is Db/δ2 = 0.005. 0 ≤ ∆(t) ≤ 1;
the stationary E[∆] = 0.33, 0.27, 0.21, 0.16, and 0.08
for p = 0.5− 0.8 respectively; the corresponding rela-
tive variances Var[∆]/E2[∆] = 0.53, 0.64, 0.79, 0.91, and
0.96. The relative variance for an exponential distribu-
tion is 1.

These two equations are coupled since X ≤ Y. We call
Eqs 19, 20, and 21 the continuous formalism for the BR.
It represents two-dimensional diffusion in the triangle re-
gion of x ≤ y:

∂PXY(x,y, t)
∂t

= Da
∂2PXY(x,y, t)

∂x2 +Db
∂2PXY(x,y, t)

∂y2

− Va
∂PXY(x,y, t)

∂x
+

F
ηb

∂PXY(x,y, t)
∂y

.

The advantage of this version of the BR is its analyti-
cal simplicity. A coordinate transformation can be intro-
duced:

∆ = Y−X, Z =
DaY+DbX

Da +Db
(22)

where ∆ represents the gap between the tip of the actin
filament and the bacterium, Z represents an averaged po-
sition of X and Y, we shall call it the center of mass of the
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BR. With this transformation, the two differential equa-
tions are decoupled:

∂P∆(∆,t)
∂t

= (Da +Db)
∂2P∆(∆,t)

∂∆2 +
(

Va +
F
ηb

)
∂P∆(∆,t)

∂∆
,

(∆ ≥ 0) (23)

∂PZ(z,t)
∂t

=
DaDb

Da +Db

(
∂2PZ(z,t)

∂z2

)
− DbVa −DaF/η

Da +Db

(
∂PZ(z,t)

∂z

)

(−∞ < z < +∞). (24)

It can be immediately concluded from these two equa-
tions that the gap ∆(t) approaches its stationary, expo-
nential distribution (see Appendix)

P∆(∆) =
Va +F/ηb

Da +Db
e

Va+F/ηb
Da+Db

∆
, ∆ ≥ 0. (25)

Z however increases steadily with an effective diffu-
sion constant Dz, 1

Dz
= 1

Da
+ 1

Db
, and a mean velocity

Vz = DbVa−DaF/ηb
Da+Db

. This result can be understood in terms
of Newtonian mechanics: the driving force from actin
polymerization is Fa = ηaVa = kBTVa/Da, and the re-
sistant force is F , and hence the net force on the BR is
Fz = Fa −F with the frictional coefficient the BR (center
of mass) being kBT/Dz. Hence

Vz =
DzFz

kBT
=

DaDb

Da +Db

(
Va

Da
− F

kBT

)

=
DbVa−DaF/ηb

Da +Db
. (26)

The parameter Da and Va are defined in terms of α, β,
and δ in Eq. 19. α is a pseudo-first order rate constant
which is proportional to the G-actin concentration c0, as
well as the probability of the gap ∆ being greater than
δ. Therefore, α is a function of external force F ; it can
be determined in a self-consistent manner from the tran-
scendental equation:

α(F) = α0c0

∫ ∞

δ
P∆(s)ds

= α0c0 exp

[
− (α−β)δ+F/ηb

(α+β)δ2/2+Db
δ
]

(27)

where α0 is the intrinsic, second-order rate constant for
polymerization. We see that Vz in Eq. 26 is a linear func-
tion of resistant force F explicitly; however, nonlinearity
arises since Da and Va are implicit functions of the resis-
tant force F, via α(F). In other words, the resistant force

F slows down the BR by two different mechanisms: a
linear Newtonian resistance and also a reduction in the
rate of polymerization via a diminished gap. Eq. 27 has
the general form α(F) ∝ e−rFδ/kBT where r is a splitting
parameter. We see that in general r can be a function of
F.

Vz in Eq. 26 is necessarily smaller than Va, indicating
that the bacterium retards the polymerization. When

F = ηbDbVa/Da =
(

ηbDb
δ

)
2(α−β)

α+β , the bacterium com-

pletely stalls the polymerization. This yields the critical
stalling force which agrees with the well known result of
Hill (1987) for an inert object: (kBT/δ) ln(α/β). Fur-
thermore, if we note that ηbDb = kBT , then the rate of
polymerization against a resisting force F is at its maxi-
mal Vz =Va−FDa/kBT when Db → ∞. This is a result of
Peskin, Odell, and Oster (1993) who first elucidated the
crucial role played by the fluctuating “barrier” in the fila-
mentous growth. In a more general context, the dynamic
characteristics of the “force transducer” by which the re-
sisting force is applied to the growing tip of the filament
is an integral part of the molecular process.

In Hill (1981), this issue is not considered because of
its quasi-thermodynamic approach. The applied force
was assumed to have an instantaneous dynamic response.
From equilibrium thermodynamics one knows that poly-
merization under resisting force F has α(F)/β(F) =
e−Fδ/kBT . So how does F contribute to α(F) and
β(F) individually? The splitting parameter r is de-
fined as α(F) = α(0)e−rFδ/kBT and consequently β(F) =
β(0)e(1−r)Fδ/kBT , where α(0) and β(0) are the α and β
in the above. The rate of polymerization under force F ,
therefore, is

[α(F)−β(F)]δ=
(

α(0)e−rFδ/kBT −β(0)e(1−r)Fδ/kBT
)

δ.

(28)

With very small δ, this gives [α(0) − β(0)]δ −
Fδ2[r α(0)+ (1− r)β(0)]/kBT which should be com-
pared with Vz = (α− β)δ−Fδ2(α + β)/2kBT . See Eq.
26 and noting

α =
1
2

(
Va

δ
+

2Da

δ2

)
, β =

1
2

(
−Va

δ
+

2Da

δ2

)
, (29)

from Eq. 19. This indicates that the BR has a split-
ting factor of r = 1/2. However, Hill’s analysis does not
have the contribution from the dynamic characteristics
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of the barrier, i.e., Db. Eq. 28 is the starting point of
Kolomeisky and Fisher (2001).

We now show that in the limit of δ → 0, our Vz from the
continuous model is equivalent to the ratchet velocity in
Peskin, Odell, and Oster (1993) (POO). Note that in the
original work the definition for the ratchet velocity was
rather convoluted. The Vz in the present model is more
straightforward. Substituting the expressions in Eq. 29
into

Vpoo = δ
(

α
∫ ∞

δ
P∆(∆)d∆−β

∫ ∞

0
P∆(∆)d∆

)

we have

lim
δ→0

Vpoo = Va− Da

δ

∫ δ

0
P∆(∆)d∆ = Va−DaP∆(0)

=
DbVa−DaF/ηb

Da +Db
= Vz.

In the derivation we have used Eq. 25. Note that the basic
molecular parameters for polymerization, α, β and δ are
actually contained in the parameter Da and Va. In the
mathematical limit of δ → 0, there is at the same time α
and β → ∞ such that Da and Va are finite [Feller (1957)].

5 Discussion

Nanometre precision measurements on L. monocyto-
genes movement [Kuo and McGrath (2000)] have shown
that the bacteria move in steps. Considering there are
many actin filaments in a bundle which propels a bac-
terium, this observation indicates a synchronized fila-
mentous growth in the bundle. The synchronization is
not inconsistent with a bundle of actin filaments pro-
pelling a bacterium with sufficiently small Brownian
movement (i.e., small Db). The significantly reduced
Brownian motion is indeed observed experimentally,
both in the direction parallel and perpendicular to the
actin growth.

There could be several explanations for the small Db.

(a) Kuo and McGrath (2000) suggested an association
between the bacterium and the actin structure, which
leads to endorsing the two-dimensional BR with bending
[Mogilner and Oster (1996)].

(b) It should be noted, however, that association-
dissociation can also be introduced into the one-
dimensional BR in the form of an attractive force be-
tween the actin and the bacterium; thus a nonzero F as

function of (y− x). This, we argue, will also lead to a
reduced apparent Db on a longer time scale.

(c) As we have pointed out, the Db of a living bacterium
is not necessarily related to its physical size and frictional
coefficient ηb. A living bacterium could have an internal
mechanism, by utilizes its biochemical free energy, to lo-
calize itself near the tip of the actin filament with dimin-
ished Brownian motion. Finally, all existing models on
BR have only dealt with single filaments. The continu-
ous formalism we propose here is in fact our initial step
toward extending the BR to a filamentous bundle. All
these topics are currently under investigation.

In a special Science issue on Movement: Molecular to
Robotic, two articles reviewed recent progress on force
and motion generated on the molecular level by two
completely different biological systems: motor protein
movement and cytoskeletal filamentous polymerization
[Vale and Milligan (2000); Mahadevan and Matsudaira
(2000)]. Both systems can move against resistant force
by utilizing chemical free energy. In the abstract of the
second article, it was stated “Not all biological move-
ments are caused by molecular motors sliding along fil-
aments or tubules. Just as springs and ratchets can store
or release energy and rectify motion in physical systems,
their analogs can perform similar functions in biologi-
cal systems.” While there has been much work done on
motor proteins and protein polymerization in connection
to various cellular phenomena such as motility, less has
been discussed about the fundamental physical princi-
ples of these two chemomechanical processes. It turns
out, as we have shown in this work, that both molecu-
lar processes have a single, unified mathematical model
which accounts for their chemomechanical energy trans-
duction. The mechanics and chemistry are inseparable at
the molecular cellular level.

Experimental measurements have been carried out on
both systems [Dogterom and Yurke (1997); Kuo and Mc-
Grath (2000)]. Similar to the measurements on load-
velocity curves for motor proteins, Dogterom and Yurke
(1997) measured the velocity as a function of resistant
force for single microtubules growing in vitro. Analysis
of their data suggests that under the stalled (critical) con-
dition, polymerization is in a nonequilibriumsteady-state
rather than a thermodynamic equilibrium [Kolomeisky
and Fisher (2001); Hill (1987)].

Theoretical formalism for motor proteins are now well
established (see Jülicher, Ajdari, and Prost (1997); Qian
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(2000b); Bustamante, Keller, and Oster (2001); Reimann
(2002); Oster and Wang (2003); Qian (2004)). Since the
motion of a single motor protein is Brownian, it has to be
characterized in terms of probability distribution. The
simplest model is that of Huxley (1957). This model
corresponds to Dogterom and Leibler (1993) for poly-
merization with nucleotide hydrolysis. Both models ad-
dressed the important issue of nucleotide hydrolysis, but
neglected the respective stochastic nature in the move-
ment of motor protein and actin polymerization. Without
the diffusion term, such a mathematical model is known
as random evolution [Pinsky (1991)].

All experimental evidences indicate that the BR model is
a fundamental mathematical model for chemomechani-
cal energy transduction. Recent work on the nonequilib-
rium statistical mechanics and thermodynamics of BR,
in the context for single macromolecules in aqueous so-
lution, also provided the mathematical model with a solid
foundation in statistical physics of Boltzmann, Gibbs,
and Onsager [Qian (1998); Qian (2001a); Qian (2001b);
Qian (2002a); Qian (2002b); Qian (2004)]. The biolog-
ical systems discussed in the two Science articles [Vale
and Milligan (2000); Mahadevan and Matsudaira (2000)]
and the mechanistic, molecular models proposed are
completely different. Yet they share fundamentally the
same physiochemical principle which units both models
in a quantitative fashion. The mathematical model seems
to capture the basic principle for molecular movements
and force generation in cell biology.

To biophysicists and mathematical biologists, BR is a
class of models which is based on a similar physics but
can have many different mathematical representations
and degree of approximations. We have shown two such
analyses in the present work. The essential feature of
all the models can, and should, be presented in terms of
their MSD, which provides the BR, in steady-state, with
an effective diffusion constant(Dz) and a mean velocity
(Vz), both as functions of the resistant force. More sub-
tle differences between models can be found in the tran-
sient behavior. The comparison between our analyses is
summarized in the Table, in which the effective diffusion
constant for the continuous model

Dz =
(α+β)δ2Db/2

Db +(α+β)δ2/2
−→ Db

when α → ∞, and the BR velocity

Vz =
Db(α−β)δ−Db(α+β)δω/2

Db +(α+β)δ2/2
−→ (Db/δ)(2−ω)

is a linear force-velocity relationship.

Dz/Db Vzδ/Db

discrete model 3e2ω−(10ω−6)eω+ω2−2ω−9
(eω−1−ω)3 ω2 ω2

eω−1−ω

continuous model 1 2−ω

It is seen that in the continuous model, the effective dif-
fusion constant Dz is always less than the Db, while in
the discrete model, the Dz = σ2/2 is a function of the re-
sistant force. When the force is small, Dz can in fact be
greater than Db. This is a type of facilitated diffusion.

It is important to point out that the results from our dis-
crete analysis is invalid when the resistant F is suffi-
ciently large, when the polymerization is near its stalling
force. This is due to the assumption of infinite large α.
This explains why there is no critical force in Fig. 3,
at which the velocity v = 0. The more realistic model
with finite α and β does lead to a finite, positive stalling
force [Peskin, Odell, and Oster (1993); Kolomeisky and
Fisher (2001)]. The valid regime for our discrete model is
a rapid growing actin filament with the bacteria viscous
drag being the limiting factor in the overall BR move-
ment.

Finally, it is worth pointing out that mechanical studies
of cellular properties and functions can be approximately
classified for passive and active materials. The former
can be understood in terms of the theories of viscoelas-
ticity and polymer dynamics. See Qian (2000a) for a gen-
eral approach to the problem. Materials with chemome-
chanical energy transduction are active. The fundamental
difference is the nucleotide hydrolysis which leads to an
irreversible thermodynamic nonequilibrium steady-state
with heat dissipation [Qian (2002a); Qian (2002b)] rather
than the usual equilibrium. Thus, the BR model is also a
natural generalization of the standard polymer theory for
passive, mostly synthetic, materials [Doi and Edwards
(1986)] to active biological materials for which T.L. Hill
has coined the term “steady-state polymer” Hill (1987).
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Appendix A: Diffusion with Drift in Semi-infinite
Space with Noflux Boundary

To understand the dynamics of the gap in the continuous
model, one needs to solve the time-dependent diffusion
equation, Eq. 23. In nondimensionalized form:

ut = uxx +ωux, (x ≥ 0), (30)

with boundary condition ux + ωu = 0 at x = 0 and x =
∞. Surprisingly, classic texts on diffusion [Carslaw and
Jaeger (1959); Crank (1975)] did not give an explicit so-
lution to the problem. Because of its central importance
in the theory of BR, we give some explicit results below.

The eigenfunction of the problem associated with eigen-
value µ(z) = −1

4 (ω2 + z2) is

u(x, t; z) =
1√

π(ω2 + z2)

[
zcos

(zx
2

)
−ωsin

(zx
2

)]

×e−
ωx
2 +µ(z)t, (z ≥ 0), (31)

and for µ = 0,
√

ωe−ωx. Note there is a gap in µ be-
tween µ = 0 and the continuous spectrum µ ≤ −ω2/4.
The Sturm-Liouville eigenvalue problem has a complete
orthonormal set∫ ∞

0
u(x,0; z)u(x,0,z′)eωxdx = δ(z− z′).

Therefore, the solution to Eq. 30 with initial data δ(x) is

u(x, t) = ωe−ωx +e−
ωx
2 − ω2t

4

×
∫ ∞

0

zdz
π(ω2 + z2)

[
zcos

(zx
2

)
−ωsin

(zx
2

)]
e−z2t/4,

(32)

which approaches to the exponential distribution ωe−ωx

when t → ∞. From Eq. 32 we have∫ ∞

0
u(x, t)dx = 1,

∫ ∞

0
xu(x, t)dx =

1
ω
−e−

ω2t
4

∫ ∞

0

4z2e−z2t/4

π(ω2 + z2)2 dz
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=
1
ω

[
(1+2τ)er f

(√
τ
)−2τ+2

√
τ
π

e−τ
]
, (33)

where τ = ω2t/4. The curve in the square bracket is a
universal curve, we shall denote it by 1−gap(τ) (Fig. 6).
It is interesting to point out that there is a sharp transition
between unlimited growth of x for ω < 0 and a stationary
state for x when ω > 0 [Dogterom and Leibler (1993)].
Finally,

∫ ∞

0
x2u(x, t)dx =

8
ω2

∫ τ

0
gap(s)ds.

            

Figure 6 : The function gap(t), defined in Eq. 33, is the
time course for the the mean gap size to approach to its
stationarity. For ω > 0, the mean gap size approaches to
finite size (solid line), while for ω < 0, the mean gap size
grows without bound (dotted line).

Appendix B: The Dynamics of Gap ∆(t) in the Dis-
crete Model

Eq. 18 has a second boundary condition u = 0 at x = δ,
which corresponds to nondimensionalized Eq. 30 with
0 ≤ x ≤ 1 and u(1) = 0. It has a set of discrete eigeval-
ues. The eigenfunctions to the nondimensionalized Eq.
18 with eigenvalue µ(z) = −1

4 (ω2 + z2) ≤ 0, are still
given in Eq. 31, but the z’s are now the discrete roots of
the transcendental equation cos z = ω2−z2

ω2+z2 . When ω < 2,
the equation for z has only real roots; hence the largest
eigenvalues is µ < −ω2/4. If, however, ω > 2, then there
is a pair of imaginary ±iz∗, |z∗| < ω. Then the largest
eigenvalue is µ = −(

ω2 − (z∗)2
)
/4. Fig. 4 shows how

the largest eigenvalue (smallest in magnitude) changes as
functions of ω. It is seen that the largest eigenvalue can
be well represented by 1/E[T]

µ1 ≈ − ω2

eω −1−ω
or z1 = ω

√
4

eω −1−ω
−1. (34)

The solution to the time-dependent Eq. 18 with initial
data δ(x) can be obtained in terms of the u(x, t; z)’s in
Eq. 31, and approximated by the first term:

u(x, t)≈ z1

π(ω2 + z2
1)

[
z1 cos

(z1x
2

)
−ωsin

(z1x
2

)]

×exp

(
−ω

2
x− ω2 + z2

1

4
t

)
. (35)

Therefore,

∫ 1

0
u(x, t)dx =

2z1

π(ω2 + z2
1)

e−
ω
2 −

ω2+z2
1

4 t sin
(z1

2

)
,

which tends to zero because the exit probability. How-
ever, the remaining probability for ∆(t) quickly ap-
proaches a quasi-stationary distribution

f∆(x) =
z1 cos

( z1x
2

)−ωsin
( z1x

2

)
2sin

( z1
2

) exp
(
−ω

2
(x−1)

)

=
ω2 + z2

1

2z1
sin

( z1

2
(1−x)

)
exp

(ω
2

(1−x)
)

.

For large ω, this distribution approaches to the exponen-
tial distribution ωe−ωx as expected (data not shown).


