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A Simple Phenomenological Theory of Tissue Growth

K.Y. Volokh1

Abstract: A simple phenomenological framework for
modeling growth of living tissues is proposed. Growth
is defined as a change of mass and configuration of the
tissue. Tissue is considered as an open system where
mass conservation is violated and the full-scale mass bal-
ance is applied. A possible structure of constitutive equa-
tions is discussed with reference to simple growing ma-
terials. ‘Thermoelastic’ formulation of the simple grow-
ing material is specified. Within this framework traction
free growth of cylindrical and spherical bodies is exam-
ined. It is shown that the theory accommodates the case
where stresses are not generated in uniform volumetric
growth. It is also found that surface growth corresponds
to a boundary layer solution of the governing equations.
This finding proves the ability of continuum mechanics
to describe surface growth. The latter is contrary to the
usual use of purely kinematical theories, which do not
involve balance and constitutive equations, for treating
surface growth.

keyword: Tissue growth; Constitutive behavior; Bio-
logical materials

1 Introduction

Understanding growth of living tissues is of fundamen-
tal theoretical and practical interest. Analytical models
of growth of both plant and animal tissues can predict
the evolution of the tissue, which may improve the treat-
ment of pathological conditions and offer new prospects
in tissue engineering. For example, cardiac and vascu-
lar disorders, including hypertrophy, are thought to be
due to the wall stress (Humphrey, 2002). It is also well
known that growth and remodeling as a result of the
bone-prosthesis interaction can significantly affect the
healing process (Cowin, 2001). Last but not least is the
understanding of the process of spatial pattern formation
in living tissues and development of organs. It is very
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likely that we can affect these processes by applying me-
chanical stimulus (Murray, 2003).

Biological or biochemical mechanisms of growth are not
well understood though a plenty of scenarios exist in the
biological literature (Cowin, 2000; Cowin, 2001). There
is no doubt that biochemistry is the driving force of tis-
sue growth. Understanding the biochemistry of growth
is most desirable. Biochemistry can explain why a tissue
grows. That is not enough, however. It is also necessary
to know how a tissue grows. The latter means macro-
scopic description in terms of the macroscopically mea-
surable parameters. The macroscopic parameters of tis-
sue growth seem to be self-evident: mass and form (con-
figuration). Observations on animals, including human
beings, during the life time give the strict experimental
proof of the change of mass and configuration.

The purpose of the present work is to develop a sim-
ple phenomenological theory of tissue growth which is
based on the fundamental notion of altering mass and
configuration. This will be in contrast to the existing
phenomenological theories where more sophisticated ba-
sic assumptions are used including the introduction of
the intermediate configurations of ’pure growth’ with no
deformation or considering tissues as mixtures: Chen
and Hoger (2000); Cowin and Hegedus (1976); Drozdov
(1998); Epstein and Maugin (2000); Fung (1990); Hsu
(1968); Klisch et al. (2001); Kuhn and Hauger (2000);
Rachev (2000); Rodrigues et al. (1994); Skalak (1982);
Skalak et al. (1982); Taber (1995); Taber and Peruc-
chio (2000). Mathematical apparatus of the existing ap-
proaches is rather complicated and it includes variables
that are difficult to interpret in simple terms and to as-
sess in measurements as, for example, the cofactors in
the multiplicative decomposition of the deformation gra-
dient, or the partial stresses and tractions in the mixture
theories. This complexity prevents from the experimental
calibration of the theories and application of the theories
to practical problems. Besides, it should be noted that all
cited works are devoted to volumetric growth while sur-
face growth (bones, trees, shells, horns, branches etc.)
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is still considered to be out of the general framework
of continuum mechanics because of the use of purely
kinematical theories: Thompson (1948); Taber (1995);
Skalak et al. (1997).

In the present work a novel continuum mechanics frame-
work for modeling growth of living tissues is discussed.
It is assumed that deformation and mass flow can de-
scribe both volumetric and surface growth of living bod-
ies. This assumption leads to the consideration of the
tissue as an open system and it leads, in turn, to the vi-
olation of mass conservation and to the introduction of
the full-scale mass balance. Non-conservation of mass
requires modification of the momentum balance. A pos-
sible structure of constitutive equations is discussed with
reference to simple growing materials. ‘Thermoelas-
tic’ formulation of the simple growing material is spec-
ified. This formulation allows for the uncoupled mass-
flow/deformation problem, which is analogous to the
classical quasi-static and small strain thermoelasticity.

2 Geometry of growth and a toy-tissue model

The assumption that the continuous deformation and
mass flow can describe growth of living bodies is central
for further development. To make sound this assumption,
geometry of growth should be analyzed qualitatively (no
set theory will be involved). Sharp distinction between
the real physical material and the mathematical concept
of material particle should be kept in mind. The map-
ping x = χχχ(X, t) is considered in the case of deformation
of a non-growing body. X designates an initial (refer-
ence) place of the material particle and x is its current
place in space. X can be also interpreted as a label at-
tached to the considered particle. Since this mapping is
one-to-one, we assume that the ‘number’ of particles re-
mains the same after deformation. For example, a rubber
ball can be exposed to a significant outer pressure and its
radius can decrease while preserving the spherical shape
of the ball. Although the ball occupies less space after
deformation, nobody doubts that the number of material
particles remains the same or that the continuum me-
chanics mapping is applicable. The concept of the ma-
terial particle is purely mathematical. Material particles-
points do not exist: they are mathematical abstractions.
Material always occupies some volume. One means a
very small (infinitesimal) material volume saying ‘mate-
rial particle’. Growth is considered as the deformation
and mass change in this volume, i.e. in the vicinity of the

given particle. The ‘number’ of the particles, however,
is not changing during growth. If the connectivity of the
living body is preserved during its growth and a continu-
ous deformation of the grown body into its initial config-
uration can be imagined, then it is possible to claim that
the ’number’ of material particles remains the same, by
analogy with deformation of non-growing materials, and
the continuum mechanics mapping x = χχχ(X, t) is appli-
cable to growing bodies too. To illustrate this statement,
consider two identical spheres made up of a living mate-
rial. Let one sphere experience negative growth (atrophy)
and the radius decrease while preserving the shape. Let
the other sphere be exposed to the uniform pressure. As-
sume now that an observer can follow the shape changes
(radius decrease) of both spheres simultaneously. If the
(invisible gas) pressure increases slowly enough and the
second sphere gets smaller at the same rate as the first
one, it is impossible to make a geometrical distinction
between growth and mechanical deformation. A physi-
cal distinction, however, exists. Growth manifests itself
in the change of mass, which becomes crucial for mod-
eling growth. Mass balance should be considered in its
completeness.

While the qualitative analysis of the geometry of tissue
growth justifies the use of continuum mechanics it is in-
sufficient for the development of the particular equations
of a macroscopic phenomenological theory. Such devel-
opment requires some microscopic reasoning in order to
motivate the continuum field and constitutive equations.
It seems that a reasonable insight into the tissue growth
mechanisms can be gained by considering a very simple
toy-tissue model. Such model is presented in Fig.1. The
regular initial tissue can be seen on the top of the figure.
This is a collection of the regularly packed balls. The
balls are interpreted as the tissue elementary components
– cells, molecules of the extracellular matrix, and etc.
The balls are arranged in a regular network for the sake
of simplicity and clarity. They can be organized more
chaotically – this does not affect the subsequent qual-
itative analysis. Assume now that a new material, i.e.
a number of new balls, is supplied pointwisely as it is
shown on the bottom of Fig.1. This supply is considered
as a result of injection: the tube with the new material
is a syringe. Usually, the new material is created in real
tissues in a more complicated manner following a chain
of the biochemical transformations. However, the finally
produced new material still appears pointwisely from the
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Material source 

Figure 1 : Toy-tissue model: regular (top), point mass
supply (bottom).

existing cells. For example, the role of the material sup-
plying tubes is played by the osteoblasts in the case of
the bone tissue. Thus, the injection of the balls is a quite
reasonable model of tissue growth. Such model can be
constructed physically, of course. It seems that the lat-
ter is not necessary and the toy-tissue model can be eas-
ily imagined. The result of such thought- experiment is
shadowed in the figure and it can be described as follows:

(a) The number of the balls in the toy-tissue increases
with the supply of the new ones.

(b) The new balls are concentrated at the edge of the
tube and they do not spread uniformly over the tis-
sue.

(c) The new balls can not be accommodated at the point
of their supply – the edge of the tube: they tend to
spread over the area at the vicinity of the edge and
the packing of the balls gets denser around the edge
of the tube.

(d) The more balls are injected the less room remains for
the new once.

(e) The new balls press the old ones.

(f) The new balls tend to expand the area occupied by the
tissue when the overall ball rearrangement reaches
the tissue surface.

These six qualitative features of the toy-tissue micro-
scopic behavior under the material supply can be trans-
lated into the language of the macroscopic theory accord-
ingly:

(A) Mass of the tissue grows.

(B) Mass growth is not uniform – the mass density
changes from one point to another.

(C) There is a diffusion of mass.

(D) The diffusion is restricted by the existing tissue
structure and its mass density: the denser is the tis-
sue the less material it can accommodate.

(E) Growth is accompanied by stresses.

(F) The expansion of the tissue is volumetric – it is anal-
ogous to the thermal expansion of structural materi-
als as steel, for example.
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Three first features (A, B, C) prompt the form of the mass
balance equation. Indeed, the mass change means the
failure of the mass conservation law, which covers most
theories of Mechanics. The mass supply in the living tis-
sues is possible through the biochemical interaction of
the tissue with its environment. This means that the liv-
ing tissue is an open system. The fact that non-uniform
mass growth is related with the diffusion of mass is very
important. It means that the mass balance law should in-
clude both the volumetric mass source and the surface
mass flux. The latter is missed in most existing theo-
ries of growth. The absence of mass diffusion in the
theory leads to a nonphysical conclusion that the density
of the tissue will change only at the point of the mate-
rial supply, i.e. pointwisely. In order to accommodate
the non-uniform mass supply the mass diffusion should
take place. Exceptions to this rule occur, for example,
when the material supply is uniform and the tissue is not
constrained geometrically. The latter case does not re-
quire mass diffusion and the tissue grows uniformly and
freely without generating stresses. Such stress-free uni-
form growth may be considered as a test for the theory.
It will be shown in the following sections that the theory
proposed in our work meets this requirement.

The rest features (D, E, F) motivate the constitutive law.
They say that the stress-strain relations should be anal-
ogous to the thermoelasticty where the role of the tem-
perature is played by the mass density: the increase of
the mass density results in the volume expansion of the
tissue. On the other hand, the additional mass supply
should be prevented by the tissue: the denser tissue the
less is the new mass accommodation. Both these tenden-
cies will be presented in the following development of
the growth theory. It is worth noting, however, that not all
features of growth can be identified within the toy-tissue
model. For example, the cells respond the applied me-
chanical stimuli biochemically – cellular mechanotrans-
duction – by changing the programm of the creation of
new material. Thus, there is a competition between the
stresses and the supply of new material. This process is
called adaptive growth. Under some circumstances the
adaptive growth can be essential. We will not consider
this issue in the present work restricting consideration by
the purely genetic (programmed) growth.

3 Simple growing materials

Guided by the previous section reasoning the balance
laws, constitutive equations, and initial/boundary condi-
tions for simple growing materials are presented in this
section. The precise definition of simple growing mate-
rials is postponed to Section 3.3. The general theoretical
concepts of continuum mechanics can be found in Trues-
dell and Toupin (1960) and Truesdell and Noll (1965).
The features of the general theory concerning violation
of mass conservation and the setting of the constitutive
framework are emphasized below.

3.1 Kinematics

Growth and deformation are coupled in the deformation
gradient

F =
∂χχχ
∂X

. (1)

It is worth emphasizing that no distinction is made be-
tween growth and purely mechanical deformation. This
is in contrast to works where a multiplicative decompo-
sition of the deformation gradient is used. The latter pre-
supposes existence of intermediate incompatible config-
urations of pure growth, which cannot be readily inter-
preted and measured in physical/biological terms.

The velocity of the material point is defined by

v =
D
Dt

χχχ(X, t) =
∂
∂t

χχχ(X, t), (2)

where D/Dt denotes the material time derivative, and
∂/∂t denotes partial time differentiation when other vari-
ables are fixed.

Relationships between the infinitesimal surface areas and
volumes before and after deformation-growth accord-
ingly are useful

ndA = JF−T n0dA0, (3)

dV = JdV0, (4)

J = detF. (5)

Here subscript 0 denotes the reference configuration and
n is a unit normal to the body surface.

Finally, the Reynolds transport theorem for a scalar field
πover the body Ω reads

D
Dt

∫
Ω

πdV =
∫
Ω

(
∂π
∂t

+ div(πv)
)

dV . (6)
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3.2 Mass and momentum balance

Mass is always conserved in a closed system. In the case
of tissue growth the closed system should include tissue
environment which is permanently changing and hard to
define. Moreover, the latter is not necessary. The tissue
can be considered as an open system and the general law
of mass balance for the living body Ω at time t can be set
in the form

D
Dt

∫
Ω

ρ(x, t)dV =
∫
Ω

ξ(x, t)dV +
∫

∂Ω

φ(x,n, t)dA, (7)

where ρ is the mass density at point x; ξ and φ are mass
supply per unit volume and surface accordingly. Using
the Cauchy tetrahedron argument, it is possible to intro-
duce vector ψψψ of mass flux

φ= ψψψ ·n. (8)

Substituting Eq.(8) in Eq.(7) and applying the divergence
theorem and the Reynolds transport theorem we localize
the mass balance

∂ρ
∂t

= div(ψψψ−ρv)+ξ. (9)

The linear momentum law takes the following form

D
Dt

∫
Ω

ρ(x, t)v(x, t)dV

=
∫
Ω

ρ(x, t)b(x, t)dV +
∫

∂Ω

t(x,n, t)dA, (10)

where b designates a body force per unit mass. Traction t
takes the following form by introducing Cauchy’s stress
tensor σσσ

t = σσσn. (11)

Generally, new volumetric and surface momentum sup-
ply is generated by the new mass. This should be taken
into account in the momentum balance by adding the in-
tegrands, pre-multiplied by velocity v, from the right-
hand side of Eq.(7) to the corresponding integrands on
the right-hand side of Eq.(10):

D
Dt

∫
Ω

ρvdV =
∫
Ω

(ρb+ξv)dV +
∫

∂Ω

(t+φv)dA.

However, the process of growth, which admits the time-
scale from hours to years, is slow as compared to a typi-
cal dynamical process, which admits the time-scale from
microseconds to seconds, so the additional terms are neg-
ligible for dynamic analysis of living tissues and these
terms can be dropped from the equations as it has been
done in Eq.(10).

Localizing Eq.(10) and accounting for Eq.(11) we have

∂(ρv)
∂t

= div(σσσ−ρv⊗v)+ρb. (12)

Assuming again that the inertia effect of the volume and
surface mass supply does not affect dynamics it is possi-
ble to derive the standard local form of the angular mo-
mentum balance

σσσ = σσσT . (13)

Being natural for the formulation of the fundamental bal-
ance laws the Eulerian description is not well suited for
analysis of solid bodies and the Lagrangean form of the
balance laws is worth deriving. For this purpose, the in-
tegral equation of mass balance should be rewritten ac-
counting for x = χχχ(X, t) and Eqs.(3)-(5)

D
Dt

∫
Ω0

ρ0(X, t)dV0 =
∫
Ω0

ξ0(X, t)dV0 +
∫

∂Ω0

φ0(n0,X, t)dA0,

(14)

where,

ρ0(X, t) = ρ(χχχ(X, t), t)J(X,t), (15)

ξ0(X, t) = ξ(χχχ(X, t), t)J(X,t), (16)

φ0 = φdA/dA0 = ψψψ0 ·n0, (17)

ψψψ0 = JF−1ψψψ, (18)

n0 = FT ndA/(JdA0), (19)

Localizing the mass balance equation we get

∂ρ0

∂t
= Divψψψ0 +ξ0. (20)

The classical law of the conservation of mass is obtained
when ψ0 = 0 and ξ0 = 0.
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The balance of linear momentum in the Lagrangean de-
scription takes the form

D
Dt

∫
Ω0

ρ0(X, t)v(χχχ(X, t), t)dV0

=
∫
Ω0

ρ0(X, t)b(χχχ(X, t), t)dV0+
∫

∂Ω0

t0(X,n0, t)dA0, (21)

where

t0 = tdA/dA0 = Pn0, (22)

P = JσσσF−T . (23)

Here P is the first Piola-Kirchhoff stress tensor. With
the help of the divergence theorem the local equation of
motion emerges

∂
∂t

(ρ0v) = DivP+ρ0b. (24)

It is important to emphasize that the unknown mass den-
sity is involved in Eq.(24). This is not the case of the
classical continuum mechanics with mass conservation
(Jρ = ρ0 =constant). The balance of angular momentum
reads as in the classical formulation

PFT = FPT . (25)

It is convenient to remove the non-linearity from the bal-
ance of angular momentum by introducing the second
Piola-Kirchhoff stress tensor

S = F−1P = JF−1σσσF−T . (26)

In this case the balance of linear and angular momentum
is written as follows

∂
∂t

(ρ0v) = Div(FS)+ρ0b, (27)

S = ST . (28)

3.3 Constitutive equations

Twenty-nine unknowns {χχχ,v,ρ0,ξ0,ψψψ0,F,S} are in-
volved in the nineteen independent equations (1), (2),
(20), (27), (28). Ten independent constitutive equations
must be added. A possible form can be written as follows

ψψψ0(t) = ψ̂̂ψ̂ψ(t)
0 (ρ0,Gradρ0,F,X), (29)

S(t) = Ŝ(t)(ρ0,Gradρ0,F,X), (30)

ξ0(t) = ξ̂(t)
0 (ρ0,Gradρ0,F,X), (31)

where caps designate constitutive functionals for the ma-
terials with memory up to the time t.

It is worth noting that these equations provide coupling
between mass and momentum balance. Extending ter-
minology of Truesdell and Noll (1965), these equations
define simple growing materials. They are simple be-
cause only first gradients of deformation and mass den-
sity fields are involved. It is essential that the mass den-
sity gradient must be included in the constitutive law. In-
deed, after substituting (29)-(31) in (20), (24), (25), the
system of governing equations is of the second order in
spatial derivatives of ρ0. The latter allows for impos-
ing two boundary conditions on ρ 0 on opposite sides of
the considered body. Assume, for example, that the con-
stitutive relations do not include the mass density gra-
dients: ψψψ0 = ψ̂̂ψ̂ψ0(ρ0,F,X), S = Ŝ(ρ0,F,X), and ξ0 =
ξ̂0(ρ0,F,X). Substituting these relations in the balance
equations, we obtain a system of governing equations of
the first order in spatial derivatives of ρ0. The first order
differential equations require only one boundary condi-
tion and, generally, it is impossible to satisfy two bound-
ary conditions on opposite sides of the body. It is also
hardly possible to give an acceptable physical interpreta-
tion to such inconsistency between the number of reason-
able boundary conditions and the order of the differential
equations. The solution of the differential equations can
be called over-determined in this case. In contrast to the
over-determinacy, the use of the higher-grade materials
where higher order gradients are presented in the con-
stitutive equations can lead to the under-determinacy of
differential equations. The latter happens if no additional
boundary conditions are imposed. An example of incon-
sistency of this kind can be found in Volokh and Hutchin-
son (2002) within the context of metal plasticity. The re-
quirement of strict correspondence between the number
and character of boundary conditions and the structure of
balance constitutive laws can be called the requirement
of mathematical consistency.

3.4 Initial/boundary conditions

In order to complete the formulation of the initial bound-
ary value problem (IBVP) for simple growing materials it
is necessary to formulate initial and boundary conditions
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as follows

χχχ = χχχ∗ ∈ ∂Ωχχχ, (32)

t = t∗ ∈ ∂Ωt, (33)

χχχ(t = 0) = χχχ∗
0 ∈ Ω, (34)

v(t = 0) = v∗
0 ∈ Ω, (35)

∂Ωχχχ ∪∂Ωt = ∂Ω; ∂Ωχχχ ∩∂Ωt = 0, (36)

ρ = ρ∗ ∈ ∂Ωρ, (37)

φ= φ∗ ∈ ∂Ωφ, (38)

ρ(t = 0) = ρ∗
0 ∈ Ω, (39)

∂Ωρ ∪∂Ωφ = ∂Ω; ∂Ωρ ∩∂Ωφ = 0, (40)

where the quantities with the asterisk are given.

4 ‘Thermoelastic’ model of growth

Following the qualitative analysis of the toy-tissue model
presented in Section 2 we develop a ’thermoelastic’
model of growth. It should be mentioned that the quali-
tative idea that growth is analogous to thermal expansion
is due to Skalak (1982). No quantitative theory, however,
has been proposed to develop this idea. We attempt to
fill this gap in the present section. It is shown that the
proposed ‘thermoelastic’ constitutive model can accom-
modate both volumetric and surface growth. The latter is
in contrast to the traditional point of view that only volu-
metric growth can be described by using continuum me-
chanics while surface growth is out of the scope of con-
tinuum mechanics and only purely kinematical theories
are available for describing surface growth (Thompson,
1948; Taber, 1995; Skalak et al., 1997).

4.1 Restrictions

In order to specify the described general framework anal-
ogously to the classical thermoelasticity the following re-
strictions are imposed:

(1) The process is quasi-static, i.e. transient behavior is
ignored.

(2) Deformations are small and body forces are ignored.

The first restriction is reasonable because of the very
slow growth process and it leads to the following mass
and momentum balance laws

divψψψ+ξ = 0, (41)

divσσσ = 0. (42)

There is no difference between the Lagrangean and Eu-
lerian descriptions because of the second restriction. The
second restriction is justified for hard tissues like bones
and trees and it is not justified for soft tissues like muscles
and arteries. If, however, the large mechanical deforma-
tions are excluded from behavior of soft tissues and pure
growth is considered then the small deformation restric-
tion seems to be applicable because of the slow growth
process. Of course, consideration of such issues as the
organ development or branching of trees requires the ex-
tension of the theory to large deformations. The latter
exceeds the scope of the present work.

4.2 ‘Thermoelastic’ model of growth

Introducing an infinitesimal strain measure as a symmet-
ric part of the displacement gradient

εεε = (∇ u+(∇ u)T )/2, (43)

u = χχχ(X)−X, (44)

we define the following constitutive equations:

σσσ = λtr(εεε)1+2µεεε− (3λ +2µ)αρ1, (45)

ψψψ = β∇ρ , (46)

ξ = ω−γρ, (47)

ρ := ρ(ω)−ρ(0), (48)

where λ and µ are the Lame coefficients; 1 is the second-
order identity tensor.

Increment of mass supply ω> 0 is analogous to a quasi-
static mechanical load. In contrast to the latter, however,
ω is controlled by the tissue itself and its proper deter-
mination requires experiments. The dimension of ω is a
unit of mass per volume and time. Time is not involved
directly in quasi-static problems and can be replaced by
some conditional units (analogous to Newtons in dynam-
ics).
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Coefficient of growth expansion α > 0 determines how
much the relative volume changes for the given incre-
ment of mass density. Its dimension is an inverse of a
unit of mass.

Mass conductivity of solid β > 0 determines how much
the mass supply changes for a given increment of the gra-
dient of mass density. Its dimension is a unit of mass
supply times length per mass density.

Coefficient of tissue resistance γ > 0 reflects the resis-
tance of the tissue to accommodate new mass for increas-
ing mass density. Roughly speaking, the more new mate-
rial the less room for it remains. The second term on the
right-hand side of Eq.(47) limits mass supply when the
density increases. The dimension of γ is the dimension
of ω per a unit of mass density.

All these coefficients can be inhomogeneous.

The similarity between the two first constitutive laws of
growth and thermoelasticity is obvious after replacing the
mass density increment by the temperature increment;
the mass flow vector by the vector of heat flux; the coef-
ficient of growth expansion by the coefficient of thermal
expansion; and the mass conductivity of solid by the ther-
mal conductivity of solid. In this case Eq.(45) is nothing
but the thermoelastic generalization of the Hooke’s law,
and Eq.(46) is just the Fourier law of heat conduction
(Boley and Weiner, 1997). The constitutive law analo-
gous to Eq. (47), however, is usually absent in thermoe-
lasticity because of the lack of volumetric heat sources.
The thermoelastic analogy allows better understanding
parameters of the growth model. The vector of mass flux
is analogous to the vector of heat flux. We feel the heat
flow by changing temperature without directly defining
what the heat is. The same is true for the mass flow. We
‘feel’ it by changing mass density without directly defin-
ing what it is.

Substituting Eqs.(46) and (47) in Eq.(41) and assuming
β =constant we have

β∇ 2ρ−γρ+ω = 0. (49)

Substituting solution of Eq.(49) in Eqs.(45) and (42) it
is possible to find the deformation characteristics and the
corresponding stress field.

In summary, the proposed constitutive model allows for
decoupling of the growth-deformation equations. First,
it is necessary to find the mass density field by solving
Eq.(49) with the proper boundary conditions (37), (38).

Second, the obtained distribution of the mass density is
used in the generalized Hooke’s law (45) and equilibrium
equation (42) in order to find the stress/displacement field
accounting for the proper boundary conditions (32), (33).

4.3 Example I: a cylinder

Let’s consider radial growth of an infinite cylinder with
the inner radius a and the outer radius b. In this case
equilibrium equations in terms of displacements take the
form

d
dr

[
d(ru)
rdr

]
=

3λ +2µ
λ +2µ

α
dρ
dr

=
1+ν
1−ν

α
dρ
dr

, (50)

where Lame coefficients are replaced by Young modulus
E and Poisson ratio ν:

λ =
Eν

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

. (51)

Traction-free boundary conditions read

σrr(r = a,b) = 0. (52)

This boundary value problem admits analytical solutions

u =
α

r(1−ν)
(1+ν)

r∫
a

ρrdr +
(1−ν−2ν2)r2 +a2(1+ν)

b2 −a2

b∫
a

ρrdr


 ,

(53)

σrr =
αE

(1−ν)r2




r2−a2

b2−a2

b∫
a

ρrdr−
r∫

a

ρrdr


 , (54)

σθθ =
αE

(1−ν)r2




r2 +a2

b2−a2

b∫
a

ρrdr +
r∫

a

ρrdr−ρr2


 .

(55)

The unknown field of mass densities can be found from
the following BVP

β
1
r

d
dr

(
r

dρ
dr

)
−γρ+ω = 0, (56)

ρ = ρ∗ ∈ ∂Ωρ, (57)

φ=
∂ρ
∂r

= φ∗ ∈ ∂Ωφ, (58)

We consider two particular cases.
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4.3.1 Volumetric growth

Assuming that material is supplied uniformly
ω =constant, and γ =constant, the boundary condi-
tions take the form

ρ(r = a,b) = ρ∗ = ω/γ, (59)

Solution of Eq.(56) is evident

ρ = ω/γ, (60)

This is the case of homogeneous growth. Substituting
Eq.(60) in Eqs.(53)-(55) we have

u = α(1+ν)rω/γ, (61)

σrr = 0, (62)

σθθ = 0. (63)

Thus, homogeneous growth does not produce stresses for
the specific situation described.

4.3.2 Surface growth

Assuming that material is not supplied volumetrically
ω = 0 but at the outer surface where mass density in-
creases, the boundary conditions take the form

ρ(r = a) = 0, ρ(r = b) = ρ∗. (64)

Solution of Eq.(56) with boundary conditions (64) is

ρ = C1I0(rτ)+C2K0(rτ), τ =
√

γ/β, (65)

where I0 and K0 are zero order Bessel functions. Con-
stants of integration can be found by substituting Eq.(65)
in Eq.(64). After that, the stress-displacement field is
computed by using Eqs.(53)-(55). Radial distribution of
normalized mass densities, displacements, radial and cir-
cumferential stresses: ρ = ρ/ρ∗; u = u/(αρ∗a); σrr =
σrr/(αρ∗E); σθθ = σθθ/(αρ∗E); are given in Fig.(2) for
different values of τ. These numerical results have been
calculated for ν = 1/4 and b = 3a.

It is important to emphasize that mass densities, displace-
ments, and circumferential stresses localize in a bound-
ary layer at r = b with increasing τ, while their magni-
tudes outside the boundary layer tend to zero. This is the
surface growth.

4.4 Example II: a sphere

Let’s consider radial growth of a sphere with the inner
radius a and the outer radius b. In this case equilibrium
equations in terms of displacements take the form

d
dr

[
d(r2u)
r2dr

]
=

3λ +2µ
λ +2µ

α
dρ
dr

=
1+ν
1−ν

α
dρ
dr

, (66)

Traction-free boundary conditions read

σrr(r = a,b) = 0. (67)

This boundary value problem admits analytical solutions

u =
α

(b3−a3)

(
3λ +2µ)
λ +2µ

)



a3

r2

b∫
r

ρr2dr +
b3

r2

r∫
a

ρr2dr +
4µr

3λ +2µ

b∫
a

ρr2dr


 , (68)

σrr =
4µα

(a3−b3)

(
3λ +2µ)
λ +2µ

)



a3

r3

b∫
r

ρr2dr +
b3

r3

r∫
a

ρr2dr−
b∫

a

ρr2dr


 , (69)

σθθ = σϕϕ

=
2µα

(b3−a3)

(
3λ +2µ)
λ +2µ

)



a3

r3

b∫
r

ρr2dr +
b3

r3

r∫
a

ρr2dr +2

b∫
a

ρr2dr− (b3 −a3)ρ


 .

(70)

The unknown field of mass densities can be found from
the following BVP

β
1
r2

d
dr

(
r2 dρ

dr

)
−γρ+ω= 0, (71)

ρ = ρ∗ ∈ ∂Ωρ, (72)

φ=
∂ρ
∂r

= φ∗ ∈ ∂Ωφ, (73)

We consider two particular cases.
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Figure 2 : Surface growth of the cylinder. Normalized density, displacements, radial stresses, and circumferential
stresses along normalized radius for different values of the normalized coefficient of tissue resistance τ =

√
γ/β.

Graphs approach zero with increasing parameter τ = 1, 3, 6.

4.4.1 Volumetric growth

Assuming that material is supplied uniformly
ω =constant, and γ =constant, the boundary condi-
tions take the form

ρ(r = a,b) = ρ∗ = ω/γ, (74)

Solution of Eq.(71) is evident

ρ = ω/γ, (75)

This is the case of homogeneous growth. Substituting
Eq.(75) in Eqs.(68)-(70) we have

u = αrω/γ, (76)

σrr = 0, (77)

σθθ = σϕϕ = 0. (78)

Thus, homogeneous growth does not produce stresses as
in the case of the cylinder.

4.4.2 Surface growth

Assuming that material is not supplied volumetrically
ω = 0 but at the outer surface where mass density in-
creases, the boundary conditions take the form

ρ(r = a) = 0, ρ(r = b) = ρ∗. (79)

Solution of Eq.(71) with boundary conditions (79) is

ρ = C1
cosh(rτ)

rτ
+C2

sinh(rτ)
rτ

, τ =
√

γ/β. (80)

Constants of integration can be found by substituting
Eq.(80) in Eq.(79). After that, the stress-displacement
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field is computed by using Eqs.(68)-(70). Radial distribu-
tion of normalized mass densities, displacements, radial
and circumferential stresses: ρ = ρ/ρ∗; u = u/(αρ∗a);
σrr = σrr/(αρ∗E); σθθ = σθθ/(αρ∗E); are given in
Fig.(3) for different values of τ. These numerical results
have been calculated for ν = 1/4 and b = 3a.

Again, like in the case of the cylinder, mass densities,
displacements, and stresses localize in a boundary layer
at r = b with increasing τ, while their magnitudes out-
side the boundary layer tend to zero. This is the surface
growth, of course.

5 Discussion

The obtained results of modeling volumetric and surface
growth of living bodies can be qualitatively compared
with the predictions of the toy-tissue model and obser-
vations on real tissues. As it was argued by using the mi-
croscopic reasoning the free uniform volumetric growth
of both the cylinder and the sphere does not lead to the
appearance of stresses. In this case all newly produced
material is uniformly distributed over the body and the
latter expands with no geometric constraints. This is en-
tirely analogous to the free thermal expansion of struc-
tural steels, for instance. In the case of surface growth a
boundary layer of dense material is formed at the outer
surface of the body. This result is in remarkable cor-
respondence with the experimental observations on the
bone tissue. It is well established (Cowin, 2001) that
bone material is mainly the cancellous bone. This is a
porous material of the relatively low mass density, which
fills in the bone cylinder-like volume. However, the outer
surface of the bone is formed by the cortical bone. This
material is much denser. It protects the internal bone
from the intervention of the undesirable environmental
factors. The formation of the cortical bone is a com-
plicated biochemical process. It can not be described
within the framework of the phenomenological theory
considered in this work. Nonetheless, such important
macroscopic parameter as the mass density can be read-
ily analyzed experimentally and theoretically. The corti-
cal bone can be interpreted as the high density boundary
layer of the cancellous bone which is created at the sur-
face. Such boundary layer is clearly seen in Fig.2 for the
density distribution. The larger is the relative tissue re-
sistance parameter (τ) the thinner is the boundary layer,
i.e. the thickness of the cortical bone. Though it is im-
possible yet to provide the quantitative estimates at this

stage of the theory development, the qualitative similarity
between the theory prediction and the bone tissue obser-
vation seems to be inspiring.

The variety of the tissue growth theories put forward the
necessity to compare between them. It would be attrac-
tive to compare the predictions of the different growth
theories by studying the same test problems both the-
oretically and experimentally. This is achievable, how-
ever, when the grounds for various possible theories are
common and well established. Consider, for example,
various plate theories. In this case, the geometrical sizes,
material properties, boundary conditions, and loads can
be readily defined for a given real plate. After that,
the stress, strain, and displacement fields can be com-
puted within the frameworks of different theories based,
for example, on the equations of Germain-Kirchhoff or
Reissner-Mindlin. The computed fields can be directly
compared to the experimental measurements of the dis-
placements and strains what allows for concluding about
the applicability and efficiency of the different plate the-
ories. It is worth emphasizing that the quantities mea-
sured in experiments – displacements and strains – are
the main variables of the different theories. Thus the
theories guide the experiment making it meaningful. It
should not be missed that the mathematical structure of
the mentioned theories is very different because the order
of the differential equations and the number and char-
acter of the boundary conditions are different. Partic-
ularly, the Germain-Kirchhoff theory is of the 4 th or-
der and it requires two boundary conditions while the
Reissner-Mindlin theory is of the 6 th order and it requires
three boundary conditions. Nonetheless, the grounds –
main variables – of both theories are the same and the
theories can be perfectly compared within the test stud-
ies. The plate theories were being developed during more
than one century before reaching their maturity and com-
parability. This is not the case of the growth theories.
These theories are young and there is no agreement about
the possible grounds of the growth theories. Moreover,
many scholars consider volumetric and surface growth
as entirely different from the point of view of mechan-
ics. The volumetric growth is considered within the tra-
ditional scheme of continuum mechanics while the sur-
face growth is reduced mainly to the kinematical theories
of the surface evolution. The lack of agreement about
the grounds of growth mechanics makes it impossible to
propose a general test for the comparison of the differ-
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Figure 3 : Surface growth of the sphere. Normalized density, displacements, radial stresses, and circumferential
stresses along normalized radius for different values of the normalized coefficient of tissue resistance τ =

√
γ/β.

Graphs approach zero with increasing parameter τ = 1, 3, 6.

ent theories and experiments. One can only qualitatively
compare some general settings of the different theories.
Particularly, we will emphasize the main features of our
approach as compared to the other ones.

6 Conclusions

The problem of establishing a simple analytical frame-
work for modeling growth of living tissues has been ad-
dressed. A general model of simple growing materials
is presented where growth is considered as a mass-flow-
deformation process. A novel theory of tissue growth is
specified. This theory is analogous to thermoelasticity
where temperature is replaced by mass density. In order
to solve the growth problem for the given living body, it
is necessary first to find the distribution of mass density
from the mass balance equation. The thermoelastic coun-

terpart of this equation is the equation of heat conduction.
When the mass density distribution is known, it is pos-
sible to find deformation from the momentum balance
accounting for the generalized Hooke’s law. The latter
reveals close resemblance between growth and thermal
expansion. Examples of volumetric growth of the liv-
ing cylinder and sphere reveal the capacity of the theory
to accommodate materials that can grow freely and uni-
formly without generating stresses. An important fea-
ture of the proposed theory is its ability to reproduce
surface growth. This can be clearly seen in Figs 2-3
where the normalized mass density, displacements, and
circumferential stresses are presented for growing cylin-
drical and spherical bodies. Qualitatively the graphs in-
dicate the following tendency. The densities, displace-
ments, and stresses tend to zero within the whole body
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area except for the boundary where new material is sup-
plied. At the boundary all parameters increase. The
larger is the ratio between the tissue resistance to accom-
modate the new material and the mass conductivity of
the tissue the sharper is the area where nonzero densities,
displacements, and stresses are observed. Thus surface
growth may be interpreted as a localization of growth in
the vicinity of the surface. From the mathematical point
of view the growth localization appears as the boundary
layer solution of governing equations as a result of the
introduction of mass diffusion in the full-scale mass bal-
ance equation. It seems that the latter is also important
from the biological point of view. Indeed, some diffusion
of newly produced cells and extra-cellular matrix mate-
rial always exists and its degree depends on the specific
material. This situation is typical for living biological
materials. It is generally different for engineering ma-
terials. For example, growth of multilayers, like ther-
mal coatings, by the evaporation-condensation process is
not accompanied by diffusion of the new material into
the bulk. This is the fundamental difference between the
’dead’ engineering material and the living biological ma-
terial, which is the source of itself. The finding of sur-
face growth as the localization of growth in a thin sur-
face layer seems to be of the principle matter proving the
power of continuum mechanics to treat the phenomenon
of biological surface growth. Traditionally, the descrip-
tion of surface growth is restricted by purely kinematical
theories which do not use balance and constitutive equa-
tions.

It is worth noting that the proposed approach is not re-
stricted by a specific biological mechanism of growth.
Indeed, the analytical model of growth is based on
macroscopic variables: displacements and mass densi-
ties. It does not matter, in principle, what are the pos-
sible biochemical scenarios of the cell evolution. Such
evolution can occur volumetrically or at the surface or
following some more complicated scenario. Information
about the biochemical processes underlying macroscopic
growth can be useful in creating phenomenological the-
ories. Unfortunately, the cross-link between macro- and
micro-scales remains an open challenging problem. The
latter is true not only for living materials but even for
much simpler engineering materials (Dvorak, 2000).

The fact that the proposed phenomenological continuum
mechanics framework is based on two observable vari-
ables – displacements and mass densities – is of the cru-

cial importance from the point of view of the experimen-
tal calibration of the theories within the framework of
simple growing materials. Only displacements and mass
densities should be measured in experiments and recent
developments in computer vision techniques (MRI, PET)
(Papademetris, 1999; Thompson, 2000) combined with
the noninvasive densitometry (based, for example, on X-
ray techniques) will hopefully allow for finding the den-
sity and displacement fields in vivo. When these fields
are known for successive stages of the tissue evolution
then the inverse continuum mechanics problem is solved
within the proposed framework. Such inverse problem
may be solved for a real tissue configuration with the help
of the finite element methods, for example, or some other
numerical discretization techniques. It should be em-
phasized that the simplicity of the proposed phenomeno-
logical framework encourages experiments. This is not
the case of most competing theories. Indeed, the ques-
tion ’what should be measured in experiments?’ is not
readily answered within the theories where the multi-
plicative decomposition of the deformation gradient is
used. What should be measured in experiments guided
by the mixture theories is also hard to formulate. These
remarks must be understood correctly. We are not in a
position to decline more sophisticated theories. We be-
lieve, however, that more sophisticated theories should
be introduced when more simple theories fail to describe
experimental observations. Experimental verification of
growth theories belongs to the future. Growth theories
are in their infancy – at the stage of the very basic for-
mulation. It seems, however, that many scholars working
in the field try to create basic theories as sophisticated
as possible accounting for all ’factors’. Such tendency
in mechanics of growth of biological materials is entirely
opposed to the history of mechanics of engineering ma-
terials, which development was always from simple the-
ories to the sophisticated ones. Our work is a search for
simplicity which proved itself in mechanics of engineer-
ing materials. We believe that simple theories are worth
searching for. Biological materials comprise a number of
different constituents. The same is true for soils or com-
posites. The simplest elasticity and plasticity theories are
very successful for soils and composites. By analogy,
there is no rationale to expect failure of simple growth
theories in advance.

Finally, it is worth mentioning that not only the exper-
imental calibration of the proposed theory is necessary.
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Further development of the theory is desirable. Such de-
velopment should include large deformation description
and the full coupling between the mass and momentum
balances. The latter is important when the tissue remod-
eling is considered.
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