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Fixed Electrical Charges and Mobile Ions Affect the Measurable
Mechano-Electrochemical Properties of Charged-Hydrated Biological Tissues:

The Articular Cartilage Paradigm
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Abstract: The triphasic constitutive law [Lai, Hou and
Mow (1991)] has been shown in some special 1D cases
to successfully model the deformational and transport be-
haviors of charged-hydrated, porous-permeable, soft bi-
ological tissues, as typified by articular cartilage. Due
to nonlinearities and other mathematical complexities of
these equations, few problems for the deformation of
such materials have ever been solved analytically. Using
a perturbation procedure, we have linearized the triphasic
equations with respect to a small imposed axial compres-
sive strain, and obtained an equilibrium solution, as well
as a short-time boundary layer solution for the mechano-
electrochemical (MEC) fields for such a material under
a 2D unconfined compression test. The present results
show that the key physical parameter determining the de-
formational behaviors is the ratio of the perturbation of
osmotic pressure to elastic stress, which leads to changes
of the measurable elastic coefficients. From the short-
time boundary layer solution, both the lateral expansion
and the applied load are found to decrease with the square
root of time. The predicted deformations, flow fields
and stresses are consistent with the analysis of the short
time and equilibrium biphasic (i.e., the solid matrix has
no attached electric charges) [Armstrong, Lai and Mow
(1984)]. These results provide a better understanding of
the manner in which fixed electric charges and mobile
ions within the tissue contribute to the observed material
responses.
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1 Introduction

Articular cartilage is a thin layer of white, dense con-
nective tissue covering the moving and load-supporting
bony articulating ends in diarthrodial joints [Mow, Rat-
cliffe and Poole (1992)]. It is composed of an electrically
charged and hydrated organic matrix of collagen and pro-
teoglycan, where a sparse population of chondrocytes re-
side. Normal articular cartilage contains on average ap-
proximately 75% water within the pores of the tissue that
are estimated to be 50-65 Å in diameter; even though
its water content is high, its permeability is extremely
low at approximately 10−15m4/(N · s) [ibid]. Figure 1
shows the organizational arrangement of the structural
macromolecular components of the extracellular matrix
of such tissue as articular cartilage [Heinegard, Bayliss
and Lorenzo (2003)]. The most abundant components
are collagen at about 10% per wet weight, followed by
large aggregating proteoglycans at about 7.5% per wet
weight [Mow and Ratcliffe (1997)]. Type II collagen is
the dominant component of the collagen that exists in the
tissue that also includes a number of quantitatively mi-
nor but functionally important collagen types, including
V, VI, IX, and XI. Type II collagen fibers have an esti-
mated half-life of 67 years, and they are capable of form-
ing a strong meshwork of fine pores that traps proteogly-
cans in its intrafibrillar space. The quantitatively minor
collagen types, particularly Type IX, are useful in facil-
itating interactions between the proteoglycans and col-
lagen Type II fibers (Fig. 1). No covalent bonds exist
between proteoglycans and the collagen meshwork; elec-
trostatic interactions, frictional interactions and steric ex-
clusion effects are responsible for immobilizing the large
proteoglycans within the extracellular compartment of
the tissue. Proteoglycans are architecturally complex
macromolecules that are capable of forming networks
in solution and within the interstitial fluid of the in-
trafibrillar space. Though labile these proteoglycan net-
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Figure 1 : The macromolecules of a cartilaginous extracellular matrix, their relationships with each other, and with
chondrocytes. The structural load supporting macromolecules of articular cartilage are collagen of various types (II,
V, VI, IX, XI) and the proteoglycans. Type II collagen phenotypically defines articular cartilage. Charges derived
from carboxyl (COO−) and sulfate (SO2−

4 ) groups are fixed to the glycosaminoglycans attached to the protein cores
of the proteoglycan. Other glycosaminoglycans include COMP, hyaluronan, fibromodulin, decorin, biglycan; these
and others are organized in specific architectural arrangements for each specific connective tissue: articular cartilage,
intervertebral disc, ligament, meniscus, tendon, etc [Heinegard, Bayliss and Lorenzo (2003)].

works can be deformed, and are viscoelastic and non-
Newtonian [Mow, Zhu, Lai, Hardingham, Hughes and
Muir (1989)]. Proteoglycans, hyaluronan, chondroad-
herin, COMP, heparin sulfate, fibronectin and integrin are
attached to the chondrocyte surface via disulfide bonds
and other non-specific attachment mechanisms (Fig. 1).
These molecules are the antennae for the chondrocytes
to sense the mechanical and electrochemical events oc-
curring within the extracellular matrix when the tissue
is loaded under in vivo conditions. An important objec-
tive for researchers in this field of study is to understand
the mechanical and electrochemical events in the extra-
cellular matrix in the immediate neighborhood of the
cell. Normal tissues have a high negative fixed charged
density (FCD); these negative charges are the carboxyl
(COO−) and sulfate (SO2−

4 ) groups along with the gly-
cosaminoglyans chains that are non-covalently attached
to the protein cores of the proteoglycan macromolecules.
Collagen and proteoglycans are the structural load sup-
port macromolecules comprising the solid matrix. The

FCD ranges from 0.5 → 0.1 (or less) mEq/ml going
from normal to diseased tissues, respectively [Maroudas
(1979); Mow and Ratcliffe (1997)].

With traumatic injuries and diseases such as osteoarthri-
tis, the collagen matrix of the porous-permeable matrix
is irreversibly damaged and weakened, and there is a
loss of the labile proteoglycan molecules. The simulta-
neous compositional changes in the cartilage solid ma-
trix, i.e., the increase of water content and decrease of
FCD, and an alteration of electromechanical properties of
the tissue, lead to inexorable changes in tissue deforma-
tional behaviors, less effective joint lubrication and load
support mechanisms, and the eventual destruction of the
joint [Mankin, Mow, Buckwalter, Iannotti and Ratcliffe
(2000); Mow and Hung (2003)].

Biomechanically, articular cartilage plays an important
role in providing a nearly frictionless, load-bearing, and
shock-absorption surface between bones within a joint
[Mow, Ratcliffe and Poole (1992); Mankin, Mow, Buck-
walter, Iannotti and Ratcliffe (2000)]. To study the
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mechano-electrochemical (MEC) properties of articular
cartilage, and the interrelationships between the mate-
rial properties and tissue composition, the unconfined
compression test has been widely used in various ex-
perimental configurations, e.g. using either permeable
or impermeable loading platens, and platens modeled
with or without friction [Spilker, Suh and Mow (1990);
Jurvelin, Buschmann and Hunziker (1997); Ateshian,
Soltz, Mauck, Basalo, Hung and Lai (2003)]. This sim-
ple unconfined compression configuration has also been
widely used in live-cartilage explants experiments for
mechano-signal transduction studies and for various tis-
sue engineering applications [Sah, Doong, Grodzinsky,
Plaas and Sandy (1991); Kim, Sah, Grodzinsky, Plaas
and Sandy (1994); Buschmann, Gluzband, Grodzinsky
and Hunziker (1995); Mow, Wang and Hung (1999)].
Therefore, it is important to have a rigorous theory to
extract valid mechanical and electrochemical properties
of articular cartilage from unconfined compression ex-
periments, to determine its MEC fields inside the tissue,
and to correctly interpret results from live-explant studies
so as to be able to deduce mechano-signal transduction
mechanisms for chondrocytes [Mow, Wang, and Hung
(1999)]. The tasks are facilitated by proper constitutive
models for such biological tissues and full mathematical
analyses of these problems.

Different constitutive material models, including such
effects as compositional inhomogenieties and nonlinear
permeability [Mow, Kuei, Lai, and Armstrong (1980);
Lai, Mow, and Roth (1981)], transverse isotropy [Co-
hen, Lai and Mow (1998)], and matrix viscoelasticity and
tension-compression nonlinearity models [Setton, Zhu,
and Mow (1993); Soltz and Ateshian (2000); Huang,
Soltz, Kopacz, Mow, and Ateshian (2003)] have been
used to investigate the responses of articular cartilage un-
der compression in the biomechanics literature. How-
ever, for this seemingly simple uniaxial loading (uncon-
fined) compression test, daunting mathematical complex-
ities have caused interpretative errors to occur in much of
the biological and biochemical literatures studying car-
tilage tissue explants, and hence hinder rapid advances
in our understanding of the mechano-signal transduction
phenomenon. Therefore the overall aims of this paper are
to provide additional insights into the MEC events within
the tissue explant during unconfined compression, and to
provide a set of simpler mathematical tools to facilitate
analyses and interpretations of this important problem.

Armstrong, Lai and Mow (1984) were the first to an-
alyze the unconfined compression problem of articular
cartilage by using a linearized biphasic mixture theory
introduced by Mow, Kuei, Lai and Armstrong (1980), in
which the cartilage is assumed to consist of two phases:
solid matrix and interstitial fluid. In the biphasic mixture
theory, the solid matrix deformation is coupled with the
interstitial fluid flow through the flow induced drag force.
Since then, over the years, a series of problems were
successfully solved for the biphasic theory under vari-
ous loading and boundary conditions; these mathemati-
cal solutions gave a clearer understanding of tissue’s me-
chanical and fluid transport behaviors, and the influence
of interstitial fluid flow towards such mechanical behav-
iors as creep and stress relaxation [e.g., see reviews by
Mow, Ratcliffe and Poole (1992), and Mow and Ratcliffe
(1997)]. These mathematical solutions have provided
for the first time a detailed understanding of the interac-
tive processes that occur between the porous-permeable
solid matrix and the interstitial fluid during the uncon-
fined compression experiment.

In the biphasic theory, however, the effects of the fixed
negative charges of solid matrix are not explicitly con-
sidered, i.e., where effects of charges (osmotic pressure)
are lumped into the “apparent” mechanical parameters.
The first analytical relationships between the fundamen-
tal physical parameters such as Faraday constant, dif-
fusion coefficients, conductivity, absolute temperature,
etc., and the “apparent” mechanical parameters defining
tissue permeabilities were given by Gu, Lai, and Mow
(1993, 1998). In general, the observed changes are due
to an excess of mobile ions accumulating in the charged
interstitum when such tissues are bathed in an electrolyte
solution; in this situation the FCD of the interstitum
causes more counter-ions (Na+) than co-ions (Cl−) to
enter the tissue than existing in the bathing solution. The
colligative result of the imbalance of mobile ions is an
excess of fluid pressure over the external fluid pressure;
in other words, an osmotic swelling pressure or Donnan
osmotic pressure [Maroudas (1979)]. It has long been
conjectured that this osmotic pressure plays a dominant
role in load support for articular cartilage.

To analytically model these electrochemical and osmotic
swelling phenomena of articular cartilage from a con-
tinuum point of view, an additional phase (electrolyte
ions) was included in the development of a tertiary mix-
ture theory along with charges fixed to the solid porous-
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permeable matrix; this was called the triphasic theory
[Lai, Hou and Mow (1991)]. This new theory is en-
tirely consistent with the biphasic theory, but it can ex-
plain more complex MEC events inside the tissue, such
as solid matrix deformation, fluid flow, electrolyte trans-
port, electrical potential, and swelling pressure [Gu, Lai
and Mow (1998); Mow, Ateshian, Lai, Sun, Wang and
Gu (1998); Lai, Mow, Sun and Ateshian (2000)]. A finite
element formulation of triphasic theory was developed
by Sun, Gu, Guo, Lai and Mow (1999) to study the ef-
fects of FCD on the unconfined compression behavior of
articular cartilage [Sun, Mow, Lai and Guo (1999); Mow,
Sun, Guo, Likhitpanichkul and Lai (2002); Sun, Guo,
Likhitpanichkul, Lai and Mow (2004)]. Using the same
finite element formulation, Lu, Sun, Guo, Chen, Lai and
Mow (2004) successfully validated the predicted FCD by
biochemical measurements, while simultaneously mea-
suring the apparent mechanical properties from the in-
dentation creep experiment. To date, however, these are
the only triphasic results available. Moreover, these nu-
merical solutions make it rather difficult, and time con-
suming, to determine MEC properties of articular carti-
lage from experiments such as unconfined compression
or indentation, or to make general conclusions.

The primary objective, therefore, of this study is to
develop an analytic solution for the unconfined com-
pression response of the charged-hydrated, porous-
permeable, soft tissue. This is to be accomplished by first
linearizing the triphasic equations with respect to the im-
posed, infinitesimal compressive axial strain ε0, thereby
rendering the governing equations analytically tractable.
Thus, the specific aims of this paper are: a) to obtain the
steady state equilibrium solution; and b) to analyze the
short-time boundary layer behavior of the tissue follow-
ing a Heaviside step load.

2 Methods

A schematic diagram for unconfined compression is
shown in Fig. 2. A thin cylindrical wafer of cartilage
sample with a radius of a and thickness h is placed in a
saline solution of concentration c ∗, and placed between
two impermeable and frictionless platens. The tissue is
compressed with a Heaviside step function of small com-
pressive strain ε0 along z axis. The radial expansion is
unconstrained, and thus the fluid in the sample can flow
freely in or out freely at the boundary r = a. The objec-
tive of the analysis is to describe the MEC fields in the

cartilage sample during the stress relaxation.

Figure 2 : Schematic of unconfined compression stress
relaxation experiment for imposed Heaviside step dis-
placement in the vertical direction between two friction-
less platens.

2.1 Triphasic Formulations

Governing Equations

The governing equations for this problem are based on
the triphasic theory [Lai, Hou, and Mow (1991); Gu, Lai,
and Mow (1998)]. To simplify this problem, the cartilage
sample is assumed to be homogenous and isotropic, and
the solid matrix to be linearly elastic; also infinitesimal
deformation theory is employed. The strain-dependent
permeability effect and tension-compression nonlinearity
are ignored so that we can focus on the effects of electri-
cal charges.

The quasi-static momentum equations for the tissue, wa-
ter, cation and anion are given by:

tissue

∇ ·σ = 0, (1)

water

−ρw∇ µw + fws(vs−vw)+ fw+(v+−vw)
+ fw−(v−−vw) = 0, (2)
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cation

−ρ+∇ µ̃+ + f+w(vw −v+) = 0, (3)

anion

−ρ−∇ µ̃− + f−w(vw −v−) = 0, (4)

where, σσσ is the total stress acting in the tissue; µ w, µ̃+

and µ̃− are the chemical potential for water and electro-
chemical potentials for cations and anions, respectively.
The term ρα (w stands for water , + for cations, and –
for anions) is the apparent density of phase α, and v α is
its velocity. The densities ρα are related to water volume
fraction φw and ion concentration cα by:

ρw = ρw
T φw, ρ+ = φwc+M+, ρ− = φwc−M−, (5)

where ρw
T is the true density of water phase, Mα is the

α-ion molecular weight. The coefficients fαβ are the dif-
fusive drag coefficients between phases α and β, and the
reciprocity fαβ = fβα relationship is assumed. They are
related to interstitial fluid permeability k and ion diffu-
sivities D+ and D− through the following relationships:

k =
φw2

fws
, D+ =

φwRT c+

fw+
, D− =

φwRT c−

fw−
(6)

where R is the universal gas constant and T is the abso-
lute temperature [Gu, Lai, and Mow (1998)]. The drag
forces between cations and anions, and between ions and
solid matrix have been neglected from the momentum
equations.

The constitutive equations for the total stress σσσ, chemical
potential for water (µw) and electrochemical potentials
for cations (µ̃+) and anions (µ̃−) are given by:

tissue

σσσ = −pI+λseI+2µsE, (7)

water

µw = µw
0 +[p−RT φ(c+ +c−)]/ρw

T , (8)

cation

µ̃+ = µ+
0 +(RT/M+) ln(γ+c+)+Fcψ/M+, (9)

anion

µ̃− = µ−0 +(RT/M−) ln(γ−c−)−Fcψ/M−, (10)

where λs and µs are the intrinsic Lame’s constants for
the elastic solid matrix. The strain tensor E is for small
stains of the solid phase, and e is its trace, also known as
the dilatation of solid matrix. The term p is the interstitial
fluid pressure, φ is the osmotic coefficient, γ+ and γ− are
the activity coefficients of the ions, Fc is the Faraday’s
constant, and ψ is the electric potential inside the tissue.

The continuity equations for different phases are given
by:

∂ρα

∂t
+ ∇ · (ραvα) = 0. (11)

We used the condition of intrinsic incompressibility for
both the solid phase and the fluid phase of cartilage
[Bachrach, Guilak, and Mow (1998)], and neglected the
volume of cations and anions, therefore, the continuity
equation of the mixture is:

∇ · (φsvs +φwvw) = 0 . (12)

The electroneutrality condition is given by:

c+ = c− +cF , (13)

where cF is the negative charge density of the solid ma-
trix.

The FCD (designated as cF in the governing equations)
of the solid matrix changes as the matrix solid is de-
formed according to the equation:

cF = cF
0 /

(
1+

e
φw

0

)
, (14)

where cF
0 and φw

0 are the fixed charge density and porosity
of the tissue at the reference state, respectively.

Since the interface between the cylindrical sam-
ple and platens is assumed to be perfectly smooth
(i.e.,frictionless) the deformation should be independent
of z [Armstrong, Lai, and Mow (1984)]. Therefore,
this axisymmetric problem becomes, spatially, a one-
dimensional problem with respect to the radial coordi-
nate r. All dependent variables will be functions only of
r and t, and the principal directions of stress and strain
will align with the radial, circumferential, and axial di-
rections of the sample. The entire process can be divided
into two stages: 1) an instantaneous isochoric deforma-
tion resulting from the imposed compression at t = 0 +,
and 2) a stress relaxation period from t = 0+ to t → ∞, in
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Table 1 : Essential parameters at reference state

Parameters 0c 0c 0p 0

Reference 

state value 2

00

kF cc

2

00

kF cc *

0 2ccRT k

*

00

2
ln

c

cc

F

RT
kF

c

which the sample continues to deform radially (expand-
ing initially, and contracting toward equilibrium for in-
trinsic Poisson’s ratio less than 0.5). From the standpoint
of investigating of the stress relaxation of articular car-
tilage, the instantaneous response (stage 1) provides the
initial condition.

Reference State

Prior to compression, the tissue is equilibrated in a saline
solution containing an univalent electrolyte of concen-
tration of c∗. The chemical potential for water µw and
electrochemical potential for cations µ̃+ and anions µ̃−

are uniform both inside and outside of the tissue, which,
together with outside hydraulic pressure p, are often nor-
malized to be zero. Since these potentials within the ex-
ternal saline solution are held constant with time, the pa-
rameters could be set equal to zero throughout the un-
confined compression stress-relaxation process. In this
paper, this free swollen state is chosen as a reference to
study the change of physical parameters. The values of
the dependent variables at reference state are given in
Tab. 1, in which ck

0 is the sum of ion concentration at
the reference state and given by:

ck
0 = c+

0 +c−0 =

√
4

γ∗+γ∗−
γ+γ−

(c∗)2 +
(
cF

0

)2
. (15)

Boundary Condition

At the lateral edge just inside the tissue,

µw = µw∗
, µ̃+ = µ̃+∗

and µ̃− = µ̃−
∗

at r = a− (16a)

σrr = 0 at r = a− (16b)

where, µw∗
, µ̃+∗

and µ̃−∗
are chemical potential for water

and electrochemical potentials for cations and anions in
the saline solution, respectively. They are assumed to be
constant throughout the entire process.

At the center of the tissue, the solid matrix is assumed
to have no radial displacement and flux of water, cations
and anions must be zero according to the symmetric con-
dition, i.e. [Sun, Guo, Likhitpanichkul, Lai and Mow
(2004)].

ur = 0, φw(vw
r −vs

r) = 0, φwc+(v+
r −vs

r) = 0,

φwc−(v−r −vs
r) = 0 (17)

2.2 Methods of Solution

Since the imposed compressive strain εo is a small pa-
rameter, the “perturbation method” can be used to find
the analytic solution [Sun, Guo, Likhitpanichkul, Lai and
Mow (2004)]. Using the regular perturbation sequence
for the unknowns such as cF ,ψ ,e and µ̃ ,

Q = Q0 +ε0Q1 +ε2
0Q2 + ..., (18)

where Q0 is the value at reference state, and δQ =
Q−Q0 ≈ ε0Q1 is its linearized perturbation, constitutive
equations (7)-(10) will become:

δσzz = −δp+λsδe−2µsε0, (19a)

δσrr = −δp+λsδe+2µs
∂ur

∂r
, (19b)

δσθθ = −δp+λsδe+2µs
ur

r
, (19c)

δµw = δp−φRT δck, (20)

δµ̃+ =
RT
M+

δc+

c+
0

+
Fc

M+ δψ, (21)

δµ̃− =
RT
M−

δc−

c−0
− Fc

M−δψ, (22)

Here, the perturbation to the dilatation is given by:

δe =
∂u
∂r

+
u
r
−εo (19d)
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Table 2 : Essential parameters at initial state and steady state
Initial state 

interior Edge 
Steady state 

1/2
1

4(1 )A
A

e 0 0

1 2

2(1 )

A

A

0(1 2 )A

Fc 0
0

0

0

1 2

2(1 )

F

A

w

A

c 0
0

0

(1 2 )
F

Aw

c

kc 0 0
2(1 )(1 )

a A s

s A

H

RT
0

1

a A s

s

H

RT

p 0s 0
2(1 )(1 )

A s
a

s A

H 0
1

A s
a

s

H

zz 03 s 0

2
2

1

A
s

A

02 (1 )s A

*
0i 0

2 1 1

a A s

F

c o s A

H

F c
0

1

a A s

F

c o s

H

F c

* 0
0 0 3 4

0 1 2

2 1 1
1 1a

i E F

c

H
c c

c F q q

2.3 Steady State Analysis

After the application of the Heaviside function for the
imposed strain (εo) the tissue will experience stress re-
laxation that will eventually reach equilibrium when all
flow processes cease. Therefore, according to momen-
tum equations (2-4), the chemical potential of water and
electrochemical potentials of ions inside the tissue will be
equal to those in the external saline solution. Since the
potentials of three phases outside the tissue are assumed
to be constant (zero), we have:

δµw = 0, δµ̃+ = 0, δµ̃− = 0. (23)

Based on the momentum equation for the overall tissue
(Eq. (1)), the tissue can be treated as an elastic body, and
the total stress must satisfy:

δσrr = 0, δσθθ = 0. (24)

From Eqs. (19)-(24), we can solve for the equilibrium
apparent Poisson’s ratio νA and the equilibrium apparent
Young’s modulus EA (see Appendix A),

νA =
νs +(1−νs)ξ
1+2(1−νs)ξ

, (25)

EA =
δσzz

−εo
= 2µS(1+νA) = Es

1+νA

1+νs
, (26)

where νs is the (intrinsic) Poisson’s ratio of solid matrix,
and

ξ = M/ f (27)

with f = ck
0/cF

0 and M is a dimensionless number which
we defined as “Mechano-electrochemical (MEC) num-
ber” given by:

M =
φRTcF

0

φw
0 Ha

. (28)

Physically, the MEC number represents the ratio of the
electrostatic force to the mechanical force generated in
the solid matrix due to deformation. The parameter ξ is
similar to that found in reference by Ateshian, Chahine,
Basalo and Hung (2004). The perturbation of other pa-
rameters at the final steady state can be expressed in
terms of νA and given in Tab. 2.

2.4 Time-Dependent Analysis

As stated above, the unconfined compression problem is
spatially a one-dimensional problem in r. By making use
of the perturbation method, and neglecting terms second
or higher order in the imposed compressive strain (e.g.,
advection terms), we have been able to reduce the num-
ber of dependent variables and partial differential equa-



88 Copyright c© 2004 Tech Science Press MCB, vol.1, no.1, pp.81-99, 2004

tions (PDEs) in the analysis from 4 to just 2 – see Ap-
pendix B, and reference [Sun, Guo, Likhitpanichkul, Lai
and Mow (2004)].

In order to simplify this problem, the following dimen-
sionless parameters are introduced:

r̂ =
r
a
, ûr =

ur

a
, t̂ =

DB

a2 t, D̂+ =
D+

DB ,

D̂− =
D−

DB , ĉ =
RT c
Ha

. (29)

The two dimensionless dependent variables employed in
the present analysis are the apparent Poisson’s ratio λ and
dimensionless overall ionic concentration γ. Both vari-
ables depend on time and radial point ( t̂, r̂), and are de-
fined by the following equations:

λ =
1

2ε0

(
∂ûr

∂r̂
+

ûr

r̂

)
, and γ=

δĉk

2ε0
. (30)

As derived in Appendix B, these new dependent variables
satisfy the following two PDEs:

1
r̂

∂
∂r̂

(
r̂
∂λ
∂r̂

)
= B11

∂λ
∂t̂

+B12
∂γ
∂t̂

, (31a)

1
r̂

∂
∂r̂

(
r̂
∂γ
∂r̂

)
= B21

∂λ
∂t̂

+B22
∂γ
∂t̂

, (31b)

where B11, B12, B21 and B22 are given in the list of
Nomenclature at the end of the manuscript. These equa-
tions are much simpler in mathematical form than the
general non-linear equations [Sun, Guo, Likhitpanichkul,
Lai and Mow (2004)] and resemble the familiar relation-
ships encountered in simple transient diffusion problems
[Carslaw and Jaeger (1959)].

Boundary Conditions

The boundary conditions for Eqs. (31) in the new depen-
dent variables (λ, γ) become:

r̂
∂λ
∂r̂

→ 0, at r̂ → 0 all t̂ > 0, (32a)

r̂
∂γ
∂r̂

→ 0, at r̂ → 0 all t̂ > 0, (32b)

2(1−νA)
(1−2νA)

λ−2
∫ 1

0
r̂′λdr̂′ =

νA

(1−2νA)
at r̂ = 1 all t > 0, (32c)

γ=
(νA−νs)
2(1−νs)

(1−2λ)
(1−2νA)

at r̂ = 1 all t̂ > 0. (32d)

The first two boundary conditions indicate that there is no
radial flux of ions at the center of the sample (Eq.17). The
third is derived from the combination of conditions that,
at the radial edge of the sample, a) the chemical potential
of water must match the value in the bathing solution,
and b) the radial component of the total stress tensor must
equal zero. The last equation follows the condition that
the chemical potentials of the positive and negative ions
are continuous at the radial edge of the sample.

Initial Conditions

As indicated in Sun, Guo, Likhitpanichkul, Lai and Mow
(2004), the tissue will experience an instantaneous iso-
choric deformation at time zero (i.e., the volume of tissue
will remain constant with no efflux of water). Through-
out the entire mass of tissue sample (with the exception
of a boundary layer at the edge) the transient Poisson’s
ratio will therefore be equal to 0.5 initially. The ini-
tial conditions for the partial differential governing equa-
tions, i.e., Eqs. (31), are thus

λ = 1/2, at t̂ = 0 all r̂ < 1. (33a)

γ= 0, at t̂ = 0 all r̂ < 1. (33b)

2.5 Similarity Solutions for the Boundary Layer

For short dimensionless times (with respect to the gel
diffusion time τg = a2/(Hak)), the mathematical solu-
tion for Eqs. (31) will exhibit boundary layer behavior
in the vicinity of r̂ = 1. This means that the dependent
variables will vary rapidly with radial position near the
boundary, but in the interior of the domain the depen-
dent variables will slowly evolve with time. With respect
to the radius, the monotonically decreasing nature of the
γ and λ will not change until they reach an equilibrium
constant value.

For numerical solutions (e.g., finite element method), it is
difficult to obtain accurate numerical results for the sharp
spatial variations of the dependent variables, particularly
near the boundary r̂ = 1, where these parameters vary
very rapidly with radial position unless a large number of
discretized elements are used near the boundary. In order
to overcome this difficulty, particularly at short times, we
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have developed a special asymptotic analytic approxima-
tion for the limit of short times.

For positions very near the edge, the curvature of the
specimen may be neglected, the cylindrical coordinates
will be reduced to Cartesian coordinates, and hence by
introducing a similarity variable ς

ς =
x

2
√

t̂
=

1− r̂

2
√

t̂
(34)

in Eq. (31), we transform the two PDEs into two coupled
ordinary differential equations (ODEs),

d2λ
dς2 = −2ς

(
B11

dλ
dς

+B12
dγ
dς

)
, (35a)

d2γ
dς2 = −2ς

(
B21

dλ
dς

+B22
dγ
dς

)
. (35b)

From the initial condition (33), we have boundary condi-
tions:

λ → 1/2, γ→ 0 at ς→ ∞. (36)

Considering that the integral on the left hand side of Eq.
(32c) is dominated by the far field value of λ (i.e., λ =
1/2 ) during the boundary layer development, the bound-
ary conditions Eq. (32c) and Eq. (32d) become:

λ = λ∗ =
1

4(1−νA)
at ς = 0, (37a)

γ= γ∗ =
1

4(1−νA)
− 1

4(1−νs)
at ς = 0. (37b)

The mathematical solutions of the coupled ODEs, with
corresponding boundary conditions are:

(
λ− 1

2

)
= −(C3er f c(

√
q1ς)+C4er f c(

√
q2ς)) ,

(38a)

(
γ− 1

2

)
=

B21

P1
C3er f c(

√
q1ς)− P1

B12
C4er f c(

√
q2ς) ,

(38b)

where erfc represents the complimentary error function.
The parameters B12, B21P1, q1, q2, C3 and C4 are given in
the list of Nomenclature.

At the initial state, i.e., t = 0+, the dependent variables
are listed in Tab. 2 for the interior, and at the edge r̂ = 1−.
The initial values at the edge of the tissue are calculated
according to the boundary condition Eq. (37a) and the
continuity of the water, anion and cation potentials (Eqs.
23). The variables in the interior of the tissue are eval-
uated based on the initial isochoric solution, or by inte-
grating across the boundary layer.

2.6 Derivation of Experimentally Measurable Vari-
ables

Among the variables listed in Tab. 2, only a small frac-
tion have typically been measured experimentally to de-
termine the biomechanical and biochemical properties
of such charged-hydrated tissues. These include: a)
the lateral expansion; b) the applied load; and c) the
electrical potential [Gu, Lai and Mow (1993); Jurvelin,
Buschmann and Hunziker (1997); Wong, Ponticiello,
Kovanen and Jurvelin (2000); Garon, Legare, Guardo,
Savard and Buschmann (2002)].

During the stress relaxation process occurring in the un-
confined compression test, and for short times, the lateral
expansion may be obtained by integrating the mathemat-
ical solution for λ:

uE = ûEa = a
∫ 1

0
2λε0r̂dr̂ = λaε0. (39)

The force acting on the end faces of the cylindrical spec-
imen may be obtained by using Eq. (19a) and radially
integrating Eq. (B9):

F = −
∫ 1

0
2πr̂σzzdr̂ = −2πa2ε0µs

(
1+λ

)
. (40)

Here, λ is the area average of the short time solution for
the Poisson’s ratio given by:

λ = 2
∫ 1

0
r̂λdr̂ =

1
2
−4

(
C3√

q1
+

C4√
q2

)√
t̂
π
. (41)

This mathematical solution may be simplified for the spe-
cial case where diffusivities of the cations and anions are
the same, i.e., Dd = 0. In this case, the above solution
for the area average Poisson’s ratio becomes:

λ =
1
2
− 1−2νA

1−νA

√
t̂

q1π
, or

λ =
1
2
− 1−2νA

1−νA

√
Hakt
q1πa2 , (42a)
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Table 3 : Range of the parameters of articular cartilage and the base case

FCD

(mEq/ml) 
Porosity 

Intrinsic

Poisson’s 

Ratio

Intrinsic

Aggregate

Modulus Ha

(MPa)

Permeability k 

(
-15 410  m /(N s) )

Range  0.01-0.5 0.7-0.85 0.0-0.4 0.2-1.0 0.4-5 

Base

case
0.2 0.75 0.2 0.4 1.07 

where q1 will be simplified:

q1 =
D̂a(1+ξ)

D̂a +ξ
, or q1 =

Da(1+ξ)
Da +Hakξ

. (42b)

Solution Eqs. (42a) shows the
√

t decaying behavior of
the lateral expansion (and the force relaxation as well).
If we further assume that as the fixed charge density ap-
proaches zero, the non-dimensional parameter ξ → 0,
and thus the triphasic problem will be reduced to the
biphasic problem with νA = νs and q1 = 1. Under these
circumstances, Eqs. (42) become:

λ =
1
2
− 1−2νs

1−νs

√
t̂
π
, or λ =

1
2
− 1−2νs

1−νs

√
Hakt
πa2 . (43)

Now, by substituting λ into Eqs. (39) and (40), we ob-
tain the relaxation behavior of the lateral expansion and
the applied load at short dimensionless times for the case
FCD→ 0. (See paper by Armstrong, Lai and Mow (1984)
for the mathematical solution of the biphasic unconfined
compression problem.)

The electrical potential response at short times can be
obtained by inserting the dilatation e into Eqs. (B12):

δψ= δψE +
2Haε0

cF
0 Fc

(
C3er f (

√
q1 ζ )

(
−1+

1
q1

)

+ C4er f (
√

q2 ζ )
(
−1+

1
q2

))
, (44a)

where, erf represents the error function, and δψE is the
electrical potential history at r̂ = 1− relative to the exter-
nal solution, which is given by:

δψE = − cF
0 RT

ck
oFcφw

0
(1−2λE)ε0. (44b)

The initial value of electric potential perturbation in the
interior (δψ0i) is obtained by substituting ς→ ∞ into the

equation above,

δψ0i

= δψ0E +
2Haε0

cF
0 Fc

(
C3

(
−1+

1
q1

)
+C4

(
−1+

1
q2

))
,

(45)

where δψ0E is the initial value of electrical potential per-
turbation at the edge, and given in Tab. 2.

3 Numerical Results

Using the intrinsic properties of the tissue and the param-
eters of surrounding electrolyte solution, it is now possi-
ble to determine numerically the lateral expansion, tissue
load response at the surface, and the electrical potential
for both the steady state and short dimensionless times.
For this purpose, we introduce a “base case” defined by
a set of realistic and physiologically normal values for
the intrinsic parameters of the tissue as listed in Tab. 3.
These were selected to be identical to those considered in
the finite element solution in the reference by Sun, Guo,
Likhitpanichkul, Lai and Mow (2004). The radius of the
specimen was taken to be 1.5 mm. For the electrolyte,
the following base case parameters are used: φ = 1,
γ∗+γ∗−/γ+γ− = 1, c∗ = 0.15M, D+ = 0.5×10−9m2/s and
D− = 0.8×10−9m2/s. We note that ξ, the ratio of the pa-
rameter M = RTcF

0

/
(φw

0 Ha) to the parameter f = ck
0

/
cF

0 ,
is a dimensionless parameter describing the ratio of os-
motic pressure change and elastic stress change due to
small deformations within the tissue. At 20 oC, the typi-
cal range of values for M is expected to be on the order
of 10−3 −101, and ξ is on the order of 10−5 −101 (Tab.
3). Therefore, for the base case, M and ξ are about 1.6
and 0.9, respectively, and the variations f = ck

0/cF
0 and

ξ with FCD for different external solution concentrations
are presented in Figs. 3 and 4, respectively.
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Figure 3 : Ratio of ck/cF as a function of external ion
concentration c∗ for various values of fixed charge den-

sity cF . (ck/cF =
√

4(c∗/cF)2 +1; ck = c+ +c−)
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Figure 4 : Variation of ξ with external ion concentration
c∗ for various values of tissue fixed charge density c F

o in
base case: osmotic coefficient φ= 1, absolute tempera-
ture T = 293.15K, porosityφw

0 = 0.75, aggregate modu-
lus Ha = 0.4Mpa. (ξ = M/ f with M = φRT cF

0 /(φw
0 Ha)

and f =
√

4(c∗/cF
0 )2 +1)

3.1 Steady State Analysis

Equation (25) shows that the variation of the equilibrium
apparent Poisson’s ratio νA with intrinsic Poisson’s ratio
νs depends solely and simply on the parameter ξ, Fig.

5. From Figs. 4 and 5, we can observe that for the low
FCD case (e.g.,in the pathological state ∼ 0.01mEq/ml),
the parameter ξ is relatively small, and thus the equilib-
rium apparent Poisson’s ratio νA is close to the intrinsic
Poisson’s ratio νs. On the other hand, if the FCD is high
(e.g., in the normal physiological range ∼ 0.5 mEq/ml),
ξ will be large (Fig. 4), and thus the overall tissue will be
relatively incompressible (Fig. 5).
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Figure 5 : Variation of equilibrium apparent Pois-
son’s ratio with ξ for range of intrinsic Poisson’s ra-
tios. (νA = νs+(1−νs)ξ

1+2(1−νs)ξ
where ξ = M/ f with M =

φRTcF
0 /(φw

0 Ha) and f =
√

4(c∗/cF
0 )2 +1.)

At steady state, Figs. 6 and 7 show the ratio of the ap-
parent Young’s modulus (EA) to intrinsic Young’s mod-
ulus (Es) and electrical potential difference between the
equilibrium state ψ∞ and the reference state ψ0, respec-
tively, as a function of ξ, for different values of the
intrinsic Poisson’s ratio. Measurement of the equilib-
rium load required to compress the tissue following stress
relaxation, and measurement of the difference between
the initial and equilibrium electric potentials (relative
to the electrolyte bathing solution) provides two addi-
tional equations to solve for the elastic and electrome-
chanical parameters defining charged-hydrated solid ma-
trix. From Fig. 7 and the expression of the electrical
potential perturbation in Tab. 2, we can conclude that
Haε0 ≥ −2FccF

0 δψ∞, regardless of the values for the in-
trinsic Poisson’s ratio and the external solution concen-
tration. For the base case, −10.4mv ≤ δψ∞/ε0 < 0.
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Figure 6 : Variation of the normalized apparent Young’s
modulus EA with ξ for a range of intrinsic Poisson’s ra-
tios. EA and Es are the apparent Young’s modulus and
intrinsic Young’s modulus, respectively. ( EA
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= δσzz

−Esε0
=
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and ξ = M/ f , with M =
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0 Ha) and f =
√

4(c∗/cF
0 )2 +1)
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Figure 7 : Variation of steady state electrical potential
perturbation (δψ) with ξ for different values of intrinsic

Poisson’s ratio νs. ( (ψ∞−ψ0)FccF
0

Haε0
= −νA−νs

1−νs
where, νA =

νs+(1−νs)ξ
1+2(1−νs)ξ

and ξ = M/ f , with M = φRT cF
0 /(φw

0 Ha) and

f =
√

4(c∗/cF
0 )2 +1 )

3.2 Time Dependent Solution

The short time histories of the lateral expansion of the tis-
sue and the applied load are given in Eqs. (39) and (40),
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/(
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0
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Nondimensional time (t*H
a
k/a

2
)

Figure 8 : Predicted short time history of the nor-
malized lateral expansion uE for a range of external
saline concentrations (also shown the numerical FEM
full time-dependent result). (Base case: osmotic coef-
ficient φ= 1, absolute temperature T = 293.15K, exter-
nal ionic concentration c∗ = 0.15M, fixed charge den-
sity cF

0 = 0.15mEq/ml,cation diffusivity D+ = 0.5 ×
10−9m2/s, anion diffusivity D− = 0.8× 10−9m2/s, ap-
plied strain ε0 = 0.1, porosity φw

0 = 0.75, aggregate mod-
ulus Ha = 0.4MPa, hydraulic permeability k = 1.07×
10−15m4/(N · s), fixed charge density cF

0 = 0.2mEq/ml,
intrinsic Poisson’s ratio ν s = 0.2, and radius of the speci-
men a = 1.5mm; the gel time τg = a2/Hak is of the order
5000s.)

respectively. From these equations, note that the dimen-
sionless applied load is related linearly to the dimension-
less lateral expansion. Figure 8 shows the variation with
time of the lateral expansion (normalized with respect to
the axial displacement multiplied by the aspect ratio a/h)
for various external saline concentrations; Fig.9 presents
the variation of the applied load with time (normalized
with respect to force response of an uncharged solid ma-
trix at equilibrium) for several tissue FCDs. Note that
the gel time τg for the base case is approximately 5,000s.
In both figures, we also show the FEM results from the
reference by Sun, Guo, Likhitpanichkul, Lai, and Mow
(2004) so as to be able to compare with the present short
time asymptotic result.

The electrical potential history is given by Eqs. (44a)
and (44b) and provided in Fig. 10. At short times, the
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Figure 9 : Predicted short time history of the normal-
ized applied load for a range of initial FCDs in base case,
listed in the caption of Fig. 8 (also shown is the numerical
FEM full time-dependent result). τg = a2/Hak ∼ 5,000s.

electrical potential in the interior of the tissue remains
relatively constant, but in the neighborhood of the edge at
r = a there is a boundary layer with a rapidly decreasing
potential. Thus, due to this boundary layer, a negative
potential gradient exists in the radial direction inside the
tissue, which will cause the cations to diffuse relative to
the water toward the edge while the anions will move
toward the center of tissue.

4 Discussion

The objectives of this paper were to obtain analytic time
dependent and equilibrium solutions for the field vari-
ables defined in the triphasic theory. A corollary re-
sult derived from these solutions is the quantitative re-
lationships between the intrinsic material properties and
the apparent measurable mechanical and electromechan-
ical responses from the unconfined compression experi-
ment. Using a perturbation method, the governing PDEs
were linearized and solved for the equilibrium results,
and using a similarity transformation and introducing a
set of non-dimensional parameters, the set of linearized
PDEs were transformed into a set of coupled ODEs for
the short-time responses of the field variables. From
these fundamental governing equations, we found that
the entire deformational processes are governed by five
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Figure 10 : Predicted electrical potential profile at differ-
ent times for the base case parameters listed in the cap-
tion of Fig. 8.

non-dimensional material parameters νs, M, f , D̂+ and
D̂−. These solutions provide simple and analytical ex-
pressions for some of the important experimentally mea-
surable quantities commonly found in the literature: lat-
eral expansion, total applied load, and electrical poten-
tials. These measurements provide the necessary data to
complete the equations defining coefficients for charged-
hydrated tissues. It is important to recall the specific
nature of the constitutive assumptions we have used to
derive these fundamental results (isotropy, homogeneity,
and linearities). Thus within the context of these assump-
tions regarding tissue composition, material symmetry
and equilibrium conditions, we have completely defined
the relationships between the intrinsic material proper-
ties of such charged-hydrated tissues (and cells), and the
experimentally measurable apparent material properties
under the strict conditions imposed by this mathemati-
cal model of the unconfined compression problem. Al-
though many experimental studies have shown that the
external saline concentration may affect both the equilib-
rium and transient mechanical properties of the articular
cartilage, this paper now provides the explicit mathemat-
ical relationships defining the dependence of the mea-
sured mechanical and chemical properties under uncon-
fined compression, at both short times and steady state,
on the external electrolyte, and the intrinsic properties of
the tissue.
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At equilibrium, there are no gradients of electrochemi-
cal potential and thus no movement of water and ions
will occur. However, due to the FCD, there is a pres-
sure above the external solution fluid pressure (known
as the Donnan osmotic pressure), and an electrical po-
tential difference across the free edge of the specimen at
r = a. When the osmotic pressure inside the tissue in-
creases, due to increases of the FCD by compression or
cellular biosynthesis, or by decreasing c∗ of the exter-
nal solution, an additional compressive stiffness of the
tissue will occur; this has been measured by various in-
vestigators of the field. The resulting changes of appar-
ent compressive Young’s modulus agree well with the
experimental results found in reference [Eisenberg and
Grodzinsky (1985; 1987)]. To our knowledge, there has
been no experimental study on the influence of external
ion concentration c∗ on the apparent Poisson’s ratio. The
current analytical results agree well with those recently
reported in the reference by Ateshian, Chahine, Basalo
and Hung (2004). In this paper, however, we have ob-
tained all the field variables (Tab. 2) including the electri-
cal potential, both transient and at steady state. From our
results, we found that all field variables at equilibrium
are strongly dependent on the intrinsic Poisson’s ratio ν s

and the parameter ξ (= M/ f ). The former is a measure
of the lateral deformation magnitude when there are no
fixed charges, and the latter is a measure of the ratio of
osmotic pressure change to elastic force change follow-
ing small deformation. A combination of these two pa-
rameters now makes it possible to describe explicitly how
osmotic pressure perturbations will affect the measurable
apparent properties under unconfined deformation.

The instantaneous deformational response of a triphasic
material has been shown to be identical with the bipha-
sic material with equivalent material coefficients [Arm-
strong, Lai and Mow (1984); Sun, Guo, Likhitpanichkul,
Lai and Mow (2004)]. At the initial instant, the tissue
will expand in the lateral direction without interstitial
water flow nor ion transport inside the tissue, except at
the very edge where a boundary layer is formed. As
the solid matrix recoils and fluid flows efflux occurs, the
boundary layer will grow until gradually the deforma-
tions penetrates to the center of the sample. At short
non-dimensional times following the application of the
compression, both the lateral expansion and applied av-
eraged stress will decrease with the square root of time.
It is found that the differences between the short time

results and FEM results are less than 5% (with respect
to the overall change of lateral expansion or applied
load during the stress relaxation process) when the non-
dimensional time is less than 0.1. Since the gel diffusion
time (i.e., a2/(Hak)) is about 5000s for the base case,
the asymptotic solution agrees very well with the full-
time solution for approximately 500s. The kinetics of the
stress relaxation provides an additional equation for the
determination of the tissue material coefficients. Also, by
extrapolating back for t →0, our analytical result can be
used to calculate the intrinsic shear modulus of the solid
matrix, µs.

The initial rate of stress relaxation can be estimated from
the final solutions, Eqs. (39) and (40), for the lateral ex-
pansion and stress relaxation. Generally, the character-
istic gel diffusion time of a porous-permeable medium
is dependent on the gel diffusivity (i.e., τ g = a2/(Hak)),
but for a charged-hydrated medium, it will also depend
on many parameters such as the diffusivities of ions and
FCD. For instance, for a special case when the diffusiv-
ities of the cations and anions are the same, the specific
characteristic time is given by:

τ ∼ Da(1+ξ)
Da +Hakξ

(
1−νA

1−2νA

)2 a2

Hak
. (46)

Please note that the characteristic time is proportional to
the square of the characteristic length of the flow path
(a), which agrees with the previous studies on the un-
confined compression [Armstrong, Lai and Mow (1984)]
and confined compression for the biphasic model [Mow,
Kuei, Lai and Armstrong (1980)].

5 Conclusion

In this paper, we have obtained both the short time tran-
sient solution and the long time equilibrium solution of a
charged-hydrated material subjected to a Heaviside step
compressive strain ε0 under the unconfined condition.
The triphasic equations were linearized, and the solution
was obtained using a regular perturbation method. The
exact steady state solution shows that the equilibrium ap-
parent material properties strongly depend on the intrin-
sic Poisson’s ratio and the ratio of the perturbation of os-
motic pressure to elastic stress (ξ), and explicit relation-
ships were derived between tissue FCD and the measur-
able tissue mechanical properties. The short time asymp-
totic solution enables us to obtain the rapid spatial varia-
tions in the various parameters throughout the boundary
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layer, as well as to ascertain differences between these
values at the boundary and those in the interior of the
sample as time progresses. At short times, the lateral ex-
pansion and applied load decrease with the square root of
time for a considerable fraction of the transient response
period and they have been shown to be consistent with
the biphasic analysis in earlier study. The results pre-
sented in this paper can now be used directly to calculate
the intrinsic material properties (i.e.,without the effects
of the FCD) of the porous-permeable matrix from the
experimentally measured (i.e., apparent) material prop-
erties, and to quantitatively understand the fundamental
nature of the material response.

Acknowledgement: This study was supported by NIH
Grants No. AR41913 and AR42850, and the Whitaker
Foundation Special Development Award.

Appendix A: Derivation for the Apparent Poisson’s
Ratio and Young’s Modulus

From Eqs. (20)-(24), we have:

δp = φRT δck, (A1)

RT
δc+

c+
0

+Fcδψ= 0, (A2)

RT
δc−

c−0
−Fcδψ= 0. (A3)

Now by combining Eqs. (A2), (A3) and (13), we obtain:

δck =
cF

o

ck
0

δcF . (A5)

To obtain δck, Eq.(14) is inserted into the Eq.(A5):

δck = −
(
cF

o

)2

ck
0φw

0

δe. (A6)

Substitution Eq.(A6) into (A1) yields:

δp = −φRT
(
cF

0

)2

φW
o ck

0

δe. (A7)

At the equilibrium, the constitutive equations for the tis-
sue, Eqs. (19a, b, c), become:

δσzz = −δp+λsδe−2µsε0, (A8a)

δσrr = −δp+λsδe+2µs
∂ur

∂r
= 0, (A8b)

δσθθ = −δp+λsδe+2µs
ur

r
= 0. (A8c)

In terms of apparent equilibrium Poisson’s ratio ν A, the
perturbation of the dilatationδe is given by:

δe = −ε0 +
∂ur

∂r
+

ur

r
= (2νA−1)ε0. (A9)

From Eqs. (A8b), (A8c) and (A9), we have:

∂ur

∂r
=

ur

r
= νAε0, (A10)

thus by substitution Eqs. (A7), (A9) and (A10) into
(A8b) we obtain:

νA =
νs +(1−νs)ξ
1+2(1−νs)ξ

, (A11)

where,

ξ =
φRTcF

0

φw
0 Ha

cF
0

ck
0

. (A12)

Similarly, the equivalent Young’s modulus of the sample
at equilibrium may be derived. The component of the
(perturbed) stress tensor in the vertical direction is given
by:

δσzz = δσrr +(δσzz −δσrr) = 0+2µs(−εo −νAεo)
= −2µS(1+νA)εo. (A13)

The apparent equilibrium Young’s modulus E Ais equal to
the (perturbed) vertical compressive stress divided by the
vertical compressive strain ε0

EA =
δσzz

−εo
= 2µS(1+νA) = Es

1+νA

1+νs
. (A14)

Appendix B: The Governing Equations for the Ap-
parent Poisson’s Ratio (λ) and Ion
Concentration (γ)

Starting with Eqs. (5) and (11), the continuity equations
for water and cations can also be written as:

∂(φw)
∂t

+ ∇ · (φwvw) = 0, (B1)

∂(φwc+)
∂t

+ ∇ · (φwc+v+)
= 0. (B2)



96 Copyright c© 2004 Tech Science Press MCB, vol.1, no.1, pp.81-99, 2004

Combining these two equations, we obtain:

φw ∂c+

∂t
+c+∇ · (φw (

v+−vw))
+φw∇ c+ ·v+ = 0, (B3)

where v+−vw is the relative velocity of the cations with
respect to water. From the definition of the electrochem-
ical potential of the cations Eq. (9), and Eq. (B3), we
obtain:

v+−vw = −D+
(

∇ c+

c+ +
Fc

RT
∇ψ

)
, (B4)

and

∂c+

∂t
+vw · ∇ c+ (B5a)

− 1
φw ∇ ·

(
φwD+

(
∇ c+ +

Fcc+

RT
∇ψ

))
= 0.

Similarly, for anions, we have:

∂c−

∂t
+vw · ∇ c− (B5b)

− 1
φw ∇ ·

(
φwD−

(
∇ c−− Fcc−

RT
∇ψ

))
= 0.

Eqs. (B5a and B5b) can now be used to directly obtain
diffusion transport equations in terms of c k = (c+ + c−)
and cF :

∂ck

∂t
+vw · ∇ ck (B6a)

=
1

φW ∇ ·
[
φw (D+ +D−)

2

(
∇ ck +

FccF

RT
∇ψ

+
(D+−D−)
(D+ +D−)

(
∇ cF +

Fcck

RT
∇ψ

))]
,

and

∂cF

∂t
+vw · ∇ cF (B6b)

=
1

φW ∇ ·
[
φw (D+ +D−)

2

(
∇ cF +

Fcck

RT
∇ψ

+
(D+−D−)
(D+ +D−)

(
∇ ck +

FccF

RT
∇ψ

))]
.

From Eq.(14), we know that cF is a function only of the
dilatation e under infinitesimal deformation assumption.
Therefore, finding the relationship between the electrical

potential ψ in the equations above and dilatation e will
reduce the number of independent variables.

By adding Eqs (2), (3) and (4) we obtain:

−ρ∇ µw −ρ+∇ µ̃+−ρ−∇ µ̃− + fsw (vs −vw) = 0. (B7)

For the ideal case when the osmotic coefficient φ is 1,
and substituting the constitutive equations (8)-(10) into
Eq. (B7), we obtain:

−∇ p−FccF ∇ψ +
1
k

vs = 0. (B8)

Taking the divergence of the stress equilibrium equation
(7), we have:

Ha∇ 2e = ∇ 2 p. (B9)

Substituting (B9) into (B8), we have the important result:

Ha∇ 2e =
1
k

∂
∂t

e−cF Fc∇ 2ψ. (B10)

Using the same regular perturbation sequence as Eq.(18)
for the unknowns cF , ck, ψ , φW and e, Eqs. (B6) and
(B10) can be written in a cylindrical coordinate system
as,

∂δck

∂t
= Da 1

r
∂
∂r

(
r
∂δck

∂r

)
+Dd 1

r
∂
∂r

(
r
∂δcF

∂r

)
(B11a)

+Dk FccF
o

RT
1
r

∂
∂r

(
r
∂δψ
∂r

)
,

∂δcF

∂t
= Da 1

r
∂
∂r

(
r
∂δcF

∂r

)
+Dd 1

r
∂
∂r

(
r
∂δck

∂r

)
(B11b)

+DF FccF
o

RT
1
r

∂
∂r

(
r
∂δψ
∂r

)
,

Ha
1
r

∂
∂r

(δe) =
1
k

∂
∂t

δe−cF
0 Fc

1
r

∂
∂r

(δψ) , (B12)

where Da, Dd , Dk and DF are given by the nomenclature.

Note that the second terms on the left hand side of Eqs.
(B6), i.e.vw · ∇ c, have been omitted because such terms
are second order in the imposed compressive strain.
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If we further introduce the apparent Poisson’s ratio λ and
dimensionless overall ionic concentration γ as in Eqs.
(30) then

δe = (2λ−1)ε0. (B13)

From Eqs. (B13) and (14), we obtain:

δcF =
cF

o

φW
o

εo (1−2λ) . (B14)

Finally, Eqs. (30) and (B12) - (B14) can be used to elim-
inate δcF , δck and δψ from our formulation by substitut-
ing these relationships into Eqs. (B11) to yield the two
governing PDEs for the two dependent variables:

∂γ
∂t

= Da 1
r

∂
∂r

(
r
∂γ
∂r

)
+

Dk

DB

∂λ
∂t

(B15a)

−
(

Dk +MDd
) 1

r
∂
∂r

(
r
∂λ
∂r

)
,

1
DB

∂λ
∂t

=
DF +MDa

DF +MDB

1
r

∂
∂r

(
r
∂λ
∂r

)
(B15b)

− Dd

DF +MDB

1
r

∂
∂r

(
r
∂γ
∂r

)
.

These two equations can readily be rearranged to yield
the governing Eqs. (31a and 31b).
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Nomenclature

c∗ = salt concentration in bath, in mole per unit volume

cF = fixed charge density (Eq/unit tissue water volume)

c± = charge density for cations (+), anions (-) (Eq/tissue
water colume)

D± = diffusivity for cations (+), anions (-)

e = dilatation of the solid matrix

E = infinitesimal deformation tensor of solid matrix

Es = (intrinsic) Young’s modulus of solid matrix

EA = (apparent) equilibrium Young’s modulus of the tis-
sue

Fc = Faraday constant

fαβ = drag coefficients between α and β component

Ha = aggregate modulus of solid matrix

k = hydraulic permeability

M± = atomic weight of Na and Cl

p = interstitial fluid pressure

R = universal gas constant

T = absolute temperature

vα = velocity of α-component

ε0 = compressive axial strain in vertical direction

λs,µs =intrinsic Lame constants of solid matrix

µw =chemical potential per unit mass of water

µ̃± = electrochemical potentials (per mass) for cations
(+) and anions (-).

νs =(intrinsic) Poisson’s ratio of solid matrix

νA =(apparent) equilibrium Poisson’s ratio of the tissue

φ=osmotic coefficient

φα =volume fraction of α-component

ρα =apparent mass density of α-component

ρw
T =true density of water phase

σ =stress tensor of mixture

Da = (D+ +D−)/2

DB = Hak

Dd = (D+−D−)/2

Dk = Da +(ck
o/cF

o )Dd

DF = (ck
o/cF

o )Da +Dd

A=DaDF −DkDd +M(Da)2−M(Dd)2

B11 =
(

DaDF +DaDBM−DkDd
)

/A

B12 = DdDB/A

B21 = M
(

DkDB +DdDF +MDdDB−DkDa
)

/A

B22 = DB (
DF +MDa)/A

P =
√

(B11 −B22)
2 +4B12B21

P1 = (B11 −B22 +P)/2

P2 = (−B11 +B22 +P)/2

q1 = (B11 +B22 +P)/2

q2 = (B11 +B22 −P)/2

λ∗ =
1

4(1−νA)

γ∗ =
1

4(1−νA)
− 1

4(1−νs)

C3 =
1
P

((
1
2
−λ∗

)
P1 −γ∗B12

)

C4 =
1
P

((
1
2
−λ∗

)
P2 +γ∗B12

)




