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Flaw tolerant bulk and surface nanostructures of biological systems
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Abstract: Bone-like biological materials have
achieved superior mechanical properties through hier-
archical composite structures of mineral and protein.
Gecko and many insects have evolved hierarchical
surface structures to achieve extraordinary adhesion
capabilities. We show that the nanometer scale plays a
key role in allowing these biological systems to achieve
their superior properties. We suggest that the principle
of flaw tolerance may have had an overarching influence
on the evolution of the bulk nanostructure of bone-like
materials and the surface nanostructure of gecko-like
animal species. We demonstrate that the nanoscale sizes
allow the mineral nanoparticles in bone to achieve opti-
mum fracture strength and the spatula nanoprotrusions
in Gecko to achieve optimum adhesion strength. In both
systems, strength optimization is achieved by restricting
the characteristic dimension of the basic structure
components to nanometer scale so that crack-like flaws
do not propagate to break the desired structural link.
Continuum modeling and atomistic simulations have
been conducted to verify the concept of flaw tolerance at
nanoscale.

A simple tension-shear chain model has been developed
to model the stiffness and fracture energy of biocompos-
ites. It is found that, while the problem of low tough-
ness of mineral crystals is alleviated by restricting the
crystal size to nanoscale, the problem of low modulus
of protein has been solved by adopting a large aspect
ratio for the mineral platelets. The fracture energy of
biocomposites is found to be proportional to the effec-
tive shear strain and the effective shear stress in protein
along its path of deformation to fracture. The bioengi-
neered mineral-protein composites are ideally suited for
fracture energy dissipation as the winding paths of pro-
tein domain unfolding and slipping along protein-mineral
interfaces lead to very large effective strain before frac-
ture. The usual entropic elasticity of biopolymers may
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involve relatively small effective stress and may not be
able to ensure simultaneous domain unfolding and inter-
face slipping. Cross-linking mechanisms such as Ca++

induced sacrificial bonds in bone can increase the shear
stress in protein and along the protein-mineral interface,
effectively converting the behavior of entropic elastic-
ity to one that resembles metal plasticity. The sacrifi-
cial bond mechanism not only builds up a large effec-
tive stress in protein but also allows protein deforma-
tion and interface slipping to occur simultaneously un-
der similar stress levels, making it possible to engineer
a very long range of deformation under significant stress
in order to maximize energy absorption. Optimization of
mineral platelets near theoretical strength is found to be
crucial for allowing a large effective stress to be built up
in protein via cross-linking mechanisms such as Ca++

induced sacrificial bonds. Similarly, for gecko adhesion,
the strength optimization of individual spatulas is found
to play a critical role in enhancing adhesion energy at the
higher hierarchical level.

1 Introduction

An important objective of materials science and engi-
neering has been to understand the relationships between
microstructure of materials and their macroscopic prop-
erties. New challenges to this field in the 21 st century
will include the development of multi-functional (e.g.,
strength, transport, self-repair, self-replicate, etc) and
hierarchical (properties optimized at all length scales)
materials systems. Nanotechnology promises to enable
mankind to eventually design materials using a bottom-
up approach, i.e. to construct multi-functional and hier-
archical material systems by tailor-designing structures
from atomic scale and up. However, currently we barely
have any theoretical basis on how to design a hierarchi-
cal material system to achieve a particular set of func-
tions. One strategy is to look among convergent evolu-
tions in nature for hints on basic principles of multiscale
and multifunctional materials design.
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It is only natural to seek inspirations from nature on solv-
ing technological problems. In fact, we have been doing
so over the entire human history. Early inventers tried
to develop ideas of flying by observing birds. Yet today
we hardly think of mimicking birds in designing modern
airplanes or space shuttles. Why is that so? How did
we achieve today’s advanced technology in aeronautical
and aerospace engineering? A quick reflection will tell
us that it is precisely the development of a thorough un-
derstanding of how birds fly by establishing theories of
aerodynamics, solid mechanics and fluid mechanics that
have allowed the birth of modern aeronautical, civil and
many other industries. The route to success has been to
uncover the basic principles and rules in nature to facili-
tate efficient engineering for human benefit. In this sense,
biological systems perfected by natural evolution serve
as models to study design principles for hierarchical and
multi-functional material systems.

Biological materials, such as shell (Currey, 1977; Menig
et al., 2000; Menig et al., 2001; Kamat et al., 2000; Jack-
son et al., 1988; Taylor, 1973; Currey and Taylor, 1974),
tooth (Tesch et al., 2001; Weiner et al., 1999) and bone
(Rho et al., 1998; Weiner and Wagner, 1998; Landis,
1995) exhibit many levels of hierarchical structures from
macroscopic to microscopic length scales. The small-
est building blocks in such materials are generally on the
nanometer length scale. The enamel of tooth (Figs. 1a
& e) is made of long, more or less needle-like crystals
about 15-20 nm thick embedded in a soft matrix (Tesch
et al., 2001; Warshawsky, 1989). The nanostructure of
bone (Figs. 1b & f) consists of mineral crystal platelets
with thickness around a few nanometers embedded in
a collagen matrix (Landis, 1995; Landis and Hodgens,
1996; Roschger et al., 2001). Another familiar example
is the “brick and mortar” structure of nacre (Figs. 1c &
g) in which aragonite bricks with thickness around a few
hundred nanometers are staggered and glued together by
protein (Currey, 1977; Menig et al., 2000; Jackson et
al., 1988). Apart from the hierarchical composite struc-
tures of these materials, a fundamental question is why
the nanometer scale is so important. While the stiffness
of biocomposites is similar to that of the mineral con-
stituent, their fracture energy can be several orders of
magnitude higher than that of the mineral. For exam-
ple, nacre, as a composite of CaCO3 and protein, has
a fracture energy about 3000 times higher than that of
the Monolithic CaCO3 (Jackson et al., 1988). Generally,

there is a well-defined organization of components in the
biocomposite in the form of interlaced bricks separated
by soft layers of protein gunk. Mineral platelets are sep-
arated and glued together by protein. The high toughness
of biocomposites have been attributed to various mech-
anisms (Ji and Gao, 2004a) including their hierarchical
structures (Menig et al., 2000; Menig et al., 2001; Kamat
et al., 2000), the effects of mechanical properties of pro-
tein on dissipating fracture energy (Smith et al., 1999),
protein-mineral interface roughness (Wang et al., 2001)
and reduction of stress concentration at a crack (Oku-
mura and Gennes, 2001).

Interesting nanostructures of biological systems for su-
perior mechanical properties are not just limited to bone-
like nanocomposites. Gecko and many insects have
evolved elaborate hierarchical surface structures in their
foot hair to achieve extraordinary adhesion capabilities.
These animals possess ability to adhere to vertical sur-
faces and ceilings. A gecko is found to have hundreds
of thousands of keratinous hairs or setae on its foot; each
seta is 30∼130 µm long and contains hundreds of pro-
truding nanoscale structures called spatula (Fig. 1d & h).
Possible mechanisms of biological attachment include
mechanical surface interlocking, fluid secretion (capillar-
ity and viscosity) and molecular adhesion (van der Waals
interaction). It is only until recently that the development
of MEMS techniques have allowed the adhesive force of
gecko to be accurately measured at the level of a single
seta (Autumn et al., 2000), with evidence that the domi-
nant adhesion mechanism of gecko is the van der Waals
interaction (Autumn et al., 2002).

Why is nanoscale is so important to biological systems?
What are the basic mechanisms and principles behind bi-
ological nanostructures? Motivated by these questions,
we investigate mechanical properties of the bulk and sur-
face nanostructures of bone-like and gecko-like biolog-
ical systems, focusing on issues such as flaw tolerance,
strength, stiffness and fracture energy.

2 The protein-mineral bulk nanostructure of bone-
like biocomposites

2.1 Strength of mineral platelets

Experimental observations (Kamat et al., 2000; Wang et
al., 2001; Fratzl et al., 1997; Tesch et al., 2001; Lan-
dis, 1995; Landis and Hodgens, 1996) have shown that,
at the most elementary structure level, biological mate-
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Figure 1 : Bulk and surface biological nanostructures. Many hard biological tissues, such as tooth (a), vertebral
bone (b) and shells (c) are made of nanocomposites with hard mineral platelets in a soft (protein) matrix. Enamel
(e) is made of long, more or less needle-like crystals about 15-20 nm thick and 1000 nm long, with a relatively small
volume fraction of a soft protein matrix. Dentin and bone (f) are made of plate-like crystals (2-4 nm thick, up to 100
nm long) embedded in a (collagen-rich) protein matrix. The volume ratio of mineral to matrix is on the order of 1:2.
Nacre (g) is made of plate-like crystals (200-500 nm thick and a few micrometers long) with a very small amount
of soft matrix in-between. All the composites share the structural feature of hard platelets with a very large aspect
ratio, arranged parallel in a brick-and-mortar-like fashion. The adhesive system of Gekko gecko has evolved surface
nanostructure for adhesion. A toe of gecko (d) contains a terminal nanostructure called spatula about 200-500 nm in
diameter (h).
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Figure 2 : A simple tension-shear chain model of biocomposites. (a) A schematic diagram of staggered mineral
crystals embedded in a soft (protein) matrix. (b) The tension-shear chain model showing the path of load transfer in
the mineral-protein composites. The mineral platelets carry tensile load and the protein transfers loads between the
platelets via shear. (c) The free body diagram of a mineral platelet showing the shear stress applied on the surface of
the platelet by protein.

rials exhibit a generic structure consisting of staggered
mineral platelets embedded in a soft matrix, as shown
in Fig. 2(a). Jaeger and Fratzl (2000) discussed differ-
ent arrangements of mineral platelets in collagen fibril
and provided simple estimates for the stiffness of bio-
composites. Under an applied tensile stress, the path of
load transfer in the mineral-protein biocomposites can
be represented by a tension-shear chain model (Gao et
al., 2003) depicted in Fig. 2 where the mineral platelets
carry tensile load and the protein transfers load between
mineral crystals via shear. In this tension-shear chain
model, the mineral-protein composite is simplified to a
one-dimensional chain consisting of tensile springs (min-
eral) interlinked by shear springs (protein).

The integrity of the composite chain structure shown in
Fig. 2(b) is hinged upon the strength of mineral platelets
since breaking of the platelets would destroy the criti-
cal structural links in the composite, leading to disinte-
gration of the protein-mineral network. It will be dis-
cussed shortly (section 2.3) that the strength of mineral
platelets plays a crucial role in the fracture energy of
the composite. In order to achieve high fracture energy,
the mineral platelets must be able to sustain large ten-
sile stress without fracture; the protein and the protein-
mineral interface must be able to absorb and dissipate
a large amount of energy by undergoing large deforma-
tion under large stress. How to optimize the strength

of the mineral platelets? The Griffith theory of frac-
ture (Griffith, 1921) and common engineering experi-
ences have shown that the strength of brittle solids is
determined by pre-existing flaws. Gao et al. (2003)
pointed out that the nanometer scale is the key to opti-
mizing mineral strength. At the simplest level, this can
be understood from the following consideration. A per-
fect, defect-free mineral particle should be able to sustain
mechanical stress near the theoretical strength σth of the
material. However, we assume that the particle contains
crack-like flaws. For example, protein molecules trapped
within the mineral crystals during the biomineralization
process are mechanically equivalent to embedded micro-
cracks and may precipitate brittle fracture. Consider a
thumbnail crack in the mineral particle as shown in Fig.
3(a). The strength of this “cracked” mineral platelet can
be calculated from the Griffith criterion of fracture as

σ f
m = αEmΨ, Ψ =

√
γ

Emh
, (1)

where γ is the surface energy and h is the thickness of
mineral crystal. The parameter α depends on the crack
geometry and is approximately equal to

√
π for a half-

cracked platelet (i.e. maximum crack depth equals one
half of the platelet thickness). Figure 3(c) compares the
strength of the cracked crystal with that of a defect-free
crystal. We see that there exists a transition between
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Figure 3 : A length scale for optimized strength in mineral platelet. (a) A schematic diagram of mineral platelet
with a surface crack. (b) The load distribution on the cracked mineral crystal. (c) Comparison of the strength of a
cracked mineral platelet calculated from the Griffith criterion with the strength of a perfect, defect-free crystal.

crack propagation governed by the Griffith criterion and
uniform rupture of atomic bonds at theoretical strength at
a critical length scale (Gao et al., 2003)

hcr ≈ α2 γEm

σ2
th

. (2)

At this length scale, the fracture mechanism changes
from energy governed flaw propagation to strength gov-
erned structure disintegration. Below the critical length
of eq. (2), the fracture strength of a cracked crystal is
near that of a perfect crystal because the Griffith crite-
rion for crack propagation can not be satisfied before the
applied stress reaches a level near the theoretical strength
of material. Taking a rough estimate γ=1 J/m2, Em= 100
GPa, and σth = Em/30, we find hcr to be around 30 nm
for a half-cracked platelet. The nanometer scale not only
allows the strength of mineral particles to be optimized
near theoretical strength but also renders these particles
insensitive to crack-like defects (flaw tolerance). For
larger mineral particles above the critical length, we have
the conventional engineering concepts that the strength
is determined by pre-existing flaws and the failure oc-
curs by propagation of flaws under stress concentration.
As the mineral size drops below the critical length, the
strength of a perfect mineral platelet is maintained de-
spite of defects. The failure criterion is governed by
theoretical strength rather than by the Griffith criterion,
and the material becomes insensitive to flaws. Based on
this analysis, Gao et al. (2003) made a hypothesis that
the nanometer size of mineral crystals in biocomposites
is selected to ensure optimum fracture strength and flaw

tolerance (for robustness).

The bio-inspired length scale for optimum mineral
strength

γEm
/

σ2
th (3)

is an intrinsic material parameter which measures the size
of fracture process zone in a brittle material. Depending
on the geometry of structure and crack, this can range
from a few nanometers to a few tens of nanometers. As
the structural size reaches this critical length, materials
become insensitive to flaws in the sense that pre-existing
cracks no longer propagate in the structure.

2.2 Stiffness of biocomposites

We have discussed how the nanometer scale allows the
mineral bits in biological materials to achieve optimum
strength and flaw tolerance. The problem of low tough-
ness of mineral crystals is thus alleviated by restricting
the crystal size to nanoscale. How does nature solve the
problem of low modulus of protein? We now proceed to
discuss the stiffness and fracture energy of biocompos-
ites based on the tension-shear chain model depicted in
Fig. 2(b). We immediately note that the simple chain
model may be overly simplistic in many aspects, includ-
ing neglect of the three dimensional character of defor-
mation fields in biocomposites. However, here we adopt
the view that simple models can still be very useful as
long as their limitations are well understood. Gao et al.
(2003) and Ji and Gao (2004b) have used the chain model
of Fig. 2(b) to estimate the composite stiffness and found
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results in reasonable agreement with a full finite element
analysis of biocomposites. In this paper, we further gen-
eralize this model to account for nonlinear behavior of
protein deformation and to estimate the fracture energy
of biocomposites.

Applying force equilibrium to a single mineral platelet
(Fig. 2c) indicates that the tensile stress in a mineral
platelet varies linearly with the distance x from the center
of the platelet,

σ̃m (x) = σm
L−2|x|

L
. (4)

The maximum stress occurs near the center of the platelet
and is related to the shear stress of protein as,

σm = ρτp (5)

where ρ is the aspect ratio of the mineral platelets. The
average stress in the composite is

σ =
1
2

Φσm =
1
2

ρΦτp (6)

where Φ denotes the volume concentration of mineral.
The average strain in the composite structure obeys the
kinematical relationship

ε =
∆m +2εph(1−Φ)

/
Φ

L
(7)

where ∆m is the elongation of the mineral platelets, ε p is
the shear strain of protein and L is the length of mineral
shown in Fig. 2(b). We note that eqs. (4-7) remain valid
even for nonlinear behaviors as long as the shear strain in
protein can still be regarded as approximately uniform.

The composite stiffness (Young’s modulus) E can be ob-
tained by considering infinitesimal deformations in the
composite, in which case

∆m =
σmL
2Em

, εp =
τp

Gp
(8)

where Em is the Young’s modulus of mineral and G p is
the shear modulus of protein. Inserting eq. (8) into eq.
(7) while making use of eq. (6) yields an estimate for the
composite stiffness (Gao et al., 2003),

1
E

=
4 (1−Φ)
Gp Φ2ρ2 +

1
Φ Em

. (9)

Ji and Gao (2004b) have verified that eq. (9) agrees well
with finite element calculations. Normally, G p is much
smaller (up to 3 orders of magnitude) than Em. For small
aspect ratios, the second term can be neglected so that
the composite stiffness behaves as E ∝ G pρ2, indicating
that the composite stiffness can be rapidly amplified with
respect to that of protein via aspect ratio. The simple ex-
pression in eq. (9) indicates that the large aspect ratio
of mineral particles compensates for the low modulus of
the protein phase since it is the combination ρ 2Gp which
appears in the expression for the composite stiffness. In
other words, biocomposites are stiffened relative to pro-
tein by the square of the aspect ratio of mineral crystals.
An aspect ratio of 30-40 would provide a magnification
of 3 orders of magnitude over the stiffness of protein and
bring the composite stiffness close to that of mineral.

2.3 Fracture energy of biocomposites

We now consider the fracture energy of biocomposites.
Consider a crack as shown in Fig. 4. For simplicity, we
assume that dissipation of fracture energy near the crack
tip is concentrated within a strip of localized deformation
along the prospective crack path (Fig. 4), reminiscent of
the classical Dugdale model (Dugdale, 1960) of plastic
yielding near a crack in a ductile sheet. In such a cohesive
strip model, the fracture energy can be calculated from
the integral (Klein and Gao, 1998; Gao and Ji, 2003)

Jc = w
∫

σ(ε)dε (10)

where w is the width of the localization strip and σ =
σ(ε) is the continuum cohesive law of the biocompos-
ite. To evaluate the integral in eq. (10), we generalize the
simple tension-shear chain model of Fig. 2(b) to account-
ing for large deformation of protein within the fracture
process zone.

We assume mineral particles are strong enough to retain
their integrity during composite fracture. In this case,
the width of the fracture localization zone w should be
larger than, and proportional to, the length L of mineral
particles. Therefore, we write

w = ξL, ξ ≥ 1. (11)

Inserting eqs. (6) and (7) into the integral of eq. (10)
leads to
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Figure 4 : A Dugdale-type estimate for the fracture en-
ergy of biocomposites. The fracture energy dissipation
is assumed to concentrate within a strip of localized de-
formation with width w. The tension-shear chain model
is used to estimate the fracture energy in the localization
strip. The stress and strain relation of material within the
localization strip is assumed to obey a cohesive law.

Jc = ξL
∫

σdε =
1
2

Φξ
∫

σmd∆m +ξ(1−Φ)L
∫

τpdεp.

(12)

In eq. (12), the first term corresponds to the contribution
of mineral and the second term that of protein to the frac-
ture energy of biocomposite. The contribution from the
deformation of brittle mineral particles to the compos-
ite fracture energy is generally expected to be negligibly
small in comparison with that from protein deformation.
We neglect the first term in eq. (12) and write

Jc = ξ(1−Φ)L
∫

τpdεp = ξ(1−Φ)Lτ∗pε f
p (13)

where ε f
p is the effective shear strain of protein before

fracture and τ∗p is the effective shear stress in protein. The
effective strain of protein should include both the defor-
mation of protein molecules as their domains unfold and
slipping along the protein-mineral interface. The effec-
tive shear stress in protein can be expressed as

τ∗p = min(τ f
p, τ f

int , σ f
m

/
ρ) (14)

where τ f
p measures the stress associated with domain un-

folding, τ f
int is the strength of interface and σ f

m is the ten-
sile strength of mineral.

Therefore, a simple estimate of the fracture energy of
biocomposites is given by

Jc = ξ(1−Φ)Lε f
p min(τ f

p, τ f
int , σ f

m

/
ρ). (15)

This simple estimate suggests that the toughness of bio-
composites increases with (i) the volume fraction of pro-
tein (1−Φ), (ii) the length of mineral particle L, (iii) the
effective strain of protein ε f

p before fracture, and (iv) the
effective stress of protein which is bounded by the stress
τ f

p required for protein domain unfolding, the protein-
mineral interface strength τ f

int , and the mineral strength
σ f

m. Among these parameters, the effect of volume frac-
tion of protein is clear: The more protein, the more vol-
ume of materials for energy dissipation. Baring min-
eral fracture, the mineral particle length sets an intrin-
sic length scale for strain localization near the crack tip:
The longer the mineral, the more delocalized the crack-
tip deformation and the larger the fracture energy. The
effective shear strain of protein before fracture is a key
parameter for fracture energy. Protein molecules can un-
dergo large deformation as the protein domains unfold
(Smith et al., 1999), and are thus naturally engineered
with long ranges of deformation before fracture. Slip-
ping along the protein-mineral interface further increases
the effective strain. The effective shear stress of protein
is determined by the lower bound of protein strength, in-
terfacial strength and mineral strength. A key to increase
the first two has been attributed to Ca++ induced sacri-
ficial bonds in bone (Thompson et al., 2001). In other
words, the protein stress is limited by the weakest of
three different deformation mechanisms, protein unfold-
ing, interface slipping, and mineral fracture. Under the
optimum condition, the strengths governing each of the
three mechanisms would be identical to each other, i.e.

τ f
p = τ f

int = σ f
m

/
ρ. (16)

This immediately suggests an optimum mineral aspect

ratio ρ∗ = σ f
m

/
τ f

p. Assuming that the mineral strength

obeys the Griffith criterion σ f
m =

√
α2γEm/h, Gao et al.

(2003) obtained the following estimate for the optimum
aspect ratio

ρ∗ =
σ f

m

τ f
p

=
1

τ f
p

√
α2γEm

h
. (17)

This equation shows that the optimum aspect ratio of
mineral platelets is inversely proportional to the square
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root of the mineral thickness: the smaller the platelets,
the larger the optimal aspect ratio. The mineral crystals
in bone have thickness on the order of a few nanometers
and aspect ratio 30–40 and those in nacre have thickness
on the order of a few hundred nanometers and aspect ra-
tio around 10, which roughly corresponds to the scaling
law predicted by eq. (17).

Equation (16) also shows why it is necessary to have
strong mineral crystals to achieve high fracture energy.
Since large aspect ratio ρ = 30∼ 40 is needed to compen-
sate for the low modulus of protein, the mineral strength
must exceed

σ f
m ≥ (30 ∼ 40)τ f

int. (18)

In biological materials, the organic molecules and the
inorganic mineral crystals are locally polarized and the
interface strength is dominated by electrostatic interac-
tions. Taking τ f

int to be around (20-50) MPa, we can
immediately estimate from eq. (18) that the mineral
strength σ f

m needs to be on the order of a few GPa, which
is near the theoretical strength of mineral. The analy-
sis explained, from a different perspective, why it is im-
portant to have the size of mineral platelets chosen at
the nanoscale: High strength, flaw tolerant mineral crys-
tals are crucial to maintain a significant effective stress
in protein which, together with large shear deformation
inside protein and along the protein-mineral interface,
gives high fracture energy, as shown by eq. (15).

The hierarchical structures of proteins are ideally suited
for absorbing and dissipating fracture energy. Proteins in
nacre deform by gradual unfolding of their domain struc-
tures (Smith et al., 1999). It can take a large amount
of deformation before the primary structure of protein,
the peptide backbone, is directly stretched. Thus the
molecular design of proteins is ideally suited for absorb-
ing fracture energy. However, large deformation alone
is not sufficient as it is the area under the stress-strain
curve which defines the fracture energy. According to
eq. (15), a large effective stress in protein is also needed
for the high toughness of biocomposites. The usual en-
tropic elasticity of biopolymers involves relatively small
effective stress. A solution to this problem in bone has
been provided by the mechanism of sacrificial bonds
in which Ca++ ions cross-link peptides with negative
electric charges, forming relatively strong bonds with
strength up to 30% of the covalent bonds of the peptide
backbone (Thompson et al., 2001). The sacrificial bonds

bind functional groups along different segments of pro-
tein and along the protein-mineral interface, increasing
the effective stress in protein and leading to high frac-
ture energy. The sacrificial bonds not only build up a
large effective stress in protein but also allow protein de-
formation and interface slipping to be able to occur si-
multaneously under similar stress levels, making it pos-
sible to engineer a maximum range of shear deformation.
Figure 5 schematically shows the mechanism of sacri-
ficial bonds in bone where protein molecules between
mineral platelets deform as sacrificial bonds formed by
Ca++ ions break sequentially, resulting in a very long
flat tail of the force-extension (F − u) curve with saw
tooth undulation (Thompson et al., 2001). In general,
cross-link mechanisms such as Ca++ induced sacrificial
bonds effectively can play an important role in converting
entropic elasticity behavior to one that resembles metal
plasticity, hence enhancing the capability of polymers to
absorb fracture energy. This seems to be an important
principle in design of energy absorbing organic-inorganic
composite materials.

3 Flaw tolerant surface nanostructure of gecko for
adhesion

3.1 Saturation of adhesion strength of spatula at
nanoscale

The concept of nanoscale flaw tolerance can be discussed
in a more general context to include the surface nanos-
tructure of gecko. Among the hairy biological attach-
ment systems, the density of surface hairs (setae) in-
creases with the body weight of animal, and gecko has
the highest density among all animal species that have
been studied (Scherge and Gorb, 2001). Various mechan-
ical models have been developed to model specific hairy
attachment systems, for instance the fiber arrays struc-
ture (Persson, 2003; Hui et al., 2002). In particular, the
Johnson-Kendall-Roberts (JKR) model (Johnson et al.,
1971) of contact mechanics has been used to show that
splitting of a single contact into multiple smaller contacts
always results in enhanced adhesion strength (Arzt et al.,
2002, 2003; Autumn et al., 2002).

The most terminal (smallest) structure of gecko’s attach-
ment mechanism is called spatula (Fig. 1h) which is
about 200-500 nanometers in diameter. Why is the spat-
ula size in the nanometer range? To understand this, we
have modeled the spatula as an elastic flat-ended cylin-
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Figure 5 : A schematic illustration of protein modules
deforming between mineral platelets in the biological
nanostructure and the inherent force-extension relation of
protein with cross-linking mechanism of Ca++ formed
sacrificial bonds. The sacrificial bonds are formed by
Ca++ ions linking negatively charged functional groups
along the peptide chain. The sacrificial bonds effectively
convert the usual entropic elasticity behaviors of biopoly-
mers to one that resembles metal plasticity. The long flat
tail and the saw tooth undulation of protein deformation
(Smith et al, 1999; Thompson et al., 2001) are due to
breaking of sacrificial bonds and protein unfolding in the
modules instead of molecular backbone.

drical hair in adhesive contact with a rigid substrate (Gao
et al., 2004). The radius of the cylinder is R. To test
the ability of the flat cylinder to adhere in the presence
of adhesive flaws, imperfect contact between the spatula
and substrate is assumed such that the radius of the actual
contact area is a = αR, 0<α<1, as shown in Fig. 6(b);
the outer rim αR < r < R represents flaws or regions of
poor adhesion. The adhesive strength of such an adhesive
joint can be calculated by treating the contact problem as
a circumferentially cracked cylinder, in which case the
stress field near the edge of the contact area has a square-
root singularity with stress intensity factor (Tada et al.,
2000)

KI =
P

πa2

√
πaF1 (α) (19)

where F1(α) varies in a narrow range between 0.4 and 0.5
for 0 ≤ α ≤ 0.8 (α = 1 corresponds to perfect, defect-

free contact). Substitute eq. (19) into the Griffith condi-
tion

K2
I

2E∗ = ∆γ (20)

where the factor 2 is due to the rigid substrate. The ap-
parent adhesive strength normalized by the theoretical
strength for adhesion, σ̂c= Pc

/
(σthπR2), is obtained as

σ̂c = βα2ψ (21)

where

ψ =

√
∆γE∗

Rσ2
th

, (22)

β =
√

2
/(

παF2
1 (α)

)
, E∗ = E

/
(1−v2) (23)

E and ν being the Young’s modulus and Poisson’s ra-
tio, respectively. The adhesive strength is a linear func-
tion of the dimensionless variable ψ with slope βα 2. The
maximum adhesion strength is achieved when the pull-
off force reaches Pc = σthπa2, or σ̂c = α2, in which case
the traction within the contact area uniformly reaches the
theoretical strength σth. This saturation in strength oc-
curs at a critical size of the contact area

Rcr = β2 ∆γE∗

σ2
th

. (24)

Figure 6(c) plots the apparent adhesive strength for
α=0.7, 0.8 and 0.9, together with the case of flawless
contact (α=1). The corresponding result of a hemispher-
ical tip based on the JKR model is plotted as a dashed
line for comparison. (In plotting the JKR curve, we have
taken E∗/σth to be 75). The flat-ended spatula achieves
the maximum adhesion strength much more quickly than
the hemispherical configuration.

The critical contact size for saturation of adhesion
strength can be estimated as follows. Assume the actual
contact area is about 50% of the total area available for
contact, corresponding to α ∼= 0.7. The parameters for
the van der Waals interaction and the Young’s modulus
of spatula (keratin) are selected as follows:

σth = 20MPa, ∆γ = 0.01J
/

m2,
∆γ
σth

∼= 0.5nm,

E∗ = 2GPa. (25)
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Figure 6 : Adhesion of a flat-ended cylinder to a rigid substrate. The actual contact area is assumed to be smaller
than the total area of the punch due to imperfections along the outer rim of the punch. This contact model is
elastically equivalent to a cracked cylinder. (a) A bundle of spatulas. (b) The geometry of a flat punch partially
adhering to a substrate. (c) Variations of the apparent adhesion strength for different actual contact areas according
to Griffith criterion and theoretical strength. The JKR prediction of a hemispherical tip is plotted as a dashed
line for comparison. The plot shows that a flat punch induces much larger adhesive forces in comparison with a
hemispherical tip, and that the adhesion strength reaches the theoretical strength of van der Waals interaction at a
critical contact size.

This gives the critical size for adhesive strength satura-
tion as

Rcr
∼= 225 nm. (26)

Interestingly, the radius of gecko’s spatula is typically
around 100-250 nm. The above analysis suggests that
the nanometer size of the spatula structure of gecko may
have been evolved to achieve optimization of adhesive
strength in tolerance of possible contact flaws.

3.2 Adhesion energy of spatula arrays

To relate the adhesion strength of a single spatula to the
adhesion energy of an array of spatulas, consider an array
of hairs in adhesive contact with a substrate, as shown in
Fig. 7. The Young’s modulus and adhesive strength of a
single spatula are E and σc. The adhesion energy of the
spatula array analogous to eq. (15) is

Jc = L
∫

σdε =
Lσ2

cϕ
2E

(27)

where L is the length of spatula and ϕ is the areal density
of contact regions. Thus the adhesion energy of spat-
ula structure is proportional to the square of the adhesive

strength of single spatulas. It is therefore desirable to re-
duce the size of spatula to near the critical size so as to
maximize the adhesive strength and to increase the adhe-
sion energy of an array. It is also helpful to increase the
contact area density ϕ and the length L of spatula. How-
ever, these parameters may be affected by roughness of
substrate as well as the condition that the spatula array
must be stable against self-bunching (Hui et al., 2002;
Gao et al., 2004).

substrate

L

Figure 7 : An illustration of detachment of an array of
hairs in adhesive contact with a substrate. The adhesion
energy of the array can be estimated by calculating en-
ergy absorbed in the layer as individual hairs detach from
the substrate.



Flaw tolerant bulk and surface nanostructures 47

The mechanism of fracture energy dissipation in protein-
mineral biocomposites is very different from that in
the spatula array. In the case of protein-mineral com-
posites, fracture energy is predominantly dissipated
through shear deformation in protein and slipping along
the protein-mineral interface. Optimization of mineral
platelets near theoretical strength is crucial for allowing
a large effective stress to be built up in protein via cross-
link mechanisms such as Ca++ induced sacrificial bonds
in bone. In the case of the spatula structure, the adhe-
sive strength of individual spatulas directly affects the
adhesion energy of the array. It is interesting to observe
that, in both systems, strength optimization is achieved
by restricting the characteristic dimension of the basic
structure components to nanometer scale so that crack-
like flaws do not propagate to break the desired structural
link.

4 Atomistic simulations of the flaw tolerance con-
cept

The concept of nanoscale flaw tolerance (Gao et al.,
2003; Gao and Ji, 2003) indicated that materials become
insensitive to flaws and fail at their theoretical strength
as the characteristic size of a structure approaches a crit-
ical length in the nanometer regime. This concept has so
far been discussed only within the framework of contin-
uum mechanics. Here we conduct atomistic simulations
to confirm the flaw tolerance concept from the atomistic
point of view.

We focus on a mode I crack in a thin strip of material.
If the width of the strip is larger than the critical size for
flaw tolerance, failure is governed by the Griffith condi-
tion. If the width of the strip is below the critical size for
flaw tolerance, failure is no longer governed by the Grif-
fith condition and the solid fails by uniform bond rupture
rather than by crack propagation. For the cracked strip of
width h subject to an applied strain shown in the inset of
Figure 8(a), the energy release rate can be expressed as

G =
σ2h
2E∗ , (28)

where σ is the stress far ahead of the crack tip. Applying
the Griffith condition G = 2γ yields the critical stress for
crack growth

σ f =

√
4γE∗

h
. (29)

Equation (29) predicts that the critical stress for crack
growth increases as the layer width h decreases, ap-
proaching infinity as h goes to zero. This is clearly im-
possible as the stress in the strip can not exceed the theo-
retical strength σth of the material. This yields a critical
layer width

hcr =
4γE∗

σ2
th

(30)

below which fracture is no longer governed by the Grif-
fith condition. Note that this expression has the same
form as equation (2).

4.1 Atomistic modelling

Atomistic modelling of the strip crack problem is con-
ducted by classical molecular dynamics (MD) simula-
tions using a modified ITAP-IMD code (Stadler et al.,
1997; Roth et al., 2000). Consider the geometry depicted
in the inset of Figure 8(a). Atoms in the red region are
displaced according to a prescribed displacement field.
The initial crack extends over half of the slab. The slab
size in the x direction is several times larger than that in
the y direction. We assume an fcc crystal oriented in cu-
bic orientations, with x = [100], y = [010] and z = [001].
The crystal is periodic in the z-direction with crack faces
along (010) planes.

We use an energy minimization scheme to relax the crys-
tal after each increment of loading. An increment of
strain ∆εyy = 0.001 is applied every 3,000 integration
steps. Different loading rates are chosen to assure that
the results approach equilibrium before the next loading
increment is applied. To model a brittle solid, we assume
harmonic interactions in the bulk of the strip,

φ(r) = a0 +
1
2

k0(r− r0)2, (31)

where k0 is the spring constant, a0 a reference constant
and r0 the nearest neighbour distance. Crack propaga-
tion is constrained along a weak fracture layer in the cen-
ter of the strip governed by the 12-6 Lennard-Jones (LJ)
potential

φ(r) = 4ε
((σ

r

)12
−

(σ
r

)6
)

. (32)

In the simulations, we take ε = σ = 1 and r0 = 21/6.
Atoms in the bulk of the strip only interact with their
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nearest neighbours, and interactions across the weak
fracture layer are cut off at a critical distance rcut = 2.5.
This setup is chosen because E can be easily varied inde-
pendent of the other variables in equation (30), allowing
hcr to be tuned in a range easily accessible to the MD
simulations. The simulation result are expressed in re-
duced units: energies are scaled by the depth of the LJ
potential ε and lengths are scaled by σ.

Figure 8 : Atomistic simulations of the flaw tolerance
concept. (a) Strength of a cracked nanostrip. The plot
shows that the critical stress for failure versus the inverse
of the square root of the layer width normalized by the
critical length. The failure stress of the cracked nanos-
trip approaches the theoretical strength as the layer width
decreases. (b) Stress distribution ahead of the crack just
before failure. The thinner the slab, the more homoge-
neous is the stress distribution.

For the analysis of the critical length for flaw tolerance,
exact knowledge of elastic properties and fracture surface

energy is needed. It can be shown that Young’s modulus
is E = 4r2

0k0/3, Poisson’s ratio is ν = 1/3; the surface en-
ergy is γ = NbρA∆φ/2 where Nb is the number of bonds
per atom across the fracture path, ρA is the density of sur-
face atoms and ∆φ is the potential energy stored in each
bond. For the (010) fracture surface, ρA = 1/r2

0 ≈ 0.794,
and Nb = 4. The potential energy difference per bond is
∆φ ≈ 1. The elastic properties and fracture surface en-
ergy are summarized in Table 1.

Table 1 : Elastic properties and surface energy associated
with the atomistic model of a cracked nanostrip.

Spring constant

0k

Young’s

modulus E

Poisson ratio ν  Surface energy 
γ

572 960 0.33 3.1227 

The atomic stress is calculated based on the virial the-
orem (Tsai, 1979; Marc and McMillan, 1985; Zhou,
2003). Recent investigations have shown that the atom-
istic definitions of stress near a moving crack tip show
reasonable agreement with continuum mechanics predic-
tions (Buehler et al., 2003).

4.2 Simulation results

Figure 8(a) plots the critical failure stress normalized by
the theoretical strength, indicating a smooth transition
between crack propagation governed by the Griffith con-
dition for thick layers (

√
hcr/h < 1) to uniform rupture

at theoretical strength for thin layers (
√

hcr/h > 1). This
result is fully consistent with previous analysis based
on continuum mechanics (Gao et al., 2003; Gao and Ji,
2003). Figure 8(b) plots the distribution of normal stress
ahead of the crack just before failure occurs. As the strip
width is decreased, stress concentration at crack tip dis-
appears as the stress distribution becomes more and more
uniform near the crack tip. For thicker layers, significant
stress magnification develops near the crack and failure
occurs by crack propagation.

We have also performed similar calculations when the
entire slab is modelled by the LJ potential. Similar tran-
sition to flaw tolerant behaviour is observed, with critical
length in agreement with the continuum analysis of Gao
and Ji (2003).
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5 Summary

This paper is aimed to provide a unified treatment of flaw
tolerant nanostructures of biological systems. The selec-
tion of nanometer scale is shown to be the key for min-
eral platelets in bone-like biological materials (Gao et
al., 2003) to achieve optimum strength in the presence
of pre-existing cracks, and for the spatula structure of
Gecko to achieve optimum adhesive strength in the pres-
ence of adhesion flaws. At a nanometer critical length
determined by fracture energy, Young’s modulus and the-
oretical strength, the mineral crystals in biocomposites
become insensitive to pre-existing crack-like flaws and
the strength of mineral can be maintained near the the-
oretical strength of the material despite of defects. Fol-
lowing the same principle, the nanometer size of spatula,
the most terminal adhesive structure of gecko, achieves
maximum adhesion strength and become tolerant of po-
tential contact flaws. We have used simple models to esti-
mate the stiffness and fracture energy of biocomposites.
The analysis has helped identify the important parame-
ters responsible for the superior mechanical properties
achieved by biological nanostructures. In the protein-
mineral nanocomposites, large aspect ratios of mineral
platelets are shown to compensate for the low modulus
of protein, allowing the biological materials to achieve
a high stiffness close to that of mineral. The high frac-
ture energy of biocomposites is the combined property
of ultra strong mineral platelets interspersed among pro-
tein molecules which undergo extraordinarily large de-
formation via domain unfolding and interface slipping
under a large effective shear stress. Cross-link mecha-
nisms such as Ca++ induced sacrificial bonds in bone
increase the shear stress in protein and along the protein-
mineral interface, effectively converting the behavior of
entropic elasticity of biopolymers to one that resembles
metal plasticity. Such mechanisms not only build up a
large effective stress in protein but also allow protein de-
formation and interface slipping to occur simultaneously
under similar stress levels, making it possible to engineer
a very long range of deformation under significant stress
in order to maximize energy absorption. Optimization of
mineral platelets near theoretical strength allows a large
effective stress to be built up in protein via cross-link
mechanisms. In this way, the mineral platelets provide
the required stiffness for mechanical support of biologi-
cal systems and protein plays the role of absorbing and
dissipating large quantities of fracture energy.

It is interesting to note that the protein-mineral struc-
ture of biocomposites is consistent with the ancient Chi-
nese philosophy that combination of “Ying” and “Yang”,
things of complementary nature or properties, results in
perfection and harmony in nature. In biological mate-
rials, one may identify many complementary properties
such as: (1) stiff versus soft, (2) hard versus gentile, (3)
brittle versus ductile, (4) strong versus weak, (5) long
versus short, (6) tension versus shear, (7) dissipative ver-
sus non-dissipative, etc. In biological materials, the min-
eral platelets act as the “yang” phase which possesses the
“yang” characters like stiff, hard, brittle, non-dissipative,
non-yielding, and provides the stiffness of the structure.
In contrast, the protein acts as the “ying” phase which
possesses the “ying” characters such soft, gentile, duc-
tile, dissipative, flexible and plays the main role of dis-
sipating fracture energy and achieving a high fracture
toughness. It is most interesting to note that the nanome-
ter scale plays the key role in the property optimization
of mineral-protein structure.

We have used continuum (Gao et al., 2003; Gao and Ji,
2003) and atomistic simulations to investigate the con-
cept of nanoscale flaw tolerance. The atomistic sim-
ulations complement continuum analysis and reveal a
smooth transition between Griffith mode of failure via
crack propagation to uniform bond rupture at theoretical
strength below a nanometer critical length, as shown in
Figure 8(a). Below the critical length for flaw tolerance,
the stress distribution becomes uniform near the crack
tip, as shown in Figure 8(b). The atomistic simulations
thus fully support the conjecture of Gao et al. (2003)
that materials become insensitive to flaws below a criti-
cal nanometer length scale.

6 Future perspectives

Understanding engineering principles of biological sys-
tems can play an important role in helping address some
of the major challenges in materials science and engi-
neering in the 21st century. The development of nan-
otechnology will eventually open up enormous possibil-
ities in developing multi-functional and hierarchical ma-
terials systems. What we have discussed in this paper re-
garding the bulk and surface nanostructures of biological
systems is only a small step in this grand endeavour. In
some cases, such as those discussed in this paper, conver-
gent evolutions occur when genetically unrelated biolog-
ical systems have adopted the same strategies to achieve



50 Copyright c© 2004 Tech Science Press MCB, vol.1, no.1, pp.37-52, 2004

the same objectives or properties or functions. In other
cases, genes associated with a given set of properties or
functions of the same biological system may be found
to be strongly conserved over the history of evolution.
Whenever convergent evolutions occur, we may look for
hints on property optimization. We have discussed in this
paper strength, stiffness, toughness and adhesion in con-
nections with the principle of nanoscale flaw tolerance.
Similar investigations may be conducted with respect to
other properties including friction, fatigue, corrosion and
hydrophobicity. There is still a long way to go before the
complexities and basic principles of hierarchical struc-
tures of biological systems and their associated functions
are fully understood.

The investigation reported in this paper underlines the
importance of a coherent study of mechanics and chem-
istry of biological systems. Nature does not distinguish
between material and structure. Through the examples
of biological nanostructures, we wish to emphasize that
mechanics (structure) and chemistry (material) are used
with equal importance to achieve optimized materials
properties.
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