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ABSTRACT: This study explores a novel method for processing cotton stalks—an abundant agricultural byproduct—
into long strips that serve as sustainable raw material for engineered bio-based panels. To evaluate the effect of raw
material morphology on panel’s performance, two types of cotton stalk-based panels were developed: one using long
strips, maintaining fiber continuity, and the other using ground particles, representing conventional processing. A
wood strand-based panel made from commercial southern yellow pine strands served as the control. All panels were
bonded using phenol-formaldehyde resin and hot-pressed to a target thickness of 12.7 mm and density of 640 kg/m3.
Their mechanical and physical properties were evaluated through internal bond, bending, thickness swelling, and water
absorption tests. Both cotton stalk-based panels showed improved bonding performance compared to the control.
The internal bond of the strip-based panel was nearly four times higher than that of the control, while the particle-
based panel exceeded it by a factor of two. The strip-based panel showed approximately 15% lower bending stiffness
than the wood strand-based panel, yet it surpassed it in load-carrying capacity by 5%. In contrast, the particleboard
showed significantly lower bending performance than the strip-based and control panels, despite particle processing
being a more conventional method. Both cotton stalk-based panels exhibited higher water absorption and thickness
swelling than the wood strand panel. Overall, cotton stalk-based panels—particularly those using strip processing—
show promising mechanical properties, suggesting potential applications in sheathing, furniture, and interior paneling.
However, improvements in dimensional stability are needed for broader use.

KEYWORDS: Crop residues; bio-based materials; cotton stalk; experimental testing; bending performance; internal
bond; water absorption

1 Introduction
The global population is projected to reach 9.6 billion by 2050, leading to increased food demand

and the expansion of agricultural activities worldwide [1]. Agriculture remains the world’s largest industry,
employing over one billion people and generating more than USD 1.3 trillion in annual economic output [2].
It occupies approximately 38% of the earth’s land surface and serves as a vital foundation for both food and
fiber production [3]. While the majority of agricultural land is dedicated to growing food crops, a significant
portion supports the cultivation of fiber crops, essential to the global textile and manufacturing sectors.
Among these, cotton stands out as the most widely grown natural fiber crop, contributing over 80% of natural
fiber production by weight [4]. Its distinctive fiber structure makes it highly valuable across industries,
including fashion, textiles, and healthcare [5]. Recent estimates suggest that more than 25 million tons of
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cotton are produced annually worldwide, with India, China, the United States, Pakistan, and Brazil being the
leading producers [6,7]. The global cotton market was valued at USD 41.78 billion in 2024 and is anticipated
to reach 53.29 billion by 2033 [8]. In the United States alone, cotton is cultivated on over 10 million acres
annually, making it one of the nation’s most significant agricultural exports [9].

Cotton cultivation generates a significant amount of agricultural residue in the form of stalks after
harvesting. With a typical straw-to-fiber ratio of approximately 5:1 [10], an estimated 2–3 t of cotton stalk
residue are produced per hectare [11]. A large portion of these stalks is either openly burned in the field to
clear land or discarded in landfills. Open burning releases toxic gases—such as carbon monoxide, carbon
dioxide, nitrogen oxides, hydrocarbons, and fine particulate matter—that harm air quality and public
health [12]. Consequently, several countries have implemented bans on open field burning to mitigate
these risks [13–15]. Alternative disposal methods, such as burying, also present challenges. The fibrous,
lignocellulosic nature of cotton stalks makes them resistant to decomposition, and they are known carriers
of agricultural pests like Pectinophora gossypiella (pink bollworm), further complicating safe disposal [16].
These environmental, agricultural, and logistical concerns underscore the need for sustainable utilization
strategies. One promising solution involves repurposing cotton stalks into long-lived engineered bio-based
products. Unlike short-lived uses, such as composting or fuel, where carbon is rapidly released, structural
applications like particleboard can retain carbon for extended periods. This contributes to climate change
mitigation goals and provides a renewable, underutilized lignocellulosic feedstock for regions with limited
forest resources.

Engineered wood-based panels such as particleboard and oriented strand board (OSB) are widely used
in construction, furniture, cabinetry, and interior paneling. With the increasing popularity of engineered
wood products, recent researchers have adopted innovative strategies to enhance structural performance and
promote efficient material utilization. These strategies include densification techniques [17], the development
of novel products using corrugated panels [18], and the use of underutilized hardwood species [19].
Concurrently, increasing efforts have focused on converting agricultural residues into value-added products.
Researchers have investigated a variety of agro-wastes in the development of particleboards and engi-
neered bio-based products, such as rice straw [20–22], rice husk [23–25], wheat straw [25,26], sugarcane
bagasse [27], hemp [28,29], bamboo [30], and grass [31,32]. These alternative materials help reduce reliance
on timber while mitigating the environmental impact of residue disposal. Among these options, cotton
stalk offers a particularly strong potential for producing sustainable, high-performance panels due to their
abundance and woody texture, which provides fibrous structure similar to that of hardwoods [33,34].

Several studies have demonstrated the potential of cotton stalks in particleboard applications. Guler
and Ozen reported the viability of particleboards made from debarked cotton stalks as an alternative raw
material [33]. Alma et al. fabricated boards using cotton carpels bonded with urea formaldehyde (UF) and
melamine urea formaldehyde (MUF) resins, achieving performance comparable to that of general grade par-
ticleboards [35]. Kadja et al. used bone resin in cotton stems panels, reporting that the mechanical properties
met American National Standards Institute (ANSI) requirements [36]. Other researchers improved board
strength by blending cotton stalks with wood fibers at optimal ratios [37]. Nazerian et al. analyzed the effects
of press temperature and panel density on boards made from debarked stalks [38]. Further enhancements
were achieved by Yasar & İçel through NaOH treatment of cotton particles [39], while Scatolino et al.
evaluated hybrid panels combining cotton waste with eucalyptus wood [40]. Nguyen evaluated the effects of
particle opening sizes and the amount of cotton boll residue on the mechanical and physical properties of
boards fabricated from whole cotton stalks [41].

Unlike particleboard fabrication, Chen et al. [42] developed panels using entire cotton stalks (approxi-
mately 450 mm in length) combined with a konjac glucomannan–chitosan adhesive [42]. However, instead
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of utilizing whole stalks, processing the stalks into thin, elongated strips offers several advantages. First,
since panel density is a critical factor influencing the mechanical performance of bio-based products, finer
strips enable a more uniform density distribution both along the panel surface and through its thickness
compared to thick, unprocessed stalks. Second, thin strips facilitate more effective mechanical interlocking
between elements, enhancing stress transfer across the panel and improving load-carrying capacity. Third,
the processing procedure splits and opens the stalk, exposing the foamy hurd core—an anatomically weak,
highly porous region—to adhesive penetration, thereby improving bonding and contributing to higher
internal bond strength. Similar processing concepts have been successfully applied in bamboo and wood
scrimber production, where breaking down raw materials into elongated elements has been shown to
enhance strength, stiffness, and overall performance [43,44]. The potential benefits of processing cotton
stalks into thin, long strips have not been examined.

In this study, a novel strip-processing method was introduced for cotton stalks to produce long,
continuous elements aimed at improving stress transfer and maintaining more uniform properties in
structural panels. For comparison, particleboards were also fabricated using conventional grinding, which
is the most common method for processing cotton stalks. This enabled the evaluation of the effectiveness of
this strip-processing method compared to traditional particle processing. In addition, oriented strand board
(OSB), a widely used commercial product with a well-established market, was included as a benchmark.
Overall, the study aims to develop and evaluate structural panels that can be potentially used in sheathing,
furniture, cabinetry, and internal paneling, made from cotton stalks in both strip and particle forms, with
performance benchmarks established using a wood strand board as a control.

2 Materials and Methods

2.1 Materials and Sample Preparation
2.1.1 Raw Materials

The cotton stalks harvested from the cotton farm at Mississippi State University, MS, USA, were selected
as the primary raw material for this study. The initial processing involved removing cotton bolls and branches
from the stalks, as illustrated in Fig. 1. The stalks were cut into small pieces approximately 150 mm in length,
similar to commercial wood strands. These pieces were soaked in water for 24 h to soften the fibers and
facilitate their processing into strips.

Figure 1: (a) Collecting cotton stalks from a farm; (b) cotton stalks with bolls and branches; (c) stalks after removing
bolls and fine branches
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After soaking, the bark was manually removed as shown in Fig. 2b. To enhance both the interlocking
effect and bonding performance, it is essential to process the cotton stalks into finer pieces, using a method
similar to the scrimming process employed for small-diameter logs [44,45] and bamboo [43,46]. Therefore,
a manual noodle maker was used to process the softened stalks into strips, as shown in Fig. 2c. This process
not only increases the surface area available for resin application, improving bonding performance, but also
facilitates more uniform compaction during hot pressing. The use of these strips rather than stalks enables
better mat consolidation and a more uniform density distribution. The Fig. 2d shows the long, slender cotton
stalk strips produced using the noodle maker, prepared and ready for panel fabrication.

Figure 2: Processing steps: (a) wet cotton stalks; (b) bark removal; (c) converting stalks into strips using a manual
noodle maker; (d) cotton stalk strips prepared for panel fabrication

For particleboard analogs, cotton stalks were processed using a laboratory-scale hammer mill, as shown
in Fig. 3a, to produce fine particles. The final processed particles are shown in Fig. 3b. For comparative
analysis, commercial Southern yellow pine strands supplied by West Fraser Company in Guntown, MS, USA,
were used to fabricate control panels as shown in Fig. 3c. All bio-based materials, including cotton stalk
strips, cotton stalk particles, and wood strands, were oven-dried to a moisture content of 3%–5%.

Figure 3: Preparation of cotton stalk particles for particleboard analogs: (a) hammer milling of cotton stalk;
(b) cotton stalk particles after processing; (c) wood strands

2.1.2 Panel Fabrication
Phenol-formaldehyde (PF) resin was used as a binder and was applied at a target resin content of 5%

(based on oven-dry weight). The resin was sprayed evenly onto the bio-based materials inside a rotating drum
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blender to ensure uniform coating. Separate batches were prepared for the three board types: cotton stalk
strip board (CSB), cotton stalk particle board (CPB), and wood strand board (WSB), which served as the
control. Resin-coated materials were manually formed into mats, known as preform, using a forming box to
ensure uniform thickness. Cotton stalk strips and wood strands were manually aligned in parallel orientation
using a mechanical orienter. Each mat was hot-pressed at 160○C for 5 min to achieve a target thickness of
12.7 mm and a target density of 640 kg/m3. After pressing and conditioning, the fabricated panels were
trimmed, and test specimens were cut for various evaluations, including internal bond, bending, water
absorption, and thickness swelling. The average dimensions of these test specimens are summarized
in Table 1.

Table 1: Average dimensions of test specimens, prepared according to ASTM D 1037

Board type Experimental
test

No. of
specimens

Average
length
(mm)

Average
width
(mm)

Average
thickness

(mm)

Average
weight
(gm)

Average
density
(kg/m3)

Cotton stalk particle
Bending 8 381.00 76.62 13.31 252.08 648.63

Internal bond 8 51.27 51.12 13.46 22.68 642.98
WA and TS 8 152.22 152.37 13.22 192.96 629.22

Average 640.28

Cotton stalk strip
Bending 8 381.40 76.28 13.55 259.40 658.10

Internal bond 8 51.13 51.20 13.75 22.15 615.37
WA and TS 8 152.37 152.37 13.30 200.53 649.20

Average 640.89

Wood strand (Control)
Bending 12 381.00 76.96 13.31 264.90 678.65

Internal bond 12 51.19 51.02 13.05 24.34 714.24
WA and TS 12 152.90 152.90 13.37 209.80 671.42

Average 688.11

2.2 Experimental Testing
The mechanical and physical properties of the fabricated panels were evaluated through a series of

standardized tests following American Society for Testing and Materials (ASTM D1037) [47] to assess
their structural viability. To evaluate the feasibility of this process, three key performance parameters were
investigated at this phase: internal bond strength, bending performance (modulus of rupture and modulus of
elasticity), and dimensional stability through water absorption and thickness swelling. It is important to note
that the authors plan to conduct additional tests in future studies, including tensile, compression, hardness,
and nail withdrawal tests. Internal bond test measures the tensile strength along the thickness of the panel,
indicating the effectiveness of adhesive bonding between biobased fibers. Each specimen was centrally glued
to two aluminium blocks and loaded in tension, as shown in Fig. 4a, using a universal testing machine at a
loading rate of 1 mm/min until failure. The maximum load was recorded and used to calculate the IB strength
using Eq. (1).

IB = Pmax

bd
(1)

where, Pmax = Concentrated applied load on the sample.
b, and d = length and width of the sample.
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Figure 4: Experimental testing setup: (a) internal bond test; (b) bending test; (c) water absorption and thickness
swelling test

Bending performance was evaluated using a three-point bending test, as shown in Fig. 4b. Specimens
were simply supported with a clear span of 304.8 mm and loaded at the mid-span using a central point load.
The load was applied at a rate of 6 mm/min until failure. The load-deflection behaviour was recorded using
a displacement transducer. The slope of the load-deflection curve was used to calculate the bending stiffness
using Eq. (2), and the maximum load before failure was used to determine the maximum normal stress,
known as the modulus of rupture (MOR), using Eq. (3).

EI = PL3

48Δ
=

mL3

48
(2)

MOR = 3PL
2bd2 (3)

where, E =Modulus of elasticity
I = Second moment of area (moment of inertia) of the specimen’s cross-section
P = Bending load applied at mid-span
Δ = Specimen deflection at mid-span
L = Span length
m = P/Δ is the slope of the load-deflection curve in the elastic region
b = Specimen width
d = Specimen depth.
Water absorption and thickness swelling were measured to evaluate the dimensional stability of

the panels. This test followed the 24-h soak procedure outlined in ASTM D1037, as shown in Fig. 4c.
Specimens were weighed, and their thickness was measured before being immersed in distilled water at
room temperature. After 2 and 24 h, samples were removed, wiped to remove excess water, reweighed, and
remeasured. Water absorption was determined as the percentage increase in weight, and thickness swelling
as the percentage increase in thickness.
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3 Results and Discussions

3.1 Mechanical Property
This section presents experimental results for the mechanical properties, specifically internal bond

(IB), bending strength, water absorption, and thickness swelling of three panel types: cotton stalk strip
board (CSB), fabricated using cotton stalk strips; cotton stalk particle board (CPB), fabricated from cotton
stalk particles; and wood strand board (WSB), fabricated from commercial wood strands. The mechanical
performance of each panel type was evaluated to assess the viability of cotton stalk-based panels compared
to those made from wood strands. All reported values represent the average across replicate specimens, with
standard deviations calculated to capture variability.

Internal bond strength, which represents the tensile strength perpendicular to the panel surface, reflects
the effectiveness of bonding between fibers. Fig. 5 presents the IB values for CSB, CPB, and WSB panels.
Among the three, CSB panels exhibited the highest IB strength, followed by CPB panels. The WSB panels
showed the lowest IB strength among the three, despite all panels being manufactured using the same resin
type (phenol-formaldehyde), resin content (5%), and processing conditions. The relatively low performance
of WSB panels may be attributed to limitations in the resin curing process within the panel cores. Unlike
industrially manufactured oriented strand board (OSB) panels which typically uses polymeric methylene
diphenyl diisocyanate (pMDI) in the core due to its lower curing temperature and faster reactivity [48],
the control panel in this study was fabricated entirely with phenol-formaldehyde (PF) adhesive to ensure
consistent comparison. PF resin requires higher temperatures and longer press times to cure fully [49], which
may have led to precuring and incomplete bonding in the panel core. This likely reduced the IB strength of
the WSB compared to both the cotton-based panels and standard commercial OSB products. In contrast,
both CSB and CPB demonstrated significantly higher IB values than WSB. This enhanced performance may
be due to improved compatibility between cotton fibers and PF resin. While further studies are needed,
the results suggest that PF may form more effective bonds with cotton-based materials under the same
processing conditions.

Figure 5: Internal bond strength of different panel types

Between the two cotton stalk-based panels, the CSB panel exhibited the highest IB strength, nearly four
times greater than that of WSB and twice that of CPB. This difference is attributed to differences in resin
distribution. The CSB panels were composed of thicker, chunkier cotton stalk strips, with a smaller surface
area per unit volume. Given the same resin content, this resulted in more adhesive being available per unit
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surface area, leading to stronger internal bonds. In contrast, the CPB panels consisted of finer particles with
a higher surface area, leading to a thinner resin distribution and consequently lower bond strength.

To statistically validate the performance differences, a one-way ANOVA was conducted as shown in
Table 2. The results produced a highly significant F-value of 50.91 (p < 0.0001), confirming that the mean
IB strength values across the three panel types differed significantly at the 95% confidence level. Moreover,
the CSB group showed a larger standard deviation than the other two groups, indicating greater variability,
most likely due to inconsistencies in the manual processing of cotton stalks into strips. Overall, the findings
indicate that cotton stalk fibers, whether in strip or particle form, exhibit better bonding performance with
PF resin than wood fibers at the equivalent resin content.

Table 2: ANOVA summary for internal bond for different panel types

Descriptive statistics

N analysis N missing Mean Standard deviation SE of mean
CPB 12 0 0.27 0.02 0.01
CSB 12 0 0.50 0.15 0.04
WSB 12 0 0.13 0.06 0.02

Overall ANOVA

DF Sum of squares Mean square F value Prob > F

Model 2 0.86 0.43 50.91 <0.0001
Error 33 0.28 0.01
Total 35 1.13

Note: Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or
more levels are different. At the 0.05 level, the population means are significantly different.

Compared to similar studies, the CSB in the present work, manufactured from cotton stalk strips,
outperformed the oriented cotton stalk boards, fabricated from whole cotton stalks, reported by Chen et al.,
who achieved an IB value of only 0.35 MPa at a density of 0.6 g/cm3 using a konjac glucomannan–chitosan
adhesive with 10% resin content and unprocessed whole cotton stalks [42]. This comparison underscores
the importance of processing cotton stalks into strips, which substantially enhances bonding performance.
Guler and Ozen reported IB values ranging from 0.29 to 0.40 MPa, depending on resin content, for cotton
stalk particle boards, which are lower than our CSB results and comparable to those of CPB panels [33].

The results of the three-point bending tests, evaluating bending stiffness and maximum normal stress
for the three panel types are presented in Fig. 6. Among them, cotton stalk particle board (CPB) exhibited
the lowest bending stiffness, followed by cotton stalk strip board (CSB), while wood strand board (WSB)
showed the highest bending stiffness (Fig. 6a). The reduced stiffness of the CPB is primarily due to its short
fiber length, which limits effective load transfer under flexural stress. In contrast, CSB panels, fabricated
using longer, aligned cotton stalk strips, demonstrated a 3.2-fold improvement in bending stiffness relative to
CPB. This highlights the importance of fiber length and alignment in enhancing flexural rigidity. Although
the cotton stalk strips were comparable in length to the wood strands, CSB still exhibited about 15% lower
bending stiffness than WSB. Since the moment of inertia (I) was constant across all panel types owing to
their identical dimensions, this difference can be attributed primarily to the modulus of elasticity (E) of
the constituent materials. This indicates that cotton stalk strips likely possess a lower modulus of elasticity
compared to wood strands, thereby reducing the overall stiffness of CSB panels. To verify this hypothesis,
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future work should include direct testing of individual elements, such as cotton stalk strips and wood strands,
to better quantify their intrinsic elastic properties and clarify their contributions to panel performance.
Additionally, a one-way ANOVA analysis of bending stiffness (Table 3), produced a highly significant F-value
of 240.16 (p < 0.0001), confirming that the mean bending stiffness values among the three panel types differ
statistically at the 95% confidence level.

Figure 6: Bending results of different panel types: (a) bending stiffness (EI); (b) maximum normal stress

Table 3: ANOVA summary for bending stiffness of different panel types

Descriptive statistics

N analysis N missing Mean Standard deviation SE of mean
CPB 8 0 15.91 1.21 0.43
CSB 8 0 50.49 3.72 1.32
WSB 8 0 59.66 6.15 2.18

Overall ANOVA

DF Sum of squares Mean square F value Prob > F

Model 2 8518.34 4259.17 240.16 <0.0001
Error 21 372.43 17.73
Total 23 8890.78

Note: Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or
more levels are different. At the 0.05 level, the population means are significantly different.

In terms of failure mode, both CPB and CSB panels exhibited typical bending failure, marked by tension-
induced rupture at the outer fiber. In contrast, the WSB panel failed in shear (Fig. 7), indicating weak bonding
in the core region, consistent with its lower internal bond (IB) strength. Unlike commercial OSB panels that
often incorporate pMDI in the inner layers to improve curing and bond quality, the uniform use of PF resin
in this study likely led to incomplete curing in the core. Because CPB and CSB experienced bending-type
failure, the maximum normal stress at the outermost fiber can be considered as their Modulus of Rupture
(MOR). In contrast, for WSB, shear failure means that the measured maximum normal stress does not reflect
its true MOR; the actual value is expected to be higher.
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Figure 7: Failure mode of three different panels: (a) wood strand board (WSB); (b) cotton stalk strip board (CSB);
(c) cotton stalk particle board (CPB)

As shown in Fig. 6b, CSB panels achieved the highest MOR, outperforming WSB by approximately 5%.
This enhanced performance is likely due to stronger bonding between the PF resin and cotton stalk strips,
particularly within the core, resulting in more effective stress transfer under flexural loading. In comparison,
WSB’s weaker core bonding limited its load-carrying capacity. CPB panels made with short cotton fibers,
demonstrated the lowest MOR, nearly 3.6 times lower than that of CSB, underscoring the significance of
fiber length and continuity in resisting flexural stresses. Given their limited bending capacity, CPB panels are
better suited for non-load-bearing applications such as insulation boards, sound-absorbing panels, cabinetry,
furniture, or as core materials in sandwich panels for interior building use. As shown in Table 4, the one-
way ANOVA performed on maximum normal stress revealed a statistically significant F-value of 106.10,
confirming that the mean values among the three panel types differ significantly at the 95% confidence level.

Table 4: ANOVA summary for maximum normal stress of different panel types

Descriptive statistics

N analysis N missing Mean Standard deviation SE of mean
CPB 8 0 8.19 0.73 0.26
CSB 8 0 30.03 3.56 1.26
WSB 8 0 28.61 4.54 1.60

Overall ANOVA

DF Sum of squares Mean square F value Prob > F

Model 2 2388.97 1194.48 106.10 <0.0001
Error 21 236.42 11.26
Total 23 2625.38

Note: Null Hypothesis: The means of all levels are equal. Alternative Hypothesis: The means of one or
more levels are different. At the 0.05 level, the population means are significantly different.
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When comparing the bending results with the literature, the results obtained for CPB were found to
be slightly lower. Guler and Ozen reported that the maximum normal stress for a particleboard made with
cotton stalks and a density of 0.6 g/cm3 ranged from 10 to 12 MPa, depending on the different resin ratios [33].
Similarly, Kadja et al. reported 11 MPa for the same, which were pressed for 25 min [36].

3.2 Dimensional Stability
Dimensional stability of these bio-based panels was evaluated by immersing them in water and

measuring the water absorption (WA) and thickness swelling (TS). These properties indicate the panel’s
resistance to moisture-induced deformation, which is essential for durability in practical applications. WA
and TS results for all three panel types after 2 and 24 h of water immersion are presented in Fig. 8. The WSB
panels exhibited the lowest water absorption at both intervals, followed by CSB and then CPB (Fig. 8a). The
higher water absorption observed in the cotton-based panels is attributable to the anatomical structure of
the cotton stalk. As shown in Fig. 9, the hurd, characterized by its foamy and porous texture, is particularly
susceptible to moisture uptake, resulting in elevated overall water absorption in both CSB and CPB panels
compared to the wood strands used in WSB. Between the two-cotton stalk-based panels, CPB showed 25%
and 11% higher water absorption than CSB after 2 and 24 h, respectively. This difference is primarily attributed
to the finer particle size and greater surface area of CPB, which facilitate greater moisture intake. Additionally,
the lower internal bond strength of CPB compared to CSB may have contributed to weaker adhesive bonding,
thereby further enhancing its susceptibility to moisture penetration. For particleboards made with cotton
stalk bonded with bone adhesive at comparable density and resin content, Kadja et al. reported even higher
WA values of approximately 155% (2 h) and 211% (24 h), indicating that the present CSB and CPB panels
performed moderately better [36].

Figure 8: Dimensional stability test on three different panels: (a) water absorption; (b) thickness swelling

Consistent with the water absorption trends, wood strand board (WSB), fabricated with wood strands
exhibited the lowest TS values, reflecting superior dimensional stability as shown in Fig. 8b. However,
despite having lower water absorption than the cotton stalk particle board (CPB), the cotton stalk strip
board (CSB) displayed the highest TS, 20% and 23% greater than CPB after 2 and 24 h of immersion,
respectively. While a parallel relationship between water absorption and thickness swelling was expected, this
unexpected divergence suggests that additional mechanisms may be involved. The CSB was manufactured
using thicker elements (cotton stalk strips) compared to the particles used in CPB, resulting in a higher degree
of compression during hot pressing. Specifically, the preform thickness for CSB was approximately 165 mm,
nearly double that of CPB at 89 mm, while the WSB preform was about 120 mm. This likely created greater
compaction ratio, which were released as “spring-back” upon water immersion. This finding underscores the
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importance of optimizing strip geometry, such as producing thinner strips, to help mitigate swelling. Fig. 10
provides a visual comparison of panel samples made from these natural fibers, highlighting the variation
in thickness swelling after the water absorption test. The thickness swelling for layered cotton particleboard
with Ureal Formaldehyde resin studied by Guler and Ozen was lower reporting 26% for 2 h and 35% for
24 h than those recorded for CPB in the present study [33].

Figure 9: Anatomical structure of cotton stalk showing hurd (center), fiber bundles (middle), and bark (outer layer)

Figure 10: Visual representation of thickness swelling comparison for three different panels after water absorption test.
The panels, from left to right, are: (1) wood strand board (WSB), (2) cotton stalk particle board (CPB), and (3) cotton
stalk strip board (CSB)

These results suggest that both CSB and CPB panels are more suitable for applications in dry or
controlled-moisture environments, as they exhibit increased susceptibility to moisture-induced dimensional
changes. To enhance the moisture resistance of cotton-based panels, future research could explore surface
treatments or additives such as paraffin or wax. Previous studies have shown that wax significantly reduced
24-h water absorption and thickness swelling in hydrophobic cotton-based panels compared to untreated
controls, offering a promising approach for improving dimensional stability [50]. Additionally, exploring the
use of alternative adhesives such as polymeric methylene diphenyl diisocyanate (pMDI) may further reduce
water absorption and thickness swelling, presenting another viable strategy for enhancing performance in
humid conditions.

4 Conclusions
This study evaluated the structural performance and dimensional stability of panels fabricated from

cotton stalk strips, processed using a manual noodle maker. For comparison, panels were also made from
cotton stalk particles, representing the most common processing method and wood strand-based panels.
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The results highlighted that panels fabricated with cotton stalk strips demonstrated structural performance
comparable to wood strand-based panels and significantly superior to a cotton stalk particle board. The
following key points were identified:

1. Both cotton stalk-based panels exhibited greater internal bond (IB) strength than wood strand board
(WSB). The cotton stalk strip board (CSB) achieved the highest IB value, nearly four times that of
WSB, primarily due to enhance interaction between PF adhesive and the cotton stalk strips. CPB also
outperformed WSB, showing approximately double the IB strength.

2. The maximum normal stress of CSB exceeded that of WSB by 5%. CSB also exhibited bending stiffness
comparable to WSB, with only a 15% reduction, highlighting strong potential for cotton stalk strips in
flexural applications.

3. Both CSB and CPB absorbed more water than WSB, mainly due to the cotton stalk’s porous, pith-
like interior. CPB showed the highest water absorption, while CSB had the greatest thickness swelling,
suggesting different responses to moisture between the two cotton-based panels.

4. The parallel alignment of long cotton stalk strips significantly enhanced mechanical performance
compared to particle-based panels, highlighting the importance of the processing method.

Our findings demonstrate not only the manufacturing feasibility of cotton stalk strip panels but
also their high structural performance. Since their production involves both scrimber and hot-pressing
techniques, the product has strong potential for scale-up. Hot-pressing is a well-established method for
producing a variety of wood-based products, including medium-density fiberboard (MDF), OSB, and
plywood. The scrimber technique, on the other hand, is widely applied in the manufacture of high-strength
wood and bamboo scrimber products. However, given that cotton stalk seis a seasonal agricultural residue,
comprehensive techno-economic assessments are required to evaluate production costs, raw material
availability, supply chain logistics, and market competitiveness.

Overall, these findings support the potential use of waste cotton stalks, especially in strip form, as a
sustainable raw material for structural biobased panels. While the mechanical properties of CSB panels
are promising, further improvements in dimensional stability are needed. Future research should focus on
enhancing dimensional stability by using hydrophobic additives, such as wax or paraffin, and alternative
adhesives, like polymeric methylene diphenyl diisocyanate (pMDI). Additional studies are also required
to assess toughness, impact resistance, and long-term durability under service conditions, including creep
resistance, fatigue behavior, and cyclic exposure to moisture and temperature, to ensure reliable performance
in structural applications.
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