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ABSTRACT

Due to the expected rise in the world population, an increase in the requirements for quality and safety of food
and feed is expected, which leads to the growing demand for new sources of sustainable and renewable protein.
Insect protein is gaining importance as a renewable material for several reasons, reflecting its potential contribu-
tions to sustainability, resource efficiency, and environmental conservation. Some insect species are known to be
able to efficiently convert organic waste into high-value products such as protein, requiring less land and water
compared to traditional livestock. In addition, insect farming produces fewer greenhouse gas emissions, contri-
buting to mitigating climate change. Insects are considered as a major potential alternative to animal or plant
protein due to their many nutritional benefits, including high protein, mineral, and vitamin contents. On average,
the protein content of insects ranges between 35% and 60% dry weight, which exceeds plant protein sources, such
as cereal, soybeans, and lentils. As the acceptance of insect protein grows and technologies advance, the food and
feed industries continue to explore and expand their applications, offering consumers diverse and sustainable pro-
tein choices. In this review, we discuss the recent findings relating to insect protein focusing on its characteristics,
extraction methods, applications, and opportunities along with some trade-offs and uncertainties.
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1 Introduction

As the world population continues to grow, coupled with escalating environmental pollution concerns,
there is a rising need for eco-friendly and renewable protein sources. The ongoing struggle for land allocation
between food crops and animal feed has persisted for some time. Nearly 50% of available arable land is
already committed to feeding the global population, with a third of this land designated for livestock feed
production [1]. It was estimated that livestock farming accounts for up to 19.6% of total anthropogenic
greenhouse gas emissions [2], particularly, methane, contributing to global warming 28 times greater than
carbon dioxide [3]. Meeting the future demand for animal feed and feed ingredients requires innovation
towards more sustainable animal diets (Fig. 1). A wide range of novel protein sources including
microalgae, macroalgae, and insects can be utilized for feeds.

Insect rearing is a circular-economy process, resulting in waste being converted to an organic fertilizer
[4,5], while insects serve as sources of value-added products [6,7]. In addition to environmental and
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socio-economic benefits, insects outperform animals such as poultry or cattle. They can be raised on smaller
land areas, leading to a higher yield per hectare compared to conventional crops like soybeans, and emit
fewer greenhouse gases and less ammonia per kilogram of meat produced in comparison to pigs and
cattle [8]. Moreover, analysts estimate that alternative protein sources will account for 33% of global
protein consumption by 2054, 11% of which will be insects [9].

In various regions across the globe, insects are already being employed in animal feed for aquaculture
and poultry. For instance, many fish species feed on insects; therefore, their use in aquaculture comes
naturally. Significant advantages have been linked to incorporating insects into animal nutrition. Insects
can be cultivated using low-value agricultural by-products or organic waste from the food industry,
resulting in high-quality protein that rivals fish and soybean meals in nutritional value [10]. Insects also
serve as a rich source of amino acids, fatty acids, and micronutrients [11–13].

In addition to feed protein, insects represent a promising alternative protein source for the world’s
growing population. Entomophagy, or human consumption of insects, has already been practiced in many
parts of the world, especially in tropical regions. Multiple investigations have illustrated the various
functional characteristics of insect proteins in food, including their capacity to create foam, serve as
emulsifiers, and contribute to gel formation [14]. It was shown that insect proteins can either be used as
food supplements to increase the nutritional quality of food products or as meat and dairy alternatives [15].

Another application of insect protein aims to replace traditional non-biodegradable and non-renewable
petroleum sources with renewable and green alternatives, for example, in the production of bioplastics
[16,17]. It is known that edible packaging can be prepared using biopolymers, such as carbohydrates,
lipids, and proteins, which can be extracted from insects [18,19].

In this article, we review recent work on the use of industrially reared insects as a novel source of
renewable protein considering the nutritional composition of insects, methods of insect protein extraction,
and its future applications as well as prospects, opportunities, and potential challenges.

2 Insects: Characteristics and Nutritional Composition

Insects are the dominant life forms on the planet whose biomass exceeds the biomass of all invertebrates.
Today insect farming is becoming increasingly popular due to the ability of insects to convert organic wastes
into useful resources [20]. The nutritional composition of each insect varies depending on the species
(Table 1). Some of the variables that could affect the nutritional content of insects include developmental
stage, rearing techniques, diets, killing methods, and drying techniques. In addition, insect meal can be a
source of high-value bioactive compounds such as peptides with immunostimulatory and anti-microbial
effects and biopolymers (chitin, melanin) with potential effects on intestinal health and the immune
system [6,21].
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Figure 1: Market forecast of animal feed market (in USD billion) according to research and markets (2023)
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Due to the increased application of Black Soldier Fly (Hermetia illucens or BSF) larvae in organic waste
utilisation (Fig. 2), BSF is becoming the focus of emerging research fronts [22]. The main benefit of H.
illucens as well as other flies is its use as a tool for waste upcycling, while other insects are reared for
feed application only. Furthermore, BSF is more advantageous than other insect species such as
mealworms and crickets due to the higher feed conversion rate, short reproductive cycle, and high
content of fat, protein, minerals, and vitamins [23,24]. Its survival rate and nitrogen and phosphorus
composition are not significantly affected by a change in diet [25].

. Proteins

Insect bodies are rich in protein–as a rule, the crude protein content of insect meals is high ranging from
42% to 63%, and is similar to soy meal [29]. Proteins’ suitability as animal feed relies on their amino acid
composition. The high content of essential amino acids also ensures the high biodegradability of materials
made out of insect proteins.

An imbalance in amino acids can lead to metabolic issues, necessitating the supplementation of specific
amino acids [30]. For instance, fish require ten essential amino acids: arginine, histidine, isoleucine, leucine,
lysine, methionine/cysteine, phenylalanine, threonine, tryptophan and valine, and H. illucens larvae contain
all these essential amino acids [30]. The representation of essential amino acids in H. illucens is very similar
to fish meal but the content is lower. As a result, H. illucens proteins can replace fish meal in aquaculture
providing a more sustainable option. BSF larvae could also be used as feed in poultry and pig breeding
due to their high protein content. For example, poultry requires 18%–20% crude protein, while pigs–
13%–21% depending on their age [30]. These protein content requirements are hard to maintain by grain
feed only.

It was shown that insect proteins satisfy the amino acid composition standards set by the World Health
Organisation, demonstrating elevated levels of phenylalanine, tyrosine, tryptophan, lysine, and threonine

Table 1: The nutritive value variability of the common insect species used as animal feed [12,26–28]

Constituents (% in
DM)

Hermetia illucens
larvae

Tenebrio molitor
larvae

Musca domestica
larvae

Bombyx mori
pupae

Crude protein 43.3 53.3 54.1 54.0

Crude fat 26.3 29.8 21.2 12.0

Ash 12.3 4.2 10.2 4.6

Chitin 4.6 5.9 9.1 18.0

Figure 2: Final products of black soldier fly organic waste treatment (in percent)
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[31]. For instance, one of the latest studies by Huang et al. [32] showed that protein extracted fromH. illucens
larvae exhibited a higher ratio of essential amino acids to total amino acids than that of egg protein. The
amino acid analysis, therefore, indicates that protein extracted from H. illucens larvae can be utilized as
an edible animal protein.

. Lipids

In contrast to the amino acid profile, the fatty acid content of insects can vary greatly with the diet.
Therefore, it is possible to adjust the desired larval lipid composition depending on the intended purpose
of the product. Usually insect fat content is higher at the larva and pupa stages, while at the adult stage,
the fat content is relatively lower. Unlike the majority of animal fats, insect oil is liquid at room
temperature, which accounts for a considerable number of polyunsaturated fatty acids (e.g., superworm,
mealworm and cricket oil) [33,34]. For instance, in BSF they can be promoted when insects are fed on
fish discards, coffee silverskin, and seaweeds [35].

Black soldier flies are rich in lipids (up to 49% on a dry matter basis) [29]. The quality of fats from
H. illucens larvae is high and resembles the fatty acid content of products from plant sources, e.g., palm
(kernel) and coconut oil. The high proportion of lauric acid (up to 60%), which is a raw material for
many products in the cosmetic, cleaning, and detergent industries, is remarkable.

. Chitin

The mass production of insects can provide an alternative source for chitin and chitosan, its deacetylated
derivative, as today the worldwide production of these biopolymers comes largely from crustacean shells.
Chitin is present in insects at all stages of ontogenesis and plays an important role in their structure. In
addition, in insects, chitin is associated with melanin, which is not found in crustaceans [6]. Melanin is
acquired at later stages of insect development and can be extracted in the form of chitin-melanin
complexes with enhanced biological activity either as a mechanical mixture (e.g., from bees [36]) or a
covalent complex (e.g., from black soldier flies [7,37]).

. Micronutrients

Micronutrients (i.e., minerals and vitamins) are described as the nutrients required by an organism in
trace amounts and play an important role in the nutritional value of feed. It was found that insects contain
essential micronutrients such as iron, magnesium, calcium, phosphorous, selenium, zinc as well as
vitamins A, B, D, E, and K [38].

BSF is considered to be the best source of minerals and calcium [24,39]. H. illucens larvae contain
higher amounts of essential minerals compared to other insect species including iron, magnesium,
calcium, copper, phosphorous, and zinc [40].

. Antimicrobial peptides (AMPs)

The greatest diversity of AMPs is found in insects [41,42]. Insects have a well-developed innate immune
system with cellular and humoral defense responses, involving the production of AMPs secreted into the
hemolymph [43,44]. AMPs are a class of small peptides that widely exist in nature and are an important
part of the innate immune system among living organisms. They have a wide range of inhibitory effects
against different microorganisms such as bacteria, fungi, parasites, and viruses [45]. AMPs, acting as
potent antibiotics or fungicides, primarily target the cell envelope, notably the cell membrane. They also
impact intracellular microbial targets, ultimately causing cell death [46–48]. BSF is a very resilient
organism, and its larvae are fed on a variety of decomposing organic substrates typically inhabited by a
range of microorganisms. Therefore, it can be expected that H. illucens larvae express AMPs and other
substances possessing antibiotic activity in order to survive in these unfavorable conditions [30].
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3 Methods for Obtaining Protein

There are a limited number of studies devoted to the extraction of insect proteins and their
characterization. To date, the most prevalent method for protein extraction in insects is wet fractionation;
however, dry fractionation can also be applied.

In the literature, protein isolation is usually performed by the following steps: homogenization,
defatting, protein solubilization, isoelectric precipitation of the proteins, protein resolubilisation and
drying [49]. Nevertheless, the parameters for each step may vary depending on the insect and its life
stage and should be adjusted accordingly.

The aim of the homogenization process is to convert insects to a smaller particle size to increase the
surface area between the insect particles and the extraction solvent. This leads to a more efficient process
of protein extraction.

Defatting may be carried out by a solvent extraction step. Different lipid removal processes have been
described in the literature such as petroleum ether [50–53], hexane [54,55], ethanol or hexane: isopropanol
(3:2 (v/v)) [56], supercritical CO2 [57]. However, the use of organic solvents during the lipid removal step
may result in losses of protein due to their affinity for the solvent. An alternative defatting method was
applied to edible insect homogenates consisting of centrifugation of insect homogenates at 4�C and
removal of the upper layer of lipid fraction from the supernatant [57].

The prevailing technique involves combining alkaline solubilization with isoelectric precipitation,
although certain studies may choose either alkaline or acid solubilization separately. To summarise, in the
alkaline solubilisation coupled with the isoelectric precipitation method, insect meal is initially solubilised
under alkaline conditions to dissolve proteins. Subsequently, centrifugation is employed to separate the
soluble proteins, with the resulting solution collected while discarding the pellet. Following this, the pH
is adjusted to the isoelectric point to induce protein precipitation.

According to the literature, either water-soluble or non-water-soluble proteins can be isolated from
insects. To obtain water-soluble proteins, alkaline extraction procedure is performed: the insect
homogenate is adjusted to pH values higher than 7.0 to solubilize proteins in the aqueous phase [58–62].
This creates a high overall charge, which results in electrostatic repulsion allowing proteins to be soluble
in aqueous phases.

To extract non-water soluble proteins, a centrifugation step on insect homogenates is conducted, and the
pellet containing the non-water soluble protein fraction is retained [63,64]. For instance, the collection of
various protein fractions from B. mori pupae was described by a sequential extraction using water, 5%
NaCl, 0.1 M NaOH, and 70% ethanol solutions [65]. Very few studies, however, have characterized
obtained insect protein isolates. Also, specific methods of extracting protein isolates are hard to scale-up
and do not appear economically viable for commercial feed applications.

Alternatively, enzymatic hydrolysis can be carried out either directly on insect homogenates or insect
protein isolates to generate bioactive peptides (BAPs) or to improve the techno-functional properties of
the proteins. In some cases, proteins may be denatured by physical means, e.g., ultrasound prior to
enzymatic hydrolysis [52,66].

In order to generate protein-derived BAPs, mammalian digestive enzymes and microbial enzymes are
commonly used. The method of sequential hydrolysis with pepsin, trypsin and chymotrypsin (simulated
gastrointestinal digestion) was applied to hydrolyze various insect species such as B. mori larvae and
pupae [53,67], S. littoralis [63,64], adult A. annulipes, S. gregaria and L. migratoria, B. dubia, G.
portentosa as well as T. molitor and Z. morio [68,69].

JRM, 2024, vol.12, no.5 927



Plant-derived enzyme preparations during insect protein hydrolysis are rarely used. An example is
papain hydrolysis of B. mori chrysalises [57]. Some papers do not disclose the origin of the enzyme
preparation.

Another study explores a range of commercial enzymes of vegetal (papain), bacterial (PBL, dispase) and
animal (pepsin, trypsin, pancreatin) origin to obtain protein hydrolysates from Alphitobius diaperinus and
Hermetia illucens larvae [70].

The potential of microbial (lactic) fermentation of H. illucens biomasses with two different strains (L.
rhamnosus and L. plantarum) is studied by Luparelli et al. [71].

Several protein extraction techniques can be applied including chemical and enzymatic methods
(Table 2). Most of the studies focus on protein extraction from H. illucens larvae. In the study by
Mshayisa et al. [61] two chemical techniques, alkaline solution and isoelectric precipitation (using 1 M
NaOH and 1 M HCl) and alkaline extraction (using 1 M N NaOH), were investigated to extract protein
concentrates from defatted H. illucens larval flour. The results indicated that alkaline and acid
precipitation extractions of H. illucens larval concentrates led to improved nutritional and functional
properties. The crude protein of H. illucens larval protein concentrate obtained by alkaline and acid
precipitation was 73.35%, whereas for alkaline extraction the value was 68.47%.

Batish et al. [72] examined two methods: chemical extraction using 1 M NaOH and precipitation with
10% trichloroacetic acid solution in acetone as well as enzymatic hydrolysis with Alcalase, papain and
pepsin. Enzymatic hydrolysis lasted for 2 h, and each mixture’s enzyme was deactivated by heating the
solution in a water bath afterward. The heated suspension underwent centrifugation resulting in three
distinct phases: a semisolid bottom phase containing insoluble protein and chitin, an intermediate liquid
phase with protein hydrolysates, and a top liquid with the lipid fraction [72]. The intermediate
supernatant phase was isolated and subjected to freeze-drying. The effects of both methods on the
functional properties, antioxidant activity, amino acid composition, and protein structure of H. illucens
larval protein were evaluated. Even though enzymatic hydrolysis offered a sustainable processing method,
it reduced the functional properties in H. illucens hydrolysates.

Firmansyah et al. [73] carried out enzymatic hydrolysis of defatted H. illucens larvae using a bromelain
enzyme. Defatted H. illucens larvae were dissolved in a phosphate buffer solution, followed by the addition
of the enzyme. The hydrolysis reaction occurred in a water bath shaker for 3, 13.5 or 24 h, with termination of

Table 2: Advantages and disadvantages of different protein extraction methods

Extraction method Advantages Disadvantages

Chemical extraction (alkaline
solubilisation with acid
precipitation)

. Simple

. Сost-effective

. Suitable for large-scale
production

. May lead to protein denaturation

. Multiple steps involved

. Environmental pressure

Enzymatic extraction
(enzymatic hydrolysis)

. May be very specific without
introducing contaminants

. Gentler on proteins reducing
the risk of denaturation

. Eco-friendly

. Harder to scale-up (requires
optimisation)

. Can be time-consuming

. Enzymes can be expensive
increasing the overall cost of
protein extraction

. Not all proteins are easily digested
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the reactions achieved through sample heating. For remaining H. illucens larvae samples, complete
hydrolysis was achieved by applying 6 M HCl at 110�C for 24 h to determine the total free amino acid
content [73]. Protein hydrolysate from H. illucens larvae was separated via centrifugation and freeze-
dried. The authors reported that the obtained protein hydrolysate had a yield of 10.70% (on a weight
basis), while the protein concentration varied between 240–310 μg/mL.

As the acceptance of insect protein grows and technologies advance, the food and feed industries
continue to explore and expand their uses, offering consumers diverse and sustainable protein choices.
The application of insect proteins will be dealt with in the following section.

4 Applications

4.1 Animal Feed
Insect protein is commonly used as an ingredient in animal feed for poultry, livestock, and aquaculture. It

provides a sustainable and protein-rich alternative to traditional feed sources, contributing to healthier and
more efficient animal growth. Insect protein is also increasingly incorporated into pet food formulations,
offering a nutrient-dense and eco-friendly protein source for companion animals.

As a rule, whole or powdered dried insects are applied as a feed source for animals. In some cases, the
biomass can be separated by physical methods such as pressing or chemical methods such as extraction with
organic solvents. These treatments yield protein and lipid fractions, and in certain instances, a chitin fraction
[74]. The isolated protein can be subjected to a finer grinding and drying by convection, obtaining a fat-free
meal that is used asalternative to fish meal [75]. However, this treatment can lead to the destruction of part of
the protein by prolonged exposure to heat as well as the presence of chitin in the final product [76].

Table A1 summarises the literature data on insects investigated as a source of protein with a potential
application in animal diets. Most studies (approximately 46%) apply insects in a partially defatted form,
obtained through mechanical removal of fats by continuous screw press [77–79] and supplied from a
commercial source. In some studies, chemical treatments using Soxhlet [80], solvent, e.g., ethyl alcohol
[81,82] or enzymatic hydrolysis, e.g., using proteases and chitinases [83] were performed, which are
likely to result in higher efficiency of fat (and other impurities) removal but can incur additional
economic costs.

Dried powdered form (approximately 34%) is the second most frequently used form of insects for feed
[84–86].

Whole dried insects (approximately 20%) are less often applied, however, still result in a significant
number of studies, particularly in birds [87,88]. The least frequent form of application is live insects [89].

Insects are mostly used as a feed additive to animal diets [79,86,90–92] rather than a single component
of feed and usually replace fish meal and soy protein. The application of insect proteins as a feed source will
be dealt with in the following section.

4.1.1 Inclusion of Insects in Animal Diet
As demonstrated in Section 2, the nutritional properties of insects are very high, and they can

successfully substitute for many traditional ingredients used in the production of feed such as fish meal
and soy. Black soldier flies Hermetia illucens, yellow mealworms Tenebrio molitor, common housefly
Musca domestica, and silkworms Bombyx mori have been recognised as major species for the
commercial production of feed [25,93].

The highest proportion of research articles are devoted to the investigation of H. illucens as a future feed
for animals, which could be explained by the increased use of BSF technology to upcycle agriculture and
food industry waste into high-quality insect ingredients (Table 2). However, the majority of studies
examine the partially defatted or dried powdered larvae as a feed source for animals rather than extracting
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a protein fraction. It should be noted that insects contain other substances such as lipids, chitin and melanin
which was discussed earlier in Section 2. These can affect animal health and digestion (e.g., chitin) and
should be taken into account.

The second largest proportion of articles is dedicated to the yellow mealworm (Tenebrio molitor). T.
molitor is an insect species with fast growth and reproduction rates feeding on bread and grains. T.
molitor has a high protein content (47%–63%) and a moderate lipid content (30%–41%), and its nutrient
composition matches with animal requirements [29,94,95].

T. molitor is usually applied at the larval stage, H. illucens–at larval, prepupal and rarely pupal stages,
while B. mori is used as pupae, G. sigillatus and B. lateralis–as imagoes (Table 2).

A large number of studies investigated insect protein in the diets of fish [96–98], poultry [87,89,99], pigs
[100,101], and pets [102–104]. These findings demonstrate that insects can be applied as a universal feed
source for various animals.

4.2 Food Industry
Insect-derived protein powders are gaining popularity as a nutritious and sustainable source of protein

for human consumption. Some examples include nutritional supplements, functional foods, sports nutrition
and bakery/confectionary products. Most of the papers focus on insect proteins as either supplements of food
products to increase their nutritional quality or the reformulation of products aimed at the reduction or
replacement of meat or milk proteins [105].

Table 3 summarises some key applications of insect protein in the food industry. In the largest proportion
of studies (approximately 67%) insects are dried and ground into a fine powder. This insect powder or flour
can be blended with traditional flours to create bakery goods or pasta with enhanced nutritional profiles
[106–109].

Whole insects or defatted insects (e.g., T. molitor, Z. morio) can be incorporated into a wide range of
processed foods, including burgers, sausages contributing to their protein content or used as meat
substitutes [110–112].

Table 3: Application of insect protein in the food industry

Food type Insect species Processing form Protein content Reference

Alternative
meat
products

Acheta domesticus Insect flour 61.4% (full-fat insect
flour), 68.5% (low-fat
insect flour)

[113]

Alphitobius
diaperinus

Full-fat larvae 15.2% [112]

Tenebrio molitor Defatted insect flour 77.5% (freeze-dried T.
molitor flour), 75.0%
(microwave-dried T.
molitor flour)

[111]

Tenebrio molitor,
Alphitobius
diaperinus

Full-fat larvae n/a* [114]

Tenebrio molitor,
Bombyx mori

Defatted and hydrolysed T.
molitor larvae and B. mori pupae

75.4% (T. molitor),
73.5% (B. mori)

[115]

(Continued)
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Several studies have been conducted to assess the safety and food safety of insect protein, ensuring its
acceptability and compliance for human consumption [128,129]. In a recent comprehensive review by J.C.
Ribeiro et al. the authors delved into scientific advancements related to the allergic risks associated with
consuming insects as food [129]. The study identified two primary risk groups susceptible to developing

Table 3 (continued)

Food type Insect species Processing form Protein content Reference

flours, untreated T. molitor
larvae and B. mori pupae flours

Zophobas morio Full-fat larvae 3.3% [116]

Zophobas morio Full-fat larvae 3.4% [110]

Bakery and
confectionary

Acheta domesticus Insect flour 69.1% [108]

Acheta domesticus Insect powder n/a [117]

Acheta domesticus Insect powder 48.9% [118]

Alphitobius
diaperinus

Full-fat insect powder 58.4% [119]

Bombyx mori Insect powder n/a [109]

Gryllus assimilis Insect powder 62.8% [120]

Hermetia illucens Dried powdered prepupae n/a [106]

Hermetia illucens,
Acheta domestica,
Tenebrio molitor

Insect flours 45.1% (H. illucens),
56.6% (A. domestica),
48.8% (T. molitor)

[121]

Nauphoeta
cinerea

Insect flour 63.6% [122]

Schistocerca
gregaria

Insect powder, defatted insect
powder

35.3% (S. gregaria
powder), 39.1%
(defatted S. gregaria
powder)

[123]

Tenebrio molitor Insect powder 54.2% [124]

Tenebrio molitor,
Alphitobius
diaperinus

Powdered larvae 54.1% (Tenebrio
molitor), 59.6%
(Alphitobius
diaperinus)

[125]

Tenebrio molitor,
Alphitobius
diaperinus,
Acheta domesticus

Insect flours 49.9% (T. molitor),
55.7% (A. diaperinus),
62.5% (A. domesticus)

[107]

Dairy
alternatives

Bombyx mori,
locust

B. mori pupae powder, locust
powder

60.7% (B. mori), 43.2%
(locust)

[126]

Tenebrio molitor full-fat larvae 20.1% [127]
Note: *not available.
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food allergies linked to insect consumption: individuals allergic to crustaceans and those consistently
exposed to edible insects. Cross-reactivity, predominantly mediated through tropomyosin, was noted as a
potential cause for allergic reactions, with T. molitor tropomyosin capable of eliciting allergic responses
in animal models [130]. Moreover, the research demonstrated that individuals consistently exposed to T.
molitor may become sensitized and subsequently develop a food allergy to this insect [131]. The study
also identified different allergens (larval cuticle protein and cockroach allergen-like protein) depending on
the route of sensitization [132]. These findings contribute valuable insights to enhance our understanding
of the safety aspects surrounding insect protein consumption.

4.2.1 Biopackaging
The manufacturing of plastics, particularly from petroleum-based sources is known to contribute to

environmental, health, and sustainability concerns, leading to climate change. Hence, bioplastics, derived
from renewable biomass sources, offer several benefits compared to traditional petroleum-based plastics.
Insect proteins are explored for their potential in developing biodegradable plastics and bio-packaging.

Zhang et al. [133] explored the locust (Locusta migratoria) as a new protein source to develop edible
film by solvent casting. Dehydrated adults of L. migratoria locusts were powdered and defatted by
hexane. Protein extraction was performed by the standard alkaline dispersion and acid precipitation
method. The authors reported that the optimal range of glycerol for locust protein film formation was
30%–50%. The FTIR and XRD analyses showed that there was good compatibility between protein and
glycerol due to the hydrogen bonding interactions. The results revealed that the barrier and mechanical
properties of edible insect films were similar to the unmodified cereal protein, which highlights the
potential use of insect protein in food packaging and the future development of green biomaterials.

Zhang et al. [134] also developed a novel antimicrobial edible packaging based on a grasshopper
protein/soy protein isolate blend by solution casting using xylose as a crosslinker and cinnamaldehyde as
an antimicrobial agent. Insect protein was extracted by the alkaline dispersion and acid precipitation
method. The authors stated that this novel insect protein-based composite film can be applied as a
potential edible antimicrobial film for active packaging.

Qoirinisa et al. [135] produced edible films using grasshopper gelatine extracted by the alkaline
dispersion and acid precipitation method using NaOH and HCl, respectively. The extraction process
produced 55.2% raw gelatine powder from the dry weight of grasshoppers. The results revealed high
foaming properties and high solubility of insect protein. It was concluded that insect protein can be
applied in the manufacturing of edible films as environmentally friendly packaging.

Another study [136] explored the potential of the black soldier fly reared on food waste to develop bio-
packaging film for food products. Protein (42%–44%) and chitin (9%–11%) contents of H. illucens prepupae
were determined. The film was produced with 4% (w/v) black soldier fly prepupae flour in 1% (w/v) chitosan
solution. The physical and mechanical properties of insect bio-packaging such as tensile strength, antioxidant
activity, and water activity were evaluated. The study concluded that black soldier fly prepupae were a
promising source for producing sustainable bio-packaging films for the food sector.

These diverse applications highlight the versatility and potential of insect protein across various sectors,
providing solutions to challenges related to food security, environmental sustainability, and resource
efficiency.

5 Challenges

Despite the aforementioned advantages and predicted increased demand for insect protein as a potential
food and feed source, little is known about possible risks. Several studies and reviews have pointed out
potential challenges. These include concerns about chemical and microbiological safety, allergenicity in
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animals and humans, deficiencies in specific amino acids, and issues related to digestibility and taste, most of
which are not yet fully characterized or understood [11,137–140].

Before incorporating insects into food products and animal feed, it is crucial to establish their safety. The
growing concern is the accumulation of heavy metals in the feed, which poses a significant food safety risk,
potentially harming animals and endangering human health by introducing toxic substances into the food
chain [141–143]. This could be explained by the presence of chitin, which is an effective sorbent. As
insects can grow on agricultural waste materials containing chemical contaminants such as pesticides and
veterinary drug residues, it is important to evaluate the safety of insects in novel foods and animal feeds.

The breeding and rearing of insects might also have an impact on biodiversity, thus, the introduction of
non-native species should be subjected to a risk assessment procedure [144]. Considering the utilization of
suitable technologies for managing, processing, and storing insects after harvesting is essential. Such
technologies may need adjustments to accommodate this new ingredient while ensuring the same level of
safety in terms of identifying hazards, assessing risks, and tracing origins, all without compromising
efficiency and product quality. Up-scaling of insect-rearing facilities into economically viable businesses
is one of the major challenges.

Another issue is related to the reactions of farmers, stakeholders, and consumers towards the use of
insects, which are likely to determine the future success of using insect-based feed for different species
and acceptance of foods obtained from animals raised on insect-based feed. Several studies have
investigated the acceptance of insects in animal feed and food products [145–147].

Achieving cost competitiveness in the commercialization of insect proteins presents a complex
challenge that varies across different geographical regions. The initial investments in infrastructure,
technology, and research for insect farming can be substantial, impacting the overall economic viability.
Scaling up production to meet market demands without compromising quality further intensifies the
challenge, requiring optimized breeding practices, efficient feed formulations, and automation
technologies. Balancing these factors is crucial to achieving a competitive cost structure compared to
traditional protein sources. Additionally, fluctuations in market prices for feedstocks and energy prices,
uncertainties in regulatory compliance costs, and variations in consumer acceptance can impact the
overall cost dynamics. Successful commercialization hinges on strategic investments, continuous
optimization, and collaborative efforts across the value chain to enhance the cost-effectiveness of insect
protein production and make it a sustainable and economically viable alternative in the global protein
market [148].

An additional concern is the legal regulation of insects for food and feed applications, which differs
across the world. For instance, in the European Union (EU), insects that are bred for either human
consumption or animal feed are categorized as ‘farmed animals’ according to Regulation (EC) No. 1069/
2009. This classification has specific implications for obtaining permission to use a feed (organic resource
or substrate) for these farmed animals. Across the EU, all feed, including insects, must adhere to general
rules, ensuring safety and preventing direct adverse effects on the environment or animal welfare, as
stipulated in Regulation (EC) No. 767/2009 and Regulation (EC) No. 178/2002. Additionally, there are
regulations governing feed hygiene (Regulation (EC) No. 183/2005) and setting maximum limits for
certain undesirable substances in animal feed (Directive, 2002/32/EC).

The rapid development of research on the use of insect-based feed ingredients for farmed animals over
the past decade led to the authorization of insect-processed animal protein in feed for farmed fish in 2017
(Regulation (EU) 2017/893). Currently, 7 insect species, including black soldier fly, common housefly,
yellow mealworm, lesser mealworm, house cricket, banded cricket and field cricket, are permitted as feed
for aquaculture, poultry, and swine animals in the EU. Nevertheless, there are no restrictions on the use
of fats derived from insects. In some countries, e.g., China or South Korea, no limitation is applied.
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Nowadays, insects are being explored intensively as future foods, and the EU has recently authorized
four insect species intended to be marketed as a snack or as a food ingredient, in a number of food
products: Tenebrio molitor larva (Regulation (EU) 2021/882 and Regulation (EU) 2022/169); Locusta
migratoria (Regulation (EU) 2021/1975); Acheta domesticus (Regulation (EU) 2022/188); Alphitobius
diaperinus (Regulation (EU) 2023/58).

6 Conclusions and Future Perspectives

In this review, insects were considered a novel source of renewable protein. The conventional natural
resources used to produce food and feed are not enough to satisfy the growing demand for proteins due
to the expected rise in world population and urbanization as well as the limited availability of land,
fertilizers, energy, and water. Furthermore, the global prices of fish meal, maize, and soybean meal have
significantly increased over the last few decades. The use of insects in food and feed has become a
potential solution to these constraints.

This review of literature data demonstrates the use of insects as high-quality feed, food additives, and
biop-ackaging materials. The majority of studies have focused on whole insects or defatted powdered
meals when referring to insect protein, leaving behind chitin and other compounds present in insects,
which can affect the properties of the final product.

Importantly, in the face of climate change, a shift to insect-based food and feed offers a sustainable
solution for recycling biowaste and reducing greenhouse gas emissions. In addition, insect farming can
create new jobs contributing to improved food security and income by providing a cheaper source of feed
and organic fertilizer, reducing food-feed competition, and diversifying income-generating opportunities
for insect-producing farmers and other actors.

Even though the potential of insects in food and feed is clear, the question of how to effectively rear and
process insects into commercial products remains a challenge. The chemical and microbial safety,
allergenicity, amino acid deficiency, digestibility, and taste of insect proteins are not yet fully understood.
The safety assessment of insects in novel foods and feeds is still incomplete. Additionally, insect farming
may have an impact on biodiversity. The acceptance of insects by farmers, stakeholders, and consumers
may influence the future success of insect feed. Therefore, further research on protein extraction from
insects is required. As the nutrient composition of insects varies with the type of insect, its stage in the
life cycle, rearing conditions, and the extraction method should be evaluated and adjusted accordingly.
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Appendix

Table A1: Different insect species as a source of feed protein for animals

Animal species Insect species Processing form Protein content Reference

Aquaculture

African catfish
Clarias
gariepinus

Hermetia illucens Partially defatted larvae 42.6% [77]

Barramundi
Lates calcarifer

Hermetia illucens Full-fat larvae 45.0% [149]

European perch
Perca fluviatilis

Hermetia illucens Partially defatted larvae 55.3% [150]

Hermetia illucens,
Musca domestica,
Tenebrio molitor,
Alphitobius diaperinus,
Acheta domesticus,

Powdered defatted H.
illucens larvae, defatted
M. domestica larvae,
highly defatted T.
molitor larvae, defatted

55.5% (H. illucens),
58.8% (M. domestica),
74.3% (T. molitor),
55.3% (A. diaperinus),
71.0% (A. domesticus),

[98]
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Table A1 (continued)

Animal species Insect species Processing form Protein content Reference

Gryllodes sigillatus,
Gryllus assimilis

A. diaperinus larvae, A.
domesticus adults, G.
sigillatus adults, G.
assimilis adults

71.0% (G. sigillatus),
66.8% (G. assimilis)

European
seabass
Dicentrarchus
labrax

Hermetia illucens Partially defatted
prepupae

55.8% [151]

Tenebrio molitor Full-fat larvae 51.9% [152]

Gilthead
seabream Sparus
aurata

Chironomids Dried powdered larvae 58.6% [84]

Tenebrio molitor,
Hermetia illucens and
Musca domestica

Full-fat T. molitor
larvae, partially defatted
H. illucens larvae, full-
fat M. domestica larvae

61.0% (T. molitor),
67.0% (H. illucens),
58.5% (M. domestica)

[97]

Hybrid tilapia
Nile x
Mozambique,
Oreocromis
niloticus x O.
mozambique

Hermetia illucens Larval frass 18.5% [153]

Japanese seabass
Lateolabrax
japonicus

Hermetia illucens Partially defatted larvae
(solvent extraction)

55.4% [81]

Jian carp
Cyprinus carpio

Hermetia illucens Defatted larvae (Soxlet
method)

40.7% [80]

Largemouth bass
Micropterus
salmoides

Hermetia illucens Full-fat larvae and
prepupae

35.3% (larvae), 42.7%
(prepupae)

[154]

Hermetia illucens Zymolytic larvae pulp
(enzymatically
hydrolysed with
proteases and
chitinases)

30.6% [83]

Tenebrio molitor Powdered larvae 78.3% [92]

Meagre
Argyrosomus
regius

Acheta domesticus Full-fat meal 62.2% [155]

(Continued)
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Table A1 (continued)

Animal species Insect species Processing form Protein content Reference

Nile tilapia
Oreochromis
niloticus

Hermetia illucens Partially defatted larvae 60.8% [91]

Nauphoeta cinerea,
Gromphadorhina
portentosa, Gryllus
assimilis, Zophobas
morio, Tenebrio molitor

Powdered N.cinerea
adults, G. portentosa
adults, G. assimilis
adults, Z. morio larvae,
T. molitor larvae

64.8% (N.cinerea),
69.9% (G. portentosa),
62.1% (G. assimilis),
49.9% (Z. morio),
47.8% (T. molitor)

[96]

Pacific white
shrimp
Litopenaeus
vannamei

Hermetia illucens Partially defatted larvae
(solvent extraction)

52.0% [82]

Tenebrio molitor Powdered larvae 55.6% [156]

Tenebrio molitor Partially defatted larvae 74.8% [157]

Pearl gentian
grouper
Epinephelus
fuscoguttatus ×
Epinephelus
lanceolatus

Hermetia illucens Dried full-fat larvae 35.2% [158]

Pikeperch
Sander
lucioperca

Hermetia illucens Partially defatted larvae 54.5% [159]

Rainbow trout
Oncorhynchus
mykiss

Hermetia illucens Partially defatted larvae 39.4% [78]

Hermetia illucens Partially defatted larvae 55.3% [90]

Hermetia illucens Dried powdered
prepupae

n/a* [160]

Hermetia illucens Dried powdered
prepupae

30.8% [161]

Hermetia illucens Partially defatted
prepupae

48.6% [162]

Hermetia illucens Partially defatted pupae n/a [163]

Tenebrio molitor Powdered larvae 67.1% [164]

Tenebrio molitor Partially defatted larvae 44.3% [165]

Red drum
Sciaenops
ocellatus

Hermetia illucens Dried powdered larvae 43.3 and 44.8%
(depending on the diet)

[85]

(Continued)
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Table A1 (continued)

Animal species Insect species Processing form Protein content Reference

Red hybrid
tilapia

Hermetia illucens Dried powdered larvae 43.2% [166]

Rice field eel
Monopterus
albus

Hermetia illucens Full-fat larvae 32.1% [167]

Sea trout Salmo
trutta

Tenebrio molitor,
Hermetia illucens,
Gryllodes sigillatus,
Blatta lateralis

Powdered T. molitor
larvae, H. illucens
larvae, G. sigillatus
adults, B. lateralis
adults

56.3% (T. molitor),
40.4% (H. illucens),
61.3% (G. sigillatus),
54.6% (B. lateralis)

[168]

Siberian
sturgeon
Acipenser baerii

Hermetia illucens Full-fat larvae 35.0% [169]

Hermetia illucens Highly defatted larvae 62.5% [170]

Hermetia illucens Highly defatted larvae 62.5% [171]

Totoaba Totoaba
macdonaldi

Hermetia illucens Partially defatted larvae 53.0% [172]

Turbot Psetta
maxima

Hermetia illucens Partially defatted pupae 47.6% [173]

Yellow catfish
Pelteobagrus
fulvidraco

Hermetia illucens Dried powdered larvae 47.0% [174]

Tenebrio molitor n/a n/a [175]

Zebrafish Danio
rerio

Hermetia illucens Full-fat prepupae n/a [176]

Poultry

Barbary
partridge
Alectoris
barbara

Tenebrio molitor,
Hermetia illucens

T. molitor larvae,
Partially defatted H.
illucens larvae

51.9% (T. molitor),
61.3% (H. illucens)

[177]

Broiler chickens Hermetia illucens Partially defatted larvae 60.8% [178]

Hermetia illucens Dried powdered larvae 41.1% [86]

Tenebrio molitor Dried powdered larvae,
fresh insects

50% (dried), >20%
(fresh)

[89]

Tenebrio molitor Full-fat larvae 52.4% [179]

Tenebrio molitor,
Hermetia illucens

Dried powdered larvae 52.4% (T. molitor),
36.9% (H. illucens)

[180]

(Continued)
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Table A1 (continued)

Animal species Insect species Processing form Protein content Reference

Tenebrio molitor,
Zophobas morio

Dried powdered larvae n/a [181]

Tenebrio molitor,
Zophobas morio

Dried powdered larvae 47.0% (T. molitor),
49.3% (Z. morio)

[182]

Bombyx mori, Tenebrio
molitor, Zophobas
morio

Dried powdered B. mori
pupae, T. molitor larvae,
Z. morio larvae

58.0% (B. mori), 63.7%
(T. molitor), 45.8% (Z.
morio)

[99]

Broiler quail Hermetia illucens Dried powdered larvae 23.5 and 23.7%
(depending on the diet)

[183]

Cockatiels
Nymphicus
hollandicus

Cockroach
Gromphadorhina
portentosa

Crushed adults 57.8% [184]

Japanese quail
chicks

Spodoptera littoralis,
Bactrocera zonata

Dried powdered larvae 51.2% (S. littoralis),
58.1% (B. zonata)

[185]

Laying chickens Hermetia illucens Dried full-fat larvae 41.1% [186]

Laying hens Hermetia illucens Partially defatted larvae 55.6% [187]

Hermetia illucens Partially defatted larvae 55.6% [188]

Hermetia illucens Dried full-fat larvae and
prepupae

14.6% (larvae), 16.5%
(prepupae)

[189]

Laying quail Hermetia illucens Partially defatted larvae 51.8% [79]

Meat-type ducks
(Cherry Valley)

Periplaneta americana,
Hydrous cavistanum,
Tenebrio molitor,
Zophobas morio,
Bactrocera dorsalis,
Hermetia illucens,
Musca domestica,
Achroia grisella,
Bombyx mori,
Philosamia ricini,
Acheta domesticus,
Gryllotalpa africana,
Gryllus bimaculatus,
Gryllus testaceus,
Locusta migratoria,
Patanga succincta.

Dried powdered P.
americana pupae, H.
cavistanum adults, T.
molitor larvae, Z. morio
larvae, B. dorsalis
larvae, H. illucens
prepupae, M. domestica
larvae, A. grisella
larvae, B. mori larvae,
B. mori pupae, P. ricini
pupae, A. domesticus
adults, G. africana
adults, G. bimaculatus
adults, G. testaceus
adults, L. migratoria
adults, P. succincta
adults

64.4% (P. americana),
41.9% (H. cavistanum),
53.0% (T. molitor),
42.0% (Z. morio),
45.2% (B. dorsalis),
37.9% (H. illucens),
54.8% (M. domestica),
37.6% (A. grisella),
61.2% (B. mori larvae),
50.4% (B. mori pupae),
64.5% (P. ricini), 52.8%
(A. domesticus), 54.3%
(G. africana), 53.3%
(G. bimaculatus),
40.2% (G. testaceus),
58.5% (L. migratoria),
63.3% (P. succincta)

[190]

Muscovy ducks
Cairina
moschata

Hermetia illucens Partially defatted larvae 56.7% [191]

(Continued)
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Table A1 (continued)

Animal species Insect species Processing form Protein content Reference

Turkeys Hermetia illucens Full-fat larvae 40.4% [87]

Tenebrio molitor,
Hermetia illucens

Dried powdered larvae 47.0% (T. molitor),
42.4% (H. illucens)

[192]

Other animals

Chinese soft-
shelled turtles

Hermetia illucens Partially defatted larvae 46% [193]

Dogs Hermetia illucens Partially defatted larvae 21.6% [104]

Hermetia illucens Larvae meal 61.8% [103]

Hermetia illucens Partially defatted larvae 53.6% [102]

Hermetia illucens,
Musca domestica,
Tenebrio molitor

Dried powdered larvae 65.0% (H. illucen),
71.6% (M. domestica),
69.0% (T. molitor)

[194]

Finishing pigs Hermetia illucens Dried powdered
prepupae

35.0% [195]

Hermetia illucens Dried powdered
prepupae

35.0% [196]

Growing pigs Hermetia illucens Dried powdered larvae 46.6% [197]

Hermetia illucens Partially defatted larvae 60.8% [100]

Alphitobius diaperinus,
Tenebrio molitor,
Acheta domesticus,
Gryllodes sigillatus,
Hermetia illucens

Dried powdered insects 62.1% (A. diaperinus),
50.4% (T. molitor),
68.1% (A. domesticus),
56.0% (G. sigillatus),
44.6% (H. illucens)

[101]

Rabbits Tenebrio molitor,
Acheta domesticus

T. molitor larvae, A.
domesticus adults

53.1% (T. molitor),
64.2% (A. domesticus)

[88]

Note: *not available.
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