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ABSTRACT

This review summarizes the existing knowledge about the mechanical properties of bamboo scrimber (BS) in lit-
erature. According to literature reviews, the strength of BS under different load modes is affected by a series of
factors, such as the type of original bamboo, growth position, resin content, treatment method and density. There-
fore, different production processes can be adopted according to different requirements, and bamboo scrimbers
can also be classified accordingly. In addition, this review summarizes the changes in different factors considered
by scholars in the research on the mechanical properties of BS, so that readers can have an overall understanding
of the existing research and make more innovative and valuable research on this basis. This review provides and
discusses the conclusive observations, the current research gaps and future research directions on the mechanical
properties of BS.
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1 Introduction

With the proposal of the concept of green development and sustainable development, the application of
natural green materials is paid more and more attention in the engineering field. Wood structure has been
applied in the field of modern architecture earlier, and now the research on wood structure is more in-
depth. It is no longer just limited to the study of wood properties, but has a deeper exploration of the
overall performance of wood structures [1,2].

Bamboo is also an important ecological and cultural resource. China is known as the “Kingdom of
Bamboo”, and the output of bamboo ranks first in the world. However, although the original bamboo has
good toughness and texture, it also has some disadvantages, such as large differences in mechanical
properties. Therefore, in order to make better use of the advantages of bamboo, in today’s industrialized
world, raw bamboo is usually processed and produced as various bamboo composites. Nowadays, as
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more and more attention is paid to the application of bamboo, there is more research on bamboo and bamboo
composites, and the theories are more in-depth, micro- and macro-properties and chemical characterization
have been extensively studied, micro- and macro-properties [3–6] and chemical characterization [7–9] have
been extensively studied; Bamboo and bamboo composite materials have been applied in the construction
field [10].

Bamboo scrimber (abbreviated as BS) is a wood-like material made of bamboo. It is inspired by
reconstituted wood, with excellent integrity, high strength, high density, high stiffness and good stability
[11,12]. It was initiated in the 1970s and has been well-developed and applied now [13–15]. The
production process of BS (as shown in Fig. 1) is roughly divided into: raw bamboo, truncation, radial
splitting, removing the bamboo outer layer and bamboo inner layer, defibering, drying, dipping, putting
into the mold, hot-or cold-pressing [16]. In addition, at different stages of production, there are different
factors affecting the properties of the final produced BS, such as the type of raw bamboo [17–21], the
treatment method of bamboo strips [22–26], the drying temperature and time [27], the concentration of
adhesive [28–30] and the pressing process [31–35].

In the early manufacturing of BS, the raw materials are mainly waste bamboo silk or bamboo strips that
remove the bamboo outer layer and bamboo inner layer, which makes the utilization rate of bamboo not high.
In view of this situation, the Wood Industry Research Institute of Chinese Academy of Forestry has
developed a bamboo treatment technology without removing the bamboo outer layer and bamboo inner
layer, which makes the primary utilization rate of bamboo up to more than 90%, which is a major
breakthrough in the field of bamboo processing and application [36]. As a result, BS has been well used
in the field of building materials due to its efficient utilization of bamboo and excellent mechanical
properties.

Researches have shown that BS has better mechanical properties than wood, engineering wood and
engineering bamboo [37–39]. However, the size of BS is limited by the manufacturing process, which
restricts the application of BS in the field of construction engineering to a certain extent. As BS is a kind
of material made from raw bamboo through a series of processing and belongs to combustible material,
the research on fire resistance is also an important aspect [40,41]. At the same time, high nutrition and

Figure 1: Manufacturing process
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moisture in bamboo will lead to moth decay, so the research on the anti-corrosion performance of raw
bamboo and BS should not be ignored [42–45]. This review focuses on the existing research on the
mechanical properties of BS, and puts forward the problems that need further research or different
assumptions on the research methods, in order to provide new ideas for the design and application of BS.

2 Investigation of Literature

The number of studies on bamboo scrimber was counted through ScienceDirect database and CNKI
database. The research named “Chong Zuzhu” is mainly screened from CNKI database, while the
research named “bambooo scriber” and “parallel bambooo strand lumber” are screened from science
direct database, respectively. The literature types searched are mainly academic journals, dissertations and
conference papers. The statistical results are shown in Fig. 2.

This review mainly summarizes the mechanical properties of BS, and discusses the compressive, tensile,
shear and bending properties of BS. The selected literature on the mechanical properties of BS is summarized
in Tables 1–4.

Figure 2: Statistical results

Table 1: Literature on compressive properties

Compression

Study Species Origin Glue Size (mm) Method standard Strength (MPa)

Li et al. [20] Phyllostachys
pubescens

China – – Hot pressed GB/T 1934~1935–2009 Ⅱ: 73.46
⊥: 12.75–21.95

Gong et al. [21] Neosinocalamus
affinis

China PF 30 × 20 × 20 Hot pressed GB/T 1935–2009 Ⅱ: 104.82

Zhang et al. [46] Bambusa
emeiensis

China – 30 × 20 × 20 – GB/T 1935–2009
GB/T 1939–2009

Ⅱ: 129.17
⊥: 40.19–45.5

Li [47] Phyllostachys
pubescens

China – 200 × 50 × 50 Hot pressed ASTM D143–09 Ⅱ: 65.5

Li et al. [48] Phyllostachys
pubescens

China PF 150 × 50 × 50 – – Ⅱ: 100.9
⊥: 52.8

(Continued)
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Table 1 (continued)

Compression

Study Species Origin Glue Size (mm) Method standard Strength (MPa)

Wei et al. [49] – China PF 150 × 50 × 50 Cold pressed GB/T 1927–1991 Ⅱ: 85.1

Sharma et al. [50] Phyllostachys
pubescens

China PF 60 × 20 × 20
50 × 50 × 50

– ASTM D143–09 Ⅱ: 86
⊥: 37

Li et al. [51] Phyllostachys
pubescens

China – 100 × 100 × 100 – GB/T 50329–2012 Ⅱ: 61.8–71.1
⊥: 18.8–27.2

Chen et al. [52] – China – 120 × 25 × 25 Cold pressed ASTM D143–09 –

Wei et al. [53] – China – 120 × 25 × 25 Hot pressed ASTM D143–94 (2000) –

Li et al. [54] Phyllostachys
pubescens

China – 200 × 28 × 28 – ASTM D143–94 (2000)
GB 1927~1943–91

–

Kumar et al. [55] Phyllostachys
pubescens

China PF 30 × 20 × 20 Cold pressed ČSN490110~ČSN490112 Ⅱ: 104.71–115.7
⊥: 49.33–77

Wang et al. [56] Phyllostachys
pubescens

China PF 30 × 20 × 20 Hot pressed GB/T 1935–2009
GB/T 15777–2017

Ⅱ: 94.67
⊥: 45.85–48.8

Li et al. [57] Phyllostachys
pubescens

China PF 30 × 20 × 20 Hot pressed GB/T 40247–2021 Ⅱ: 127.33
⊥: 72.96

Sylvayanti et al.
[58]

Gigantochloa Indonesia PF 200 × 30 × 30
150 × 30 × 30

Cold pressed ASTM D143–14 Ⅱ: 64.85
⊥: 19.6

Wu et al. [59] Phyllostachys
pubescens

China PF 30 × 20 × 20 Hot pressed ASTM D143–14 Ⅱ: 129.25
⊥: 65.77–73.34

Chen et al. [60] – China – 150 to 1200 × 50 × 50
150 to 1200 × 100 × 100
150 to 900 × 75 × 50
150 to 1200 × 100 × 50

Cold pressed GB/T 1935–2009
GB/T 50329–2012

Ⅱ: 84.4

Rao et al. [61] Bambusa chungii China PF 60 × 13 × 13 Hot pressed GB/T 17657–2013 –

Sewar et al. [62] Phyllostachys
pubescens

China PF 100 × 25 × 25 Hot pressed BS 373–2018 Ⅱ: 121
⊥: 60.5

Hu et al. [63] Phyllostachys
pubescens

China PF 60 × 20 × 20 Hot pressed GB/T 30364 –

Zheng et al. [64] Neosinocalamus
affinis

China PF 30 × 20 × 20 Hot pressed GB/T 1935–2009
ASTM D143–14

Ⅱ: 132.4

Wu et al. [65] – China Epoxy Height: 205 to 400,
Diameter: 68 to 133

Hot pressed ASTM D143–09 Ⅱ: 112.01

Yu et al. [66] Phyllostachys
pubescens

China PF 30 × 20 × 20 Hot pressed GB/T 1935–2009 Ⅱ: 87.5–100.7

Chen et al. [67] – China – 210 × 70 × 70 – GB/T 50329–2012 Ⅱ: 65.5

Rao et al. [68] Phyllostachys
pubescens

China PF 60 × 13 × 13 Hot pressed GB/T 30364–2013
GB/T 17657–2013
GB/T 20241–2006

Ⅱ: 106.68

Li et al. [69] Phyllostachys
pubescens

China PF 100 to 200 × 50 × 50 Hot pressed GB/T 50329–2012 Ⅱ: 96.3–102.1
⊥: 49.1–54.4

Wei et al. [70] China PF 420 × 140 × 140 Cold pressed ASTM D143–09 Ⅱ: 85.1, 78.7

Shangguan et al.
[71]

Neosinocalamus
affinis

China PF 30 × 20 × 20 Hot pressed GB 1935–2009
ASTM D143–2009

Ⅱ: 133.4
⊥: 25.7

Xu et al. [72] Phyllostachys
pubescens

China PF 100 × 25 × 25 – ASTM D143–14 Ⅱ: 5.32–66.54
⊥: 0.56–28.01

(Continued)
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Table 1 (continued)

Compression

Study Species Origin Glue Size (mm) Method standard Strength (MPa)

Huang et al. [73] Phyllostachys China – 200 × 50 × 50 – ASTM D143–09 Ⅱ: 65.53
⊥: 23.14

Yang et al. [74] Phyllostachys
pubescens

China Epoxy 150 × 60 × 12/14 – ASTM D143
ASTM C364

Ⅱ: 48–55

Zhao et al. [75] Phyllostachys
pubescens

China – 30 × 20 × 20,
75 × 50 × 50,
120 × 80 × 80,
165 × 110 × 110,
210 × 140 × 140

– GB/T 50329–2012
GB/T1935–2009

Ⅱ: 67.4–91.68

Rao et al. [76] Phyllostachys
pubescens

China PF 60 × 8.6 × 8.6 – GB/T 17657–2013 Ⅱ: 81.7–103

Sun et al. [77] Phyllostachys
pubescens

China PF 40 × 25 × 10 Hot pressed ASTM D1037–2012 –

Note: PF represents phenol formaldehyde resin, Ⅱ represents parallel to grain, ⊥ represents perpendicular to grain.

Table 2: Literature on bending properties

Bending

Study Species Origin Glue Size (mm) Method Standard Strength (MPa)

Li et al. [20] Phyllostachys
pubescens

China – – Hot
pressed

GB/T 1936-2009 125.44

Guan et al. [38] Phyllostachys
pubescens

China PF 300 × 300 × 20 Hot
pressed

GB/T 1936-1991 –

Yang et al. [39] – China – 180 × 60 × 15 – ASTM D143-1994
GB/T 1936-2009

113.79

Li et al. [48] Phyllostachys
pubescens

China PF 760 × 50 × 15 – – 144.3

Sharma et al.
[50]

Phyllostachys
pubescens

China PF 800 × 40 × 40 – ASTM D143-09 119

Kumar et al.
[55]

Phyllostachys
pubescens

China PF – Cold
pressed

ČSN490115
ČSN490116

131.83–166.5

Sylvayanti
et al. [58]

Gigantochloa Indonesia PF 410 × 25 × 25 Cold
pressed

ASTM D143-14 71.14

Rao et al. [61] Bambusa chungii China PF 280 × 20 × 13 Hot
pressed

GB/T 17657-2013 253.7

Sewar et al.
[62]

Phyllostachys
pubescens

China PF 500 × 90 × 20 Hot
pressed

GB/T 17657-2013 104.4

Hu et al. [63] Phyllostachys
pubescens

China PF 450 × 20 × 20 Hot
pressed

GB/T 30364 –

Zheng et al.
[64]

Neosinocalamus
affinis

China PF 300 × 20 × 20 Hot
pressed

GB/T 1936.1-2-2009
ASTM D143-14

236.6

Rao et al. [68] Phyllostachys
pubescens

China PF 280 × 25 × 13 Hot
pressed

GB/T 30364-2013
GB/T 17657-2013
GB/T 20241-2006

178.35

(Continued)

JRM, 2024, vol.12, no.4 873



Table 2 (continued)

Bending

Study Species Origin Glue Size (mm) Method Standard Strength (MPa)

Yang et al. [74] Phyllostachys
pubescens

China Epoxy 180 × 60 × 15/17 – ASTM D143
ASTM C393

111.3–145.8

Rao et al. [76] Phyllostachys
pubescens

China PF 222 × 25 × 8.6 – GB/T 17657–2013
GB/T 20241–2006

167–195

Sun et al. [77] Phyllostachys
pubescens

China PF 250 × 20 × 10 Hot
pressed

GB/T 30364–2013
GB17657-2013
ASTM D2344-2016

–

Liu et al. [78] Phyllostachys
pubescens

China PF 300 × 30 × 18 – GB/T 1936.1–2009 GB/T
17657-2013

97–466

Chen et al. [79] – China Epoxy 400 to 1000 × 100 × 70 – ASTM D143-09 –

Qiu et al. [80] Phyllostachys
pubescens

China PF 760 × 50 × 50 Hot
pressed

ASTM D143-2014 10.47–118.06

Zhao et al. [81] Phyllostachys
pubescens

China UF 330 × 38 × 17 Cold
pressed

GBT 1928-2009
GB/T 50329–2012
GB/T 1936.1-2009

39.243–121.865

Zou et al. [82] Phyllostachys
pubescens

China – 450 × 100 × 14 – GB/T 17657 102.6–153.1

Wu et al. [83] Phyllostachys
pubescens

China PF,
Epoxy

600 × 30 × 30 – GB/T 50329-2012 152.68–289.01

Yu et al. [84] Neosinocalamus
affinis

China PF 360 × 50 × 18 Hot
pressed

ASTM D-1037
ASTM D2344

–

Yang et al. [85] Phyllostachys
pubescens

China PF 320 to 660 × 50 × 50 Hot
pressed

ASTM D143-09
ISO 8375:2009-02

104.43–114.14

Qiu et al. [86] Phyllostachys
pubescens

China PF 300 × 20 × 20 – – –

Qiu et al. [87] – China – 300 × 20 × 20 – – –

Wang et al.
[88]

Phyllostachys
pubescens

China PF 160 × 10 × 10 Hot
pressed

LY/T 3194-2020 120.47

Table 3: Literature on tensile properties

Tension

Study Species Origin Glue Size (mm) Method Standard Strength (MPa)

Li et al. [20] Phyllostachys pubescens China – – Hot pressed GB/T 1938–2009 Ⅱ: 112.78
⊥: 3.726

Gong et al. [21] Neosinocalamus affinis China PF 370 × 20 × 15 Hot pressed GB/T 1938–2009 Ⅱ: 170.65

Zhang et al. [46] Bambusa emeiensis China – 370 × 20 × 20 – GB/T 1938–2009 Ⅱ: 248.15

Li [47] Phyllostachys pubescens China – 453 × 25 × 50 Hot pressed ASTM D143–09 Ⅱ: 118.4

Li et al. [48] Phyllostachys pubescens China PF 453 × 21 × 15
63 × 50 × 50

– – Ⅱ: 156.2
⊥: 3.88

Wei et al. [49] – China PF 460 × 25 × 10 Cold pressed GB/T 1927–1991
ASTM D143–09

Ⅱ: 138.5

Sharma et al. [50] Phyllostachys pubescens China PF 460 × 25 × 25
62 × 50 × 50

– ASTM D143–09
BS 373

Ⅱ: 120
⊥: 3

(Continued)
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Table 3 (continued)

Tension

Study Species Origin Glue Size (mm) Method Standard Strength (MPa)

Wei et al. [53] – China – 420 × 25 × 10 Hot pressed ASTMD143–94 (2000)
GB/T1928–2009

–

Li et al. [54] Phyllostachys pubescens China – 630 × 50 × 50 – ASTMD143–94 (2000)
GB 1927~1943–91
GB/T 50329–2012
GB/T 1938–2009

–

Kumar et al. [55] Phyllostachys pubescens China PF 350 × 20 × 20
92 × 40 × 5

Cold pressed ČSN490113
ČSN490114

Ⅱ: 111–144.75
⊥: 4.18–6.7

Sylvayanti et al. [58] Gigantochloa Indonesia PF 460 × 25 × 25 Cold pressed ASTM D143–14 Ⅱ: 34.27

Wu et al. [59] Phyllostachys pubescens China PF 370 × 20 × 15 Hot pressed ASTM D143–14 Ⅱ: 108.45
⊥: 7.62

Sewar et al. [62] Phyllostachys pubescens China PF 375 × 25 × 25
63 × 50 × 50

Hot pressed ASTM D143–14 Ⅱ: 120.7
⊥: 7.7

Zheng et al. [64] Neosinocalamus affinis China PF 370 × 20 × 15 Hot pressed GB/T 1938–2009
ASTM D143–14

Ⅱ: 250.2

Xu et al. [72] Phyllostachys pubescens China PF 600 × 40 × 9 – ASTM D143–14 Ⅱ: 5.81–110.64
⊥: 0.73–6.68

Huang et al. [73] Phyllostachys China – 453 × 25 × 5
57 × 50

– ASTM D143–09 Ⅱ: 118.4
⊥: 4.43

Yang et al. [74] Phyllostachys pubescens China Epoxy 330 × 50 × 15 – ASTM D143
ASTM C297

Ⅱ: 108.7–138.9

Wang et al. [89] Phyllostachys pubescens China – 370 × 20 × 15
150 × 30 × 20

– GB/T 1938–2009
GB/T 14017–2009

Ⅱ: 139.89–235.54
⊥: 11.41–17.82

Luo et al. [90] Phyllostachys pubescens China PF 480 × 50 × 20 Hot pressed LY/T 3194–2020 Ⅱ: 141.92

Luo et al. [91] Phyllostachys pubescens China PF 480 × 70 × 20 Hot pressed LY/T 3194–2020 ⊥: 8.5

Table 4: Literature on shear properties

Shear

Study Species Origin Glue Size (mm) Method Standard Strength (MPa)

Li et al. [20] Phyllostachys pubescens China – – Hot pressed GB/T 1937–2009 Ⅱ: 52.41

Li et al. [48] Phyllostachys pubescens China PF 63 × 50 × 50 – – Ⅱ: 26.7

Sharma et al. [50] Phyllostachys pubescens China PF 50 × 50 × 50 – ASTM D143–09
BS 373
BS EN 408

Ⅱ: 15

Kumar et al. [55] Phyllostachys pubescens China PF 50 × 40 × 20 Cold pressed ČSN490118 Ⅱ: 11.89–17

Sylvayanti et al. [58] Gigantochloa Indonesia PF 63 × 50 × 30 Cold pressed ASTM D143–14 Ⅱ: 11.15

Wu et al. [59] Phyllostachys pubescens China PF 40 × 35 × 20 Hot pressed ASTM D143–14 Ⅱ: 20.89
⊥: 22.91–31.68

Sewar et al. [62] Phyllostachys pubescens China PF 76 × 56 × 5 Hot pressed ASTM D7080 Ⅱ: 24
⊥: 37.1

Hu et al. [63] Phyllostachys pubescens China PF 120 × 40 × 20 Hot pressed GB/T 30364 –

Zheng et al. [64] Neosinocalamus affinis China PF 40 × 35 × 20 Hot pressed GB/T 1938–2009
ASTM D143–14

Ⅱ: 29.6

(Continued)
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It can be seen from the above four tables that China is the main producer of BS. Neosinocalamus affinis
and Phyllostachys pubescens are the most commonly used BS raw materials. According to references [46–
48,92,93], the properties of BS made from two kinds of raw bamboo are enhanced on the basis of raw
materials, but the properties of the two kinds of BS are different from each other. In general, the tensile
and compressive properties of BS with Neosinocalamus affinis as raw material are better than those of
Phyllostachys pubescens. PF and epoxy are mostly used as adhesives, and the standards referenced in the
test are mainly the standards related to wood in China and America. In the four mechanical property
tests, the size of compression and bending test specimens changes greatly.

3 Reviews on Mechanical Properties

According to the review of BS mechanical properties, the commonly used test methods for BS
mechanical properties test are shown in Fig. 3. The yellow part represents the specimen, and the red
arrow represents the force and its direction.

Table 4 (continued)

Shear

Study Species Origin Glue Size (mm) Method Standard Strength (MPa)

Rao et al. [68] Phyllostachys pubescens China PF 78 × 40 × 13 Hot pressed GB/T 30364–2013
GB/T 17657–2013
GB/T 20241–2006

⊥: 19.21

Shangguan et al. [71] Neosinocalamus affinis China PF 40 × 35 × 20 Hot pressed GB 1937–2009
ASTM D143–2009

–

Huang et al. [73] Phyllostachys China – 76 × 56 – ASTM D143–09
ASTM D7078

Ⅱ: 8.21
⊥: 23.44

Yang et al. [74] Phyllostachys pubescens China Epoxy 120 × 60 × 15/17 – ASTM D143
ASTM-D7078

⊥: 33.8–46.1

Rao et al. [76] Phyllostachys pubescens China PF 52 × 40 × 8.6 – GB/T 17657–2013
GB/T 20241–2006

⊥: 16.3–21.7

Sun et al. [77] Phyllostachys pubescens China PF 60 × 20 × 10 Hot pressed GB/T 30364–2013
GB17657–2013

–

Yu et al. [84] Neosinocalamus affinis China PF 90 × 40 × 18 Hot pressed ASTM D-1037
ASTM D2344

–

Figure 3: Schematic diagram of mechanical test: (a) tension parallel to grain, (b) tension perpendicular to
grain, (c) compression parallel to grain, (d) compression perpendicular to grain, (e) shear parallel to grain, (f)
three-point and four-point bending
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3.1 Compression
In the compressive test of BS, the failure modes of compression parallel and perpendicular to grain can

be divided into strength failure and buckling failure, and the buckling failure mostly occurs in the specimens
with large slenderness ratio [69]. The compressive strength failure along the grain direction can be divided
into three failure modes: buckling failure, shear failure and splitting failure [49,60], which are mainly due to
the yield of fibers and the bond failure between fibers during loading. Oblique shear failure mainly occurs
during compression perpendicular to grain [69,73], and the failure is mainly due to the bond failure
between fibers (Fig. 4).

The BS made by hot pressing at 140°C reduces the color deepening while maintaining its high
durability, and its compressive strength is higher than that of ordinary BS [48,62]. The BS made of wide-
bundle bamboo strips (WBS) has higher utilization rate of bamboo than the traditional BS, and the cracks
caused by the fiberization of wide-bundle bamboo strips form a mechanical interlocking network filled
with resin after resin filling and curing, which enhances the mechanical properties of WBS, so the
compressive performance of WBS is better than that of traditional BS [63].

In the case of sufficient research on the mechanical properties of BS, it is of great significance to obtain
the strength design value through reliability analysis. According to the damage characteristics of material
test, the reliability index of design strength during compression is 3.2, the loading duration and reliability
index are negatively correlated with the strength design value [64].

Figure 4: Compression failure forms: (a) parallel to grain. Adapted with permission from [60], Copyright ©
2020, Elsevier B. V; (b) perpendicular to grain. Adapted with permission from [69], Copyright © 2019, Tech
Science Press
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Shangguan et al. [71] studied the compression of BS made from different fiber orientations, and explored
the influence of fiber orientation on the compressive properties and failure forms of BS. The results show that
as the fiber orientation tends to be horizontal, the compressive strength of BS decreases, and the fiber
buckling is less and less, mostly glue cracking and splitting between fibers. The longitudinal, tangential
and radial compression tests show that the failure of the specimens caused by three loading directions is
strength failure, and there are main cracks along the diagonal, the load-displacement curves in three grain
directions include three stages of elasticity, yield and failure [51,56]. In the microscopic observation of
the failure mode, it is shown that the fiber fracture of the longitudinal compression specimen is ductile,
and the fiber fracture of the tangential and radial compression specimens is brittle, which is the reason
why the deformation and strength of the longitudinal compression are greater than those of the tangential
and radial compression [56]. However, when the temperature rises to a certain extent, due to the
degradation of the resin, the ductile failure of BS parallel to grain will be transformed into brittleness, and
the crushing failure occurs in the transverse direction [57]

In the composite test of BS and steel tube, it is found that the steel tube significantly increases the
compressive strength and axial strain of BS, and restrains the lateral deformation of BS well. The
thickness of steel tube has a great influence on the compressive strength and ultimate strain of BS [65].
The results of the composite test of glass fiber (GF) and BS show that the compressive strength of BS
can be slightly increased when the GF layer is thicker, and GF significantly improves the fire resistance
of BS [66].

The compressive properties of BS are affected by density [55]. As can be seen from Fig. 5, with the
increase of the density of BS, the compressive strength and compressive modulus also increase, but the
increase ratio decreases. The high density of BS makes its compressive properties higher than timber
[58,59]. The effect of resin content on the compressive properties of BS was studied. Some experiments
showed that the effect was not significant, but some experiments showed that the effect was significant
[61,76,77].

The creep study of BS showed that when BS is continuously compressed, the creep deformation
develops stably when the stress level is low, the direct buckling failure when the stress level is high, and
the deformation increases nonlinearly. In addition, the studies show that burgers model can better fit the
creep curve of BS [52–54,67].

Figure 5: Compressive properties of different densities. Adapted with permission from [55], Copyright ©
2016, Elsevier B. V
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Burgers model is a quaternion model formed by Maxwell model and Kelvin model in series connection.
Burgers model (Fig. 6) consists of three parts: instantaneous elastic deformation, delayed elastic deformation
and viscous flow. The elastic element with elastic modulus E1 in Maxwell model is used to simulate the
instantaneous elastic deformation, the delayed elastic deformation is simulated by Kelvin model, and the
viscous flow is simulated by the element with viscosity g1 related to Maxwell model [54].

The equation of Burgers model is composed of the sum of Maxwell model and Kelvin model strain
equation. The strain equations of Maxwell model and Kelvin model are both obtained on the basis of
elastic equation and viscous equation.

Elastic equation:

e ¼ r
E

(1)

Viscous equation:

e ¼ r0
g
t (2)

Maxwell model creep equation:

e ¼ r0
E1

1þ E1

g1
t

� �
(3)

Kelvin model creep equation:

e ¼ r0
E2

1� exp �E2

g2
t

� �� �
(4)

Burgers model creep equation:

eðtÞ ¼ r0
E1

þ r0
g1

t þ r0
E2

1� exp �E2

g2
t

� �� �
(5)

In order to quantitatively describe the flexibility and recovery performance of BS short columns, Wei
et al. [70] studied the compression behavior of BS under cyclic load. It is found that the failure forms of
BS short columns under cyclic load are the same as those under uniaxial compression, which are
buckling, shear and splitting failure respectively, and the cyclic stress-strain model is established to predict.

Through the summary of the research on the compressive mechanical properties of BS, it is found that
there is an obvious nonlinear section in the stress-strain curve of BS whether it is compressive parallel to
grain or perpendicular to grain (as shown in Fig. 7), and the treatment methods for this nonlinear section
are different [48,59,69,73]. In Table 5, the compression constitutive model of BS is summarized.

Table 6 shows the comparison of compressive properties between BS and other bamboo or wood
materials.

Figure 6: Burgers model
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In Table 6, LBL represents Laminated Bamboo Lumber which made from bamboo strips as
manufacturing units and laminated with adhesive, WPC represents Wood-Plastic Composites.

It can be seen from the table that the compressive strength and MOE of BS are significantly higher than
those of other materials. The change of compressive strength of BS can be attributed to the different types of
bamboo used in the production of BS and the different density of BS itself.

Table 5: Compression constitutive model

Direction Model Formula Coefficient

Perpendicular
to grain

Quadratic
function
model [69]

r0 ¼
E0

ce0

f 0c0 1þ a0 1� e0

e0c0

� �2
" #8><

>:
0 � e0 � e0cy
e0cy � e0 � e0c0

a0 ¼ k 0n0 � 1

ðn0 � 1Þ2, n
0 ¼ e0cy

e0c0
, k 0 ¼ E0

c

E0
p

Exponential
function
model [73]

r0 ¼ E0
ce0

je0n

�
0 � e0 � e0cy
e0cy � e0 � e0c0 n ¼

ln f 0cy=f
0
c0

� �
ln e0cy=e0c0
	 


j ¼ f 0cy=ðe0cyÞn

Parallel to
grain

Three-linear
model [48] r ¼

Ecse

fc0 1�a 1� e
ec0

� �� �
fc0

8><
>:

0 � e � ecy
	 

ecy � e � ec0
	 

ec0 � e � ecuð Þ

a ¼ kn� 1

n� 1
, n ¼ ecy

ec0
, k ¼ Ecs

Ep

Quadratic
function
model [48,69] r ¼

Ecse

fc0 1þ a 1� e
ec0

� �2
" #

fc0

8>><
>>:

0 � e � ecy
	 

ecy � e � ec0
	 

ec0 � e � ecuð Þ

a ¼ kn� 1

ðn� 1Þ2, n ¼ ecy
ec0

, k ¼ Ecs

Ep

The 2nd order
polynomial
[73]

r ¼
Ecse
k1e2 þ k2eþ k3
b1e

2 þ b2eþ b3

8<
:

0 � e � ecy
	 

ecy � e � ec0
	 

ec0 � e � ecuð Þ

k1 ¼ fcy � fc0

ðecy � ec0Þ2

k2 ¼ 2ec0ðfc0 � fcyÞ
ðec0 � ecyÞ2

k3 ¼ ðecyÞ2fc0 � 2ecyec0fc0 þ ðec0Þ2fcy
ðec0 � ecyÞ2

b1 ¼
fc0 � fcu

ðec0 � ecuÞ2

b2 ¼
2ecuðfcu � fc0Þ
ðecu � ec0Þ2

b3 ¼
ðec0Þ2fcu � 2ec0ecufcu þ ðecuÞ2fc0

ðecu � ec0Þ2
Compound
function
model [59] r ¼

Ecse

fc0 1þ a 1� e
ec0

� �2
" #

fc0 þ 0:16Ep e� ec0ð Þ

8>>><
>>>:

0 � e � ecy
	 

ecy � e � ec0
	 

ec0 � e � ecuð Þ

a ¼ kn� 1

ðn� 1Þ2, n ¼ ecy
ec0

, k ¼ Ecs

Ep

Cubic
function
model [48] r ¼

Ecse

fc0 a0 þ a1
e
ec0

� �
þ a2

e
ec0

� �2

þ a3
e
ec0

� �3
" #

fc0

8>>><
>>>:

0 � e � ecy
	 

ecy � e � ec0
	 

ec0 � e � ecuð Þ

a0 ¼ 1þ 2nðkn� 1Þ þ ð1� nÞ
ðn� 1Þ3

a1 ¼ 2nð3� 2knÞ � kðnþ 1Þ
ðn� 1Þ3

a2 ¼ ð2kn�3Þðnþ 1Þ þ 2k

ðn� 1Þ3

a3 ¼ 2�kðnþ 1Þ
ðn� 1Þ3

n ¼ ecy
ec0

, m ¼ rcy
fc0

, k ¼ Ecs

Ep

Note: r is the stress value of BS under compression parallel to grain; Ecs is the modulus of elasticity for BS under compression parallel to grain; Ep is
the secant modulus for peak point (fc0, ec0); e is the strain value of BS; ecy is the strain for the yield point; ec0 is the compression peak strain value; fc0 is
the compression peak stress value; ecu is the ultimate compression strain value; fcu is the ultimate compression stress value; r0 is the stress value of BS
under compression perpendicular to grain; E0

c is the modulus of elasticity for BS under compression perpendicular to grain; E0
p is the secant modulus

for peak point; e0 is the strain value of BS; e0cy is the strain for the yield point; f 0cy is the stress for the yield point; e0c0 is the compression peak strain
value; f 0c0 is the compression peak stress value.
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3.2 Bending
The three-point bending and four-point bending test methods are used for the bending specimens of BS.

The bending strength parallel to grain of the bending small specimens of BS without special treatment is
usually between 100–150 mpa, and the failure mode is that the fiber in the tensile area is broken
[17,48,58]. The bending properties MOR and MOE of BS increase with density [63].

Taking natural bamboo as the comparison object, it is found that the failure mode of BS shows obvious
brittleness, and the bending failure is the result of the joint action of tensile, shear and compressive stress
[88]. According to the analysis of the bending load displacement curve of BS, its bending damage is
between toughness and brittleness [62,64]. Compared with natural bamboo, the deformability of BS is
reduced and the brittleness is increased, which is due to the compression of the cavities of the vessel and
parenchymal cells that absorb energy in the manufacturing process [88].

When the length of the specimen is changed, it is found that the bending strength does not change
significantly with the increase of the length, while the bending elastic modulus increases with the increase
of the length [85].

It was found in the study of the effect of resin content on the bending properties of BS, the change of
resin content does not change its damage form [68]. The MOR of BS increases slightly with the increase of
resin content, but decreases when the content exceeds 20%, which has a negative impact on the bending
properties of BS, and the bending bearing capacity also reaches the maximum at 20%. However, some
studies have shown that when the resin content of BS is 15%, its MOR and MOE reach the maximum
[61]. The flexural strength increases with the increase of resin content and density, while the flexural
modulus is less affected by resin content and increases with the increase of density [84].

Table 6: Comparison of compressive properties

Material Species Size (mm) Compression Ⅱ

(MPa)
Compression ⊥

(MPa)
MOE Ⅱ

(MPa)
MOE ⊥

(MPa)

BS [50,69] Phyllostachys
pubescens

60 × 20 × 20
50 × 50 × 50
100 to 200 × 50 × 50

86–102.1 37–54.4 13994–14222 4285–4383

LBL [94,95] Phyllostachys
pubescens

200 × 50 × 50
300 × 20 × 20
60 × 20 × 20

37.58–64.7 – 5875.7–13379 –

Glulam [96] – – 24–31 2.7–3.6 8600 –

WPC [97] Pine 60 × 20 × 20 28.1 25.4 3700 1980

Plywood [98] – – 20.7–34.5 – – –

Douglas-fir
[99]

– – 49.9 5.5 – –

Figure 7: Compressive stress-strain curves of BS: (a) parallel to grain; (b) perpendicular to grain. Adapted
with permission from [69], Copyright © 2019, Tech Science Press
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Zou et al. [82] studied the effect of moisture content. Although the bending strength of BS showed a
downward trend with the increase of moisture content, the fiber fracture degree at failure gradually
decreased, and the failure mode showed certain plasticity.

The study on the bending performance of BS with different fiber orientation shows that the bending
strength and stiffness decrease with the increase of the included angle between bamboo fiber and neutral
axis. Moreover, the failure mode gradually changes from the ductile failure of fiber breaking to the shear
brittle failure of bonding interface, and the crack extends rapidly along the interface, resulting in the
brittle fracture of the specimen [80]. At the same time, the fiber orientation also greatly affects the impact
bending property [86,87].

In engineering, in order to facilitate the transportation of wires and the assembly of structures, it is
usually necessary to drill holes. Zhao et al. [81] drilled holes in different positions and sizes of bending
small specimens of BS to study and compare their bending properties. The results show that drilling
reduces the bearing capacity and bending properties of the specimen, and the larger the hole diameter is,
the more obvious the reduction is. At the same time, due to drilling, there are two basic failure modes of
bending small specimens-shear failure along the fiber direction and bottom fracture failure caused by
bending moment.

FRP is a lightweight and high-strength material with excellent reinforcing properties. The mechanical
properties of the material reinforced with FRP are generally significantly improved [100–102]. In order to
solve the problem of low bending strength and stiffness of BS, Wu et al. [83] studied the CFRP-BS
composite beam. It is found that the CFRP sheet effectively improves the bending modulus and static
bending strength of the composite beam, and the failure mode is no longer the fracture failure of the
bottom fiber, but the bond failure between CFRP and BS. However, the research of Liu et al. [78] shows
that the failure modes of CFRP-BS composite beams are divided into four types under different
conditions: CFRP ‘flowering’ fracture failure, gradual peeling failure of the adhesive layer, instantaneous
peeling failure of the adhesive layer and fracture failure of BS.

The BS beam can obtain greater bearing capacity and deflection under the same shear span ratio by
means of bamboo pin reinforcement, and increasing the spacing of bamboo pins can improve the bearing
capacity and stiffness of the reinforced beam. At the same time, as the load continues to increase, the
failure of the epoxy resin adhesive layer in the hole leads to an increase in slip, which generally increases
linearly. After parallel-to-grain shear failure, the load-slip increases nonlinearly and the slip increases
significantly [79].

Table 7 shows the comparison of mechanical properties of BS with other bamboo and wood materials
under bending conditions.

In Table 7, LLBC represents Layered Laminate Bamboo Composite which made from thinner and
shorter bamboo strips than LBL by laminating with more adhesive, LVL represents Laminated Veneer
Lumber which made from wood and adhesive by hot pressing.

It can be seen that the bending strength of BS can be comparable with other bamboo-based materials
(such as LBL and LLBC) and wood (such as Douglas fir). At the same time, the bending strength of BS
is significantly better than LVL, Glulam, WPC and plywood. The change of bending strength of BS may
be related to density, adhesive and bamboo species.

3.3 Tension
When studying the tensile properties of BS, the specimen is usually prepared into bone shape. During

the tensile test parallel to grain, the failure form of the tensile specimen is that part of the fiber is first broken
under the load, and then the crack develops rapidly, forming a fracture surface in a short time, and finally the
specimen is completely destroyed. The fracture surface is irregular in most cases. Only when the fiber
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distribution of the sample is uniform, the fracture surface is flat and almost perpendicular to the fiber
[48,58,59,62,64,73].

The tensile strength parallel to grain of BS is generally between 100–250 MPa due to the type of original
bamboo and manufacturing technology [21,46,48]. However, it should be noted that the tensile strength
perpendicular to grain of BS is about 40 times lower than that parallel to grain, and the location of cracks
changes during failure. Cracks are produced through the bamboo itself rather than simply through the
adhesive [20,50].

The stress-strain curve of tension parallel to grain increases linearly and has a certain discreteness. But
the stress-strain curve of transverse tension has a nonlinear stage, and it has greater discreteness than that of
longitudinal tension (as shown in Fig. 8) [48].

It is worth noting that the tensile failure parallel to grain of carbonized BS shows brittleness, and the
tensile strength and elastic modulus parallel to grain of carbonized BS are less than those of non-
carbonized one [47]. The tensile creep behavior of BS shows brittle fracture under high load (60%
ultimate strength), while at low load (lower than 40% ultimate strength), the creep deformation of BS
develops rapidly in the early stage and remains stable in the middle and late stage. The load level has a
significant impact on the overall creep deformation and the proportion of creep deformation [53].

Table 7: Comparison of bending properties

Material Species Size (mm) Bending (MPa) MOE (MPa)

BS [20,50] Phyllostachys pubescens 800 × 40 × 40 81.6–125.44 11341–16310

LBL [94] Phyllostachys pubescens 760 × 50 × 50 98–126.3 7955–11190

LLBC [98,103] Dendrocalamus
strictus

250 × 16 × 10 100.8 12420

LVL [99] Douglas-fir – 54.2–71.7 15400–19300

Glulam [104] Douglas-fir – 48.74 15370

WPC [97] Pine 67 × 10 × 4 26.1 4100

Plywood [99] Redwood – 33.72–42.61 6960–8550

Douglas-fir [99] – – 85 13400

Figure 8: Tensile stress-strain curves: (a) parallel to grain, (b) perpendicular to grain. Adapted with
permission from [48], Copyright © 2020, Tech Science Press
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BS with different densities were tested according to the standard ČSN 490113 and ČSN 490114 carries
out tensile tests parallel and perpendicular to grain (as shown in Fig. 9). The results show that the tensile
strength increases with the increase of density, and the tensile strength parallel to grain is always 20–
30 times that of perpendicular to grain [55].

The long-term performance of the material is related to its own application value, so the long-term
tensile behavior of BS is worth studying. In the long-term tensile test of BS, it is found that the load
duration in the transverse direction of BS is less than that in the longitudinal direction. The relationship
between the stress ratio and the failure time in the transverse direction is close to the Madison curve,
while the longitudinal direction is concave trend curve. The empirical Findley model can well fit the
absolute creep strain-time curves in both directions [90,91].

Wang et al. [89] studied the tensile properties of BS under different strain rates, and conducted impact
tensile test with split Hopkinson tensile bar. It is found that the ultimate tensile strength increases with the
increase of strain rate; In addition, no matter static tensile test or impact tensile test, the failure forms of
BS are I-shaped fracture and Z-shaped fracture when tension parallel to grain, and flat fracture when
tension perpendicular to grain. At the same time, the fracture surface of the specimen was observed by
electron microscope to study its failure mechanism. It is found that for the tensile failure parallel to grain,
the failure process can be considered as three processes: matrix fracture, interface fracture and fiber
fracture. For tensile failure perpendicular to grain, the damage is mainly caused by interface fracture. The
pore on the cemented surface is the root of the initial crack. Because the fiber is not affected by force, the
crack expands along the interface and finally the specimen breaks (Fig. 10 is the Scanning Electron
Microscope (SEM) observation).

According to the research of Xu et al. [72], when the temperature is between 20°C–180°C, the tensile
strength and modulus of BS decrease with the increase of temperature, but when the temperature rises to
200°C, the tensile strength and modulus parallel to grain of BS first rise and then continue to decline,
while the tensile strength and modulus perpendicular to grain of BS decrease to 0 when the temperature
rises to 200°C and above. Moreover, the tensile failure forms parallel to grain of BS are divided into I-
shape and Z-shape, but the I-shaped fracture mainly occurs in the tensile fracture at the temperature
above 180°C, while the failure form of tension perpendicular to grain is I-shaped failure at any temperature.

Figure 9: Perpendicular tensile test. Adapted with permission from [55], Copyright © 2016, Elsevier B. V
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Table 8 shows the comparison of mechanical properties between BS and other bamboo and wood
materials under tensile conditions.

Figure 10: Typical SEM observation of (a) quasi-static longitudinal, (b) impact longitudinal, (c) quasi-static
transverse and (d) impact transverse BS samples. Adapted with permission from [89], Copyright © 2021,
Elsevier B. V

Table 8: Comparison of tensile properties

Material Species Size/mm Tension Ⅱ (MPa) Tension ⊥ (MPa) MOE Ⅱ (MPa) MOE ⊥ (MPa)

BS [50,73] Phyllostachys pubescens 460 × 25 × 25
62 × 50 × 50
250 × 19 × 7 to 8
453 × 25 × 5
57 × 50

118.4–138 3–4.43 10296–13680 3066

LBL [50,94] Phyllostachys pubescens 460 × 25 × 25
62 × 50 × 50
453 × 50 × 25

90–125.9 2 9663–12476 –

LLBC [98,103] Dendrocalamus
strictus

250 × 16 × 10
200 × 15 × 1.5

187.3 – 14900 –

LVL [94,105] Douglas-fir – 88.5 0.83 13790 –

Glulam [96] – – 16.5–26 0.4–0.6 9400–11900 390–490

WPC [97] Pine – 11.6 5.3 3000 1500

Plywood [98] – – 10.3–27.6 – – –

Douglas-fir [99] – – 107.6 2.3 11.6–14.8 –
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It can be seen that the tensile strength parallel to grain and MOE of BS are similar to LBL, higher than
other materials, but lower than LLBC. In terms of tensile strength perpendicular to grain, the tensile strength
of BS can be comparable to that of WPC and Douglas fir, surpassing that of wood-based materials such as
LVL and Glulam.

3.4 Shear
It can be seen from relevant researches [50,55,58,64] that the failure surface of BS is rough during the

shear failure parallel to the grain, the shear strength parallel to the grain is between 10–20 Mpa, and the shear
strength increases with the increase of the density of BS [63].

Yu et al. [84] studied the shear strength of BS with different resin content and density. The results
showed that the shear strength increased with the increase of resin content and density. However,
according to literature [63,88,89], the test results show that increasing the resin content has no obvious
effect on the shear strength of BS.

In the shear test of BS in different fiber directions with reference to ASTM D7078, it is found that the
failure modes of shear parallel to grain and in transverse-to-grain-plane are almost the same, both of which
are a crack, tear the specimen into two halves symmetrically, and the stress-strain curve is approximately
linear. In transverse shear, the shear action is basically caused by the tension of the fiber in the notch
range. Cracks along the fiber direction can be observed, but the specimen is still a whole, and the stress-
strain curve is nonlinear [62,73]. The failure modes and stress-strain curves are shown in Fig. 11.

Figure 11: Stress–strain relationship and failure mode of shear: (a) parallel to grain, (b) perpendicular
to grain, (c) in transverse-to-grain-plane. Adapted with permission from [73], Copyright © 2014,
Elsevier B. V

886 JRM, 2024, vol.12, no.4



Yang et al. [74] compared the shear properties perpendicular to grain of BFRP-BS and ordinary BS. It is
found that for ordinary BS cracks appear along the fiber direction at the notch and develop longitudinally,
then the longitudinal cracks change into transverse cracks, and finally fail with the expansion of cracks.
The failure of BFRP-BS is caused by the fracture of BFRP material in the notch, and BFRP can enhance
the shear strength of BS to a certain extent. The failure modes are shown in Fig. 12.

Table 9 shows the comparison of mechanical properties between BS and other bamboo and wood
materials under shear conditions.

It can be seen that compared with bamboo-based and wood-based materials such as LBL, LVL, WPC
and Douglas fir, BS has similar or even higher shear strength, and the shear strength perpendicular to grain is
better.

4 Discussion

BS and LBL are both popular engineering bamboo materials at present, with their own advantages and
disadvantages. In terms of mechanical properties, BS is better than LBL. LBL is made by veneering bamboo
slices. The existence of bamboo nodes will have different effects on the mechanical properties. For BS,
because the bamboo strips have been fully defibered during the manufacture, there will be no problem of
the influence of bamboo nodes [48,109]. However, BS is not widely used in buildings because it contains
a large amount of glue and emits a strong odor. On the contrary, LBL has no such limitation because it
contains less glue.

Figure 12: Shear strength of BS with different resin content and density. Adapted with permission from
[74], Copyright © 2020, Elsevier B. V

Table 9: Comparison of tensile properties

Material Species Size (mm) Shear Ⅱ (MPa) Shear ⊥ (MPa)

BS [50,55,73] Phyllostachys pubescens 50 × 50 × 50
50 × 40 × 20
76 × 56

8.21–17 23.44

LBL [103,106] Phyllostachys pubescens 62 × 50 × 50
50 × 50 × 17

7.15–17.5 –

Glubam [107] – 50 × 50 × 40 16.9 17.5

LVL [108] lodgepole pine 64 × 51 × 38
64 × 51 × 38

4.9–5.0 6.5–6.8

WPC [97] Pine – 8.1 7.1

Douglas-fir [99] – – 7.8 –
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As a wood-like material made of bamboo, BS has better mechanical properties than many real Wood.
Taking Larix gmelini and Sitka spruce as examples, BS is obviously better in the tensile and compressive
strength parallel to grain and the bending strength [50,110,111]. However, whether the performance on
the connecting joint can be comparable to that of wood remains to be further studied.

In terms of production, although the impact of BS on the environment is relatively low compared with
traditional building materials, due to the use of adhesives and power equipment, the production of BS
consumes more energy and produces more emissions compared with wood materials. Therefore, this
requires the development of new cost-saving and low energy consumption manufacturing technologies,
such as the improvement of adhesives and production equipment and the improvement of automation.

In terms of use, currently, BS is mainly used in the field of decoration and furniture, with few examples
as building materials. This is related to its cost and its own peculiar smell, as well as the lack of a standard
system as complete as wood. However, the lack of practical examples in turn leads to the difficulty in
formulating the corresponding standard for BS. In this regard, the design, construction, management and
other work processes of BS structure can be digitized and the structural stress analysis can be carried out
through computer software.

5 Conclusion

This review summarizes the mechanical properties of BS under different loading modes. According to
the literature review, the bamboo species used in the production of BS are mainly Neosinocalamus affinis and
Phyllostachys pubescens. However, whether other bamboo species can be better applied to BS production
remains to be studied.

According to the results of the literature review, the strength change of BS is affected by factors such as
original bamboo type, growth position, resin content, treatment method, and density. Therefore, different
production processes can be adopted according to different requirements, and BS can also be classified
accordingly. The classification and standardization of BS will help practitioners around the world
consider bamboo species, adhesive types, processing methods and strength to select the grade required for
BS materials, so as to achieve the expected purpose.

Due to the gradual increase of research on the mechanical properties of BS, there is sufficient basis to
form corresponding test standards for the mechanical properties of BS so as to promote the development and
application of BS.

So far, there is not much construction and research on BS buildings. Therefore, the performance of BS in
the overall building is not clear, which needs simulation research with the help of finite element or 3D-
printing technology.

It may be an interesting direction in the future to apply artificial neural networks and topology
optimization to the performance analysis and research of BS.
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