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ABSTRACT

Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with
sustainable development goals (SDGs). Due to their renewable resources and biodegradability, natural fiber-
reinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage
of hazardous waste and environmental pollution. Among the natural fibre, jute fibre obtained from a bast plant
has an increasing trend in the application, especially as a reinforcement material. Numerous research works have
been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites. Nevertheless,
current demands on sustainable materials have required new developments in thermoplastic composites. In this
paper, the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers. This review
provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix
polymers. The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical
properties. Apart from physical, chemical, and mechanical properties, the study also covers the current and
perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic
composites.

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
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1 Introduction

Plastic waste is becoming a serious environmental problem [1,2]. The landfill is full and limited in space
thus cannot meet the expectation of municipal solid waste that exponentially increases annually in high
population areas. The main root of the environmental concerns relates to the over usage of conventional
plastic [3,4]. In 2019, the production of plastic was estimated at around 368 million metric tonnes, which
includes plastic material from thermoplastic and thermosets [5,6]. Based on the current trend, the world
usage of plastic is expected to grow up to 380 million in 2020. The high demand for conventional plastic
is due to its light, cheap, and durable features, making it the decisive choice for industrial and consumer
products. In general, conventional plastic can be divided into two major groups, which are thermoset and
thermoplastic. Current usage of both thermoset and thermoplastic are dominant in fields of agriculture
(3.4%), electrical and electronic (4.1%), automotive (6.2%), building and construction (20.4%),
packaging (39.6%), and others, specifically consumer and house products, furniture, sports, as well as
health and safety (22.8%) [7,8].

The type of polymer can be determined by what happens to the material when it is heated. The ability to
change shape is lost when the thermoset material has been cured. This happens because of the strength of the
molecular chains in the thermoset material which are strongly bonded to each other. Thermosets have a 3D
network that is bound together with covalent bonds and cannot melt through the reheating process [9]. In
recent decades, thermoset matrix fibre-reinforced composites have been widely used in various industries
such as automotive, aerospace, and renewable energy structures [10]. This happens because the thermoset
material has excellent adhesion, good resistance to corrosion and heat. In addition, the thermoset matrix
has higher strength and stiffness than metal materials [11,12]. This makes it possible to create lighter
components with more efficient operating costs by weight reduction. One of the disadvantages of
thermoset materials is that they cannot be recycled and reformed for use in other applications.
Thermoplastics are polymeric materials that soften when heated and could harden when cooled. This
means that thermoplastic materials can be recycled and reformed for use in other applications. This
property is not available in thermoset materials [13–16]. Other differences between thermosets and
thermoplastics are shown in Table 1.

Table 1: Thermoset and thermoplastic matrices in composites comparison [13,14,17–20]

No. Materials Properties

1 Thermosets � Low-cost production
� Long processing time
(chemical reaction)

� High temperature
tolerance

� Low thermal expansion
� High in molecular weight

� High stiffness
� High strength
� High brittle
� Excellent thermal stability
once polymerized

� High fatigue life
� Low processing pressure

� High creep
resistance

� Low viscosity
� High processing
temperature

� Mold requirements
� Low volumetric
shrinkage

(Continued)
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Numerous research works aim to develop more advanced thermoset-based composites. Nevertheless,
the thermoset plastic undergoes an irreversible process that does not permit it to be reshaped and
reprocessed by heat and chemical solvent. Thus, recycling thermoset plastic is more challenging
compared to thermoplastic. Also, thermosetting is known for possessing high brittleness and inability to
repair [21,22]. Unlike thermoset plastic, thermoplastic polymer provides a better option for reducing
plastic waste [23,24]. So far, the consumption of thermoplastic is approximately 90% of the total plastic
usage around the globe. Thermoplastic matrix polymer has excellent resistance to impact loading than
thermosetting resin. In general, there are many advantages of thermoplastic over thermosets as listed by
the previous research work, such as shorter processing time, longer shelf-life and easier to be plasticised,
low water absorption, stable glass transition temperature (Tg), high fatigue resistance, low coefficient of
friction, high abrasion resistance, and recyclable [25,26].

Moreover, new biodegradable thermoplastic materials, such as soy-based resin, polylactic acid and
starch-based resin, are environmental-friendly because they completely degrade after disposal [27–29]. At
the same time, it is economical as it minimises energy consumption. However, the biggest challenge to
applying the biodegradable factor is the high cost, requiring complicated processing. Biodegradable
plastic needs to improve in terms of shelf-life, mechanical performance, and environmental impact due to
different manufacturing processes of bioplastic. However, the constant progress on developing
biodegradable products improves production techniques, lowering production costs for biodegradable
material [30–32].

The introduction of fibre-reinforced material can modify both thermoset and thermoplastic matrix
polymers. The role of fibre-reinforced material in a matrix polymer is to give the desired strength and
modulus. Synthetic fibres such as glass, carbon and aramid have been used as reinforcement materials for
thermosets and thermoplastics in the last decade. Nevertheless, synthetic fibre is notoriously known for
causing environmental problems since it is hard to dispose of with no recycling options. Combining
natural fibres and thermoplastic matrix polymer produces a material that fulfils a standard for sustainable
materials [13,24,33]. At the same time, inexpensive and environmental-friendly plant fibre could hinder
the pollution that is at a critical level nowadays. Plant fibre can be categorised based on different plant
elements, such as leaf, bast, stem, bark, and seed. Generally, the plant fibres, for instance, jute, kenaf,
coconut, bamboo, cotton, flax, abaca, hemp, and sisal, are broadly utilised because they are non-abrasive,
renewable, biodegradable, and have high corrosion resistance, high stiffness, low density, and highly
disposable recovery [34–36].

Plant fibre is extensively used as a reinforcement material by industries for various applications,
especially automobile and construction industries. The demand for natural fibres worldwide increases
every year according to the increasing usage of multiple applications [37,38]. In automotive and
structural applications, plant fibre is less dense than synthetic fibre, reducing about 10% to 30% of the
total weight percent. Furthermore, natural fibre consumes less energy for production, which means that

Table 1 (continued)

No. Materials Properties

2 Thermoplastics � High productivity
processes

� High toughness
� High strain to failure
� Low fracture toughness

� High chemical resistance
� Easy to handle
� High storage time (Self life)
� Low in molecular weight

� High processing
time

� Easy to processing
environment

� Reform ability
� Recyclability
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they are environmentally friendly and can become alternative sources for petroleum-based products,
minimising dependence on petroleum usage [39–41]. The aim of the paper is to review the most recent
advancements in jute-reinforced thermoplastic composites. Jute fibres provide several benefits and
interesting prospective uses when used as reinforcing materials for thermoplastic and thermoset polymer
matrices. However, several specific difficulties must be researched and resolved to employ jute as
reinforcement in matrix polymers, such as problems with moisture absorption, compatibility, and
variability in fibre properties. Jute-reinforced composites have a lot of potentials, and future research will
focus on how to optimise that potential and contribute to ecologically friendly and sustainable material
solutions across a range of industries. The current state of jute-based composites today and their potential
for the future are extensively and scientifically reviewed in this research.

2 Jute and Plant Fibre

The high demand for conventional plastic is due to its light, cheap, and durable features, making it a
decisive choice. Jute is a widespread natural fibre used as reinforcement material and is known as the
Golden Fibre due to its golden and silky shiny aesthetics. Jute is classified into the Sparrmanniaceae
family and commonly cultivated in two species which are Corchorus olitorius (Tossa jute) and Corchorus
capsularis (white jute). Jute is the second most important fibre after cotton [42–44].

Jute brings many benefits to mother nature, like ameliorating land fertility and producing large biomass
per unit area of land. Jute fibre can be recognised based on several characteristics and features. It has a length
in the range of 1.5 to 4.0 m and 20 micrometres in diameter. The inconsistent jute fibre size contributed to the
uneven thickness of fibre cell walls, thus altering its strength. Jute fibre is strong against microorganisms but
unconvincing counter to the chemical and photochemical attack. It also possesses high abrasion resistance
that makes it suitable for machining the composite to produce different components [45–47].

Jute is included under the group of bast fibre. In Bangladesh and India, jute is an essential commodity
that finds widespread application in packaging materials, industrial processes, and other commercial sectors
[48,49]. Based on the data obtained from Food and Agriculture Organization (FAO), India and Bangladesh
covered 98% of the world’s production of jute fibre in 2017 [50]. Bangladesh produced an average of
804,520 tonnes of jute in 2020 [51]. The high availability and simplicity of processing jute fibre are the
main factors for the low cost of jute fibre. Jute fibre was obtained from the pith through a process known
as retting. Traditionally, jute fibre has been used in many applications such as wall covers, lampshades,
curtains, hessian cloth, ropes, gunny, shopping bags, floor mats and other decorative materials. In modern
applications, jute fibre is widely used in thermoplastic composite and insulation material [51–53].

In regards to this, jute fibre was selected as a reinforcement material due to its harmless nature to the
environment and possessed a biodegradable feature. Low density and high strength make it suitable as a
reinforcement material for thermoplastic composite [54–56].

2.1 Chemical and Mechanical Properties of Jute Fibre
The detail of the chemical and mechanical properties of jute fibre is summarised in Table 2. Based on the

chemical composition of jute fibre, it can be concluded that jute fibre is composed of α-cellulose,
hemicellulose, lignin, and waxes. The chemical content of jute fibre and other natural fibre has various
properties primarily influenced by geographic region, climatic harvesting method, soil condition and
qualities of retting [57,58]. Jute has high cellulose content, and its cellulose chains are parallel to the
fibre’s long axis. The tremendous cellulose content on jute fibre develops hydrophilic properties that
initiate poor interface and vulnerable to moisture absorption. The moderate lignin content on jute fibre
boosts its susceptibility to weather. Nevertheless, the appearance of moderate lignin on jute fibre
promotes a brittle behaviour causing low extension at the break [59–61]. The tensile properties of jute
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fibre are comparable to other bast fibre types such as ramie, hemp, sisal, and flax. Jute fibre presents some of
the special properties of jute-like high stiffness and light in weight [45,47,62]. From Table 2, the density of
jute fibre is among the lowest in the group of bast fibre.

Several Sustainable Development Goals (SDGs) are aligned with the increasing incorporation of natural
fibres as reinforcements in polymer composite materials, including jute, ramie, kenaf, banana, hemp, flax,
sisal, and bamboo. Jute is the most utilized material because it has an incredibly high tensile strength and
is the most possible from an economic perspective. Industries can promote SDG 12 (Responsible
Consumption and generation) by reducing their environmental effect and waste generation by substituting
these natural fibres for conventional ones in composites. Jute production also supports SDG 15 (Life on
Land) by preserving soil fertility, stopping land degradation, and protecting biodiversity. It also supports
SDG 9 (Industry, Innovation, and Infrastructure) by encouraging composite manufacturing and
environmentally friendly infrastructure investment. Because it generates employment opportunities,
particularly in rural areas, jute’s economic viability is related to SDG 8 (Decent Work and Economic
Growth), which aims to alleviate poverty. Jute is an environmentally friendly alternative that can be used
in polymer composites to promote a more just and sustainable world, advance technology, and fulfil the
needs of the company [68–70]. The advantages of jute fibre are [71,72]:

� Jute fibre is biodegradable, recyclable, and eco-friendly.

� Jute fibre is the cheapest of the plant fibres because it is procured from the bast or skin of the plant’s
stem.

� Jute fibre can grow in 4–6 months with a large amount of cellulose produced from the parenchyma of
jute stems.

� Jute fibre has high tensile strength and low extensibility, better breathability of fabrics, and totally free
of any element of narcotic or odour.

� Jute fibre has possessed good insulating and anti-static properties as well as low thermal conductivity
and a moderate moisture regain.

Table 2: Chemical and mechanical properties of natural fibre [57,58,61–67]

Chemical properties Physical and mechanical properties

Fibre
type

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

Wax
(%)

Length of
fibre (mm)

Diameter of
fibre (μm)

Density
(g/cm3)

Elongation
(%)

Tensile
strength (MPa)

Young’s
modulus (GPa)

Jute
(Bast)

45–71 13.6–21 12–26 0.5–
2

0.8–6 5–25 1.3–
1.46

1.5–1.8 393–800 10–30

Ramie
(Bast)

68.6–76.2 13.1–16.7 0.6–
0.7

– 40–250 18–80 1.5 2.0–3.8 220–938 44–128

Sisal
(Bast)

67–78 10–14.2 8.0–11 – 0.8–8 7–47 1.33–
1.5

2.0–14 400–700 9.0–38.0

Kenaf
(Bast)

31–39 21–21.5 15.9 – 1.4–11 12–36 1.2 2.7 – 6.9 295 –

Abaca
(Bast)

60.8–64 17.5–21 12–
15.1

– – – 1.5 – 980 –

Hemp
(Bast)

57–77 14–22.4 3.7–13 0.8 5–55 10–51 1.48 1.6 550–900 70

Flax
(Bast)

71 18.6–20.6 2.2 – 10–65 5–38 1.4–1.5 1.2–3.2 345–1500 27.6–80
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2.2 Thermal Properties of Jute Fibre
The thermal degradation of jute fibre is one problem to overcome. It was about thermal properties.

Without melting, jute straight away burns and chars when exposed to high temperatures. However, most
of the thermoplastic processed temperature is about 200°C. Jute fibre will start to ignite at a temperature
of 193°C [73]. Thus, the thermal degradation of jute fibre becomes unsafe after exceeding 250°C. This is
due to the temperature limit of jute fibre to degrade is between 220°C to 260°C for hemicellulose, where
lignin starts to decompose at 160°C and continues to degrade up to 400°C. Thus, it is challenging to
maintain jute fibre from degrading when reinforced with the thermoplastic matrix polymer. The
decomposition of lignin will cause deterioration in the mechanical properties of the composite drop if jute
thermal degradation occurs at the melt processing temperature [74–76]. Nonetheless, based on
thermogravimetric analysis (TGA) from previous work, it indicated jute fibre owns distinguished thermal
stability than bamboo, kenaf, abaca or wood micro-fibres [77,78]. Jute fibre possesses high thermal
stability due to the high content of cellulose and low ranges of lignin, fats, pectins and proteins.
Additionally, jute is an excellent thermal insulator as it has a high specific heat capacity. Nevertheless,
jute fibre will lose its strength when exposed to too much heat and sunlight [79–81].

2.3 Water Absorption of Jute Fibre
The disadvantages of jute fibre are also manifested by high water absorption, which causes deteriorating

strength when wet, dimensional movement and biological degradation [82]. The increased moisture
absorption subsequently produces a weak bonding on the composite since most of the thermoplastic
matrix polymer such as PP, PE and PVC are non-polar and hydrophobic compounds [83]. As a result,
jute fibre and thermoplastic matric polymer are not compatible, which causes several problems such as
debonding or void, which can deteriorate the performance of the composite. On the other hand, natural
fibre like jute typically has a higher moisture absorption than synthetic fibre. Therefore, jute fibre poses a
significant threat when exposed to the environment, especially for outdoor applications. Unlike synthetic
fibre, jute fibre contains a high cellulose molecule encompassing hydroxyl groups [84–86]. Functional
groups like carbonyl, vinyl, hydroxyl, ketone, and others can be observed via FTIR spectroscopy. FTIR
spectroscopy is used to analyse untreated and treated jute fabric and fibres [87]. This allows the changes
in chemical compounds before and after chemical treatments to be investigated. Based on the FTIR, the
existence of polar hydroxyl groups (-OH) on jute fibre can be determined. Table 3 summarises the
transmittance value obtained from the previous study on jute fibre. FTIR confirms the hydroxyl group in
jute fibre that causes high sorption, diffusion, and permeability coefficients [88].

Table 3: The wavenumber value for fourier transform infrared of jute fibre [88–90]

Wavenumber,
cm−1

Explanations

3200–3600 OH stretching

2900–2700 C–H stretching vibration of alkyl groups in aliphatic bonds of cellulose, lignin, and
hemicelluloses

1740 C = O stretching of the acetyl and ester groups in hemicelluloses and aromatic
components of lignin

1650–1640 the O–H bending of water absorbed into cellulose fibre structure

1602–1505 C–C symmetrical stretching vibration of aromatic rings present in lignin

1440 CH2 symmetric bending in lignin
(Continued)
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3 Trend of Jute Fibre as Reinforcement Material

Jute is utilised predominantly in polymer matrices to enhance the mechanical properties of composites.
Many kinds of research were already instigated to reinforce jute with thermoset and thermoplastic. The trend
of jute fibre utilisation as reinforcement material is expected to increase in the future. High demand from the
automotive industries to acquire low weight structural for fuel efficiency and energy saving urges more
research on lingo-cellulose fibre [56,74,91]. Based on the literature survey, jute fibre has been used in
various reinforcement forms, divided into the filler, short, long, and textile. The structure of fibre
reinforcement is important in deciding the bulk properties of the final product [92]. The researcher
investigated different types of support in various testing to determine mechanical and thermal properties.
Each of the reinforcement forms influenced the properties of the composite in different ways. Diverse
forms of reinforcement were prepared to match the thermoplastic resin characteristic, known to possess
very high melting, viscosities and difficulties when performing impregnation [93].

Jute textile fabric is woven, non-woven, braid, knitting, mat, unidirectional and bi-directional. The
textile fabric is made up of a long fibre which goes through various conventional textile processes.
Among all textile fabrics, jute in woven form is observed at the highest frequency compared to other
forms of reinforcement material. Several factors influence woven fabric selection, such as higher
mechanical and physical properties, modest processing technique, and inexpensive cost. The woven fabric
comprises more balanced properties than another reinforcement textile, such as unidirectional lamina
[37,94].

Woven fabric reacted on both directions of longitudinal and horizontal due to the yarn’s appearance in
weft and warp. Also, the woven fabric possesses significant mechanical performance in terms of tensile,
flexural and impact loading that the non-woven fabric does not. The woven fabric keeps high strength
due to the interlocking feature of the fibre’s weaving; different weaving patterns such as plain, twill, and
basket influence composite performance [94]. Therefore, the composite made by several layers of woven
fabric resulted in outstanding tensile resistance and energy absorption characteristics. The woven jute
fabric reinforced with soy-based resin composite performed better than non-woven jute fabric. The
mechanical properties of woven fabric reinforced with matrix polymer composite can be enhanced by
optimising woven and laminated parameters covering fibre orientation and volume fraction, respectively
[37]. The high cost of production has hindered the application of woven fabric since it involves multiple
processes such as scotching, hackling, and spinning to turn whole raw fibre into yarn [95].

Nevertheless, the short fibre is more significant in terms of processability and cost. Short yarn is more
versatile than long fibre since it can be processed using fabrication methods such as extrusion, injection, and

Table 3 (continued)

Wavenumber,
cm−1

Explanations

1430 CH2 symmetric bending in cellulose.

1250 C–O stretching vibration of hemicelluloses

1235 C–O stretching vibration of lignin

1150 C-O-C asymmetric stretching of celluloses and hemicellulose

1110 O-H stretching of celluloses and hemicellulose

1028 C-O stretching of celluloses, hemicellulose, and lignin

890 C–H deformation vibrations of cellulose
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compression without thermal degradation. Moreover, short fibre is known for anisotropy and easy dispersion
[96,97]. Mechanical performance of short jute fibre composite depends on several factors such as mechanical
and physical properties of jute, type of matrix polymer, aspect ratio, fibre orientation, and volume
fraction [98].

To enhance the mechanical properties of short fibre, two important parameters of short fibre composites:
dispersion and aspect ratio, are carefully optimised. The aspect ratio plays an important role in determining
the properties of the short fibre composite. One of the reasons for altering the aspect ratio is the
manufacturing method. The high viscosity of the matrix can cause fibre breakage during the
manufacturing as the high shear stresses form the viscous polymer, affecting the final length distribution.
Thus, to achieve a high level of stress transfer in the fibre, the fibre length (lf) must be exact to the
critical distance (lc) [99,100]. On the other hand, a specific length degradation on fibre occurs due to the
high processing temperature of the compounding process. In addition, the strength of short fibre
composite is controlled via interfacial adhesion between fibre and matrix polymer while the fibre
orientation controls the modulus. The variation of short jute fibre length alters the mechanical properties
composite [101–103].

The experiment conducted by Bisaria et al. [104] displayed that the effect of short jute fibre reinforced
with epoxy composite using four fibre lengths of 5, 10, 15 and 20 mm. The results showed that the maximum
tensile and flexural properties were found for composites with a fibre length of 15 mm, while the maximum
impact properties were found for composites with a fibre length of 20 mm.

4 Jute Reinforced Thermoplastic Polymers

Lignin-rich fibres such as jute (5%–26%) are more flexible and have a higher maximum deformation,
while the cellulose content (61%–72%) in jute makes it harder, with a higher modulus of elasticity
[105,106]. Jute has good mechanical properties that can be transferred to thermoplastic polymers by
incorporation in composites. This results in improving the physical, mechanical, and thermal properties of
the material while decreasing production costs and being environmentally friendly. Compared with
thermosets, composites made of thermoplastic materials usually have a longer shelf life, greater strain to
failure, fast consolidation, excellent chemical resistance, better damping characteristics, low noise
emission, repairable and recyclable [106,107]. Some advantages associated with the use of jute as
reinforcement in thermoplastics are biodegradability and high specific properties. jute is one of the
superior natural fibre materials due to its low cost, high level of production, low density, and high
specific strength making it suitable as a reinforcement material for thermoplastic composite [108,109].

Jute fibre has been reinforced with many thermoplastic matrix polymers such as poly(butylene
succinate) (PBS), polyvinyl chloride (PVC), starch resin, light density polyethene (LDPE), high-density
polyethene (HDPE), polyethene terephthalate (PET), polypropylene (PP) soy-based resin and poly-lactic
acid (PLA). As shown in Fig. 1, thermoplastic can be divided into two majors: renewable and non-renewable.

The selection of different types of thermoplastics depended on several criteria:

� Desired application

� Environmental condition

� Budget and economic aspect

� Process of fabrication

Each of the thermoset matrix polymers has identical mechanical, thermal, and physical properties.
Table 4 summarises the mechanical and thermal properties of each thermoplastic composite.
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Based on the literature, the researcher primarily focuses on the PP and PLA matrix. The PP matrix
polymer became the favourite amongst researchers because it has some excellent character for composite
fabrication. It also possesses outstanding properties such as low density, good abrasion, good surface
hardness, scratch resistance and significant electrical properties [122]. Besides that, the PP is effective
regarding price, recycling behaviour and thermal stability [107]. Furthermore, the polypropylene can be
blended with another thermoplastic polymer. The high biodegradability of PLA is the main feature since
it’s made from plants such as corn and rice. PLA completely degrades when exposed to the environment
and only produces H2O and CO2 while degrading, non-toxic and safe for people [123].

From the collected literature, the standard method that has been utilised includes compression moulding,
injection moulding and hot press. The selection of the fabrication method highly depended on the
reinforcement phase. In most cases, the compression moulding was selected to manufacture jute textile
reinforcement with a thermoplastic matrix. In the compression moulding, jute fibre was mixed with
matrix and then pressed with a heated plate with a temperature of about 200°C and pressure of 5 MPa
[124]. Moreover, the fabrication method also depended on the production scale. The suitable fabrication
method for larger-scale production is injection moulding, while other composite fabrication is less
appropriate [125,126]. Despite that, the pultrusion can undergo a mass-production scale since it can
maintain continuous production of the straight profile with constant cross-sections [127].

In the case of filler and short fibre of jute reinforced thermoplastic composites, most of the fabrication
method applied is a melt mixing or solution mixing followed by injection moulding or compression
moulding. Fibre the content is usually limited to 40 wt.% in both melt mixing and solution mixing. This
is due to the fibre content above 40 wt.% is hard to incorporate and produces a lower mechanical
performance of the composite [128,129].

Figure 1: Type of thermoplastic

Table 4: Mechanical and thermal properties of thermoplastic polymer-matrix composites

Density
(g/cm3)

Elongation
at break

Melting
temperature
(°C)

Glass
transition
temperature

Flow index
(g/10min)

Reference

LDPE 0.923 150–600 124 – 2.0–3.5 (2.16 kg at 190°C) [110,111]

HDPE 0.950–
0.960

– 110–140 – 6–8 (2.16 kg at 190°C) [112,113]

PP 0.90–1.16 20–400 161–170 – 8–11 (2.16 kg at 230°C) [114]

PET 1.33–1.38 – 264 125 – [115,116]

PBS 1.26 700 90–115 – 6.13 (1.26 kg at 190°C) [110,117]

Thermoplastic
Starch

1–1.39 31–44 110–115 75–158 – [118,119]

PLA 1.24–1.25 – 160–170 55–65 15 (2.16 kg at 210°C) [120,121]
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4.1 Jute Reinforced Polypropylene (PP) Composite
PP has some noteworthy properties such as low density, good surface hardness, abrasion resistance, and

excellent electric properties [84,86]. The researcher commonly performed jute reinforced PP in previous
works to investigate the mechanical properties, thermal behaviour, and effect of surface modification
[130,131]. From an earlier study on durability and interfacial evaluation of modified jute-polypropylene
(PP) composites using micromechanical test and acoustic emission. Park et al. [130,131] proved that with
better interfacial properties of jute fibre and PP polymer, the better the mechanical properties of the
composite. A study of creep and dynamic mechanical behaviour of PP–jute composites were investigated
by Acha et al. [132], who discovered that creep behaviour decreases when jute content in the composite
increases, but only marginal for fibre concentrations more prominent than 25 wt.%. Jute fibre with different
weight content has been reinforced with PP composite. In the study by Hassan et al. [133], it was shown
that the short jute fibre with 10 wt.% Content achieved high tensile strength in PP composite. Jute fibre
content for 20% and 30% decreased the tensile strength of the composite. A similar result was obtained
from the experiment conducted by Rahman et al. [134,135]. The optimum fibre content is varied for the
different types of jute reinforcement. Dieu et al. [136] performed the mechanical testing of jute cloth
reinforced PP composite with 30 wt.%, 40 wt.%, 45 wt.%, 50 wt.%, 60 wt.%, 65 wt.% of jute fibre
content. The result indicated jute fibre content is optimum at 45 wt.% content. Table 5 summarises the
previous work on the mechanical properties of jute fibre reinforced PP composites.

Table 5: The relation of type of reinforcement and mechanical properties of jute reinforced polypropylene

No. Type of
reinforcement

Fabrication
method

Volume (v/v)/
weight fraction
(wt.) (%)

Tensile
strength
(MPa)

Flexural
Strength
(MPa)

Impact
strength
a: (J/m)
b: (kJ/mm2)

Reference

1 Short jute Injection
moulding

– – 86 4.2a [137]

2 Short jute Hot press
machine

3 wt. 23 46 1.1b [133]

5 wt. 23 48 1.3b

10 wt. 27 51 1.4b

20 wt. 26 49 1.3b

30 wt. 25 47 1.2b

3 Jute fabric Hot
compression
moulding

30 v/v 32 – – [138]

4 Short jute Injection
moulding

20 v/v 45 – 31.92a [83]

25 v/v 47.1 – 39.9a

30 v/v 47.1 – 40.19a

35 v/v 45.4 – 32.53a

5 Short jute Injection
moulding

10 wt. 32.0 36.14 263.92a [135]

20 wt. 31.6 35.87 225.95a

30 wt. 31.5 37.20 218.35a

40 wt. 30.9 35.34 206.96a

50 wt. 30.5 37.46 191.77a
(Continued)
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4.2 Jute Reinforced Polyethylene (PE) Composites
The application of polyethene matrix polymer is limited compared to polypropylene. Polyethene is often

classified according to density and branching. The mechanical properties are varied depending on the type of
branching, crystal structure, and molecular weight. High-density polyethene (HDPE) is stiff, strong, and has
a high melting temperature. It is one of the most widely used plastics in many applications such as bottles,
film, and packaging. The preparation of composite polymer by mixing the HDPE with inorganic fillers is
very interesting. HDPE is lightweight yet super strong that makes it ideal for packaging and
manufacturing products. Plus, HDPE is impact-resistant and weather-resistant, which makes it last longer.
It is also safe against insects, rot, and any chemical. HDPE is safe for consumer use since it produces no
harmful emissions during production or usage by consumers. Jute fibre has been used as reinforcement in
previous works [56,143].

Hossain et al. utilised jute to reinforce recycled HDPE matrix polymer. The weight content of jute fibre
used is 0 wt.%, 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result of tensile strength obtained for
different weight content of jute from 0–25 wt.% Jute-mat fabric produces a significant reinforcement effect
initially in the used HDPE composite. The maximum value of the tensile strength of recycled HDPE/jute-mat

Table 5 (continued)

No. Type of
reinforcement

Fabrication
method

Volume (v/v)/
weight fraction
(wt.) (%)

Tensile
strength
(MPa)

Flexural
Strength
(MPa)

Impact
strength
a: (J/m)
b: (kJ/mm2)

Reference

6 Commingled
jute

Compression
moulding

39.8 v/v – – [139]

7 Short fibre Hot
compression
moulding

5 wt. (1, 2, 4 mm) 23, 26.2,
24.7

– – [140]

10 wt. (1, 2, 4 mm) 26.2,
31.5,
21.1

– –

15wt. (1,
2, 4 mm)

20.5, 27,
25.1

– –

8 Woven jute Film stacking 30 wt. 34.3 54.4 15.8a [136]

40 wt. 42 61 21.43a

45 wt. 44.5 62 23.41a

50 wt. 38.8 52 20.25a

60 wt. 37.7 49 18.63a

65 wt. 35 44.3 17.53a

9 Jute yarn Injection
moulding

10 wt. 32 – – [141]

20 wt. 39.4 – –

30 wt. 45.4 – –

40 wt. 40.7 –

50 wt. 29.6 – –

10 Non-woven Film staking
method

2 layers pre-dried
and 3 layers PP

28.4 35.1 65a [142]
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composites is found to be 33.12 MPa for 20 wt.%. Jute mat fibre composites. The tensile strength drops when
the weight content of jute fibre exceeds 20 wt.% [144]. Unlike HDPE, Low-Density Polyethylene (LDPE) is
produced by polymerization of ethylene gas at higher pressure and temperature. The LDPE is essentially low
density, impact-resistant, and waterproof, which are similar to HDPE properties. Besides that, the LDPE are
relatively cheap, with exceptional electrical insulation properties, a high level of toughness, and high
chemical resistance [145]. Nevertheless, the usage of LDPE is safe for the human body, and it does not
extract toxic substances in the environment. In addition, the LDPE can stand a temperature of 80°C to
95°C in a short time. However, LDPE is weak against gasses, so that it is ineffective for packing the
products sensitive to oxidation. Jahan et al. [146] performed an investigation to compare physical and
elastic properties under the condition of increasing weight content and duration of soaking time between
jute/LDPE and glass fibre/LDPE composite. Four types of weight content were used to prepare ute/LDPE
and glass fibre/LDPE composite, including 35 wt.%, 45 wt.%, 56 wt.%, and 66 wt.%. fibre content. Jute/
LDPE composite was reported to decrease than glass fibre/LDPE composite slowly. The finding obtained
from the experiment revealed that jute/LDPE had low tensile strength than glass fibre/LDPE composite in
all fibre weight content except for 45 wt.%. A similar pattern was observed on the flexural strength of
jute/LDPE composite. The tensile and flexural strength of jute/LDPE decreases when fibre weight content
increases more than 45 wt.%. Jute/LDPE possesses better young modulus, elongation, and flexural strain
than glass fibre/LDPE composite, indicating less stiffness. Unlikely, jute/LDPE composite has a higher
percentage of water absorption than the glass fibre/LDPE composite.

4.3 Jute Reinforced Biopolymer
As an alternative to petroleum-based polymers, jute fibre has been reinforced with a biopolymer as

matrix. Biopolymer is one type of polymer that mainly consists of several types of carbon-containing
repeating units that are used or derived from living organisms. Biopolymers include natural polymers,
bio-based polymers, also known as bioplastics, which are extracted from biomass (i.e., natural polymers)
or polymerized from bio-based monomers [147,148]. Most biopolymer matrix originated from the
biological system or chemically processed using sugar, starch, natural fats, and oils [149]. As it originated
from natural resources, the biopolymer degrades when exposed to the sun and air over a short period
[150]. The popular type of biopolymer as a matrix of composite is PLA. The usage of PLA can decrease
the demand for petroleum-based thermoplastic such as PP, PE, and PVC [151].

PLA originated from renewable and biodegradable agricultural resources. There are two main methods
for producing the PLA: through ring-opening of polymerization of lactide and direct polycondensation of
lactic acid monomers. The PLA is an interesting matrix polymer since it offers high strength, thermal
plasticity, good aesthetics, and bio-compatibility. The weakness of PLA matrix polymer is caused by its
brittleness which limits its application [149]. Numerous findings have been proposed by the researcher
from the investigation of jute-reinforced PLA composite. Hu et al. [152] indicated that during the ageing
process of PLA jute composites, the main factors for defect are complete structure relaxation,
microcracks, pores, and delamination. Memon et al. [153] indicated that the range between 185°C–195°C
is the optimum compression moulding temperature for jute/PLA unidirectional composite. For PLA jute
composite with 40% fibre by weight, the result showed that stiffness and tensile strength are doubled
compared to pure PLA. They suggested that the heating temperature should be between 210°C and
220°C to yield optimum results for tensile strength [154].

Another type of biopolymer as matrix also has been selected as a matrix phase for jute fibre, such as
thermoplastic starch and soy-based resin. Sharma et al. [155] prepared a composite based on potato starch
and jute fibre. The sample was prepared by different parameters such as fibre size, meshing or without
meshing and with propane-1,2,3-triol or without propane-1,2,3-triol plasticiser. The result confirms that
the composite made by the 5 mm jute with propane-1,2,3-triol have some excellent mechanical properties
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than the composite without propane-1,2,3-triol. Nevertheless, the starch contains propane-1,2,3-triol
combined with thick mesh have a poor surface property compared to the composite made up of the
original size of jute fibre. Behera et al. [156] formulated a soy-based resin from a different weight
percentage of glyoxal such as 1 wt.%, 5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%. The glyoxal is then
combined with 10 wt.% of glycerol to acquire soymilk and stirred for 30 min to obtain soy resin. The
optimized soy-based resin is made up of 10 wt.%. Glyoxal and 10% glycerol was selected, then
reinforced with jute fibre in the form of non-woven and woven fabric with varying content of 40 wt.%,
50 wt.%, 60 wt.%, 70 wt.%, and 80 wt.% The mechanical properties result showed that non-woven jute
reinforced soy-based resin with a content of 60 wt.% owned the highest mechanical properties. Table 6
represents the data for the type of reinforcement and mechanical properties of jute reinforced biopolymer.
Some environmental issues, such as waste generation, build-up in disposal, and low reproducibility,
dominate when many non-biodegradable polymers are used. The use of biopolymers is one solution to
these problems. Compared with the petroleum-based polymer, the bio-based polymer matrix has a good
life cycle. The increasing environmental awareness has resulted in increased demand for biopolymers.
The global biopolymer market is predicted to spread 2.7 million MT (metric tons) by 2023 [157].

Table 6: The relation of type of reinforcement and mechanical properties of jute reinforced biopolymer

No. Type of
reinforcement

Manufacturing
method

Condition Tensile
strength
(MPa)

Flexural
strength
(MPa)

Impact
strength
(J/m)

Reference

1 Short Injection
moulding

5% v/v 44.56 – – [97]

10% v/v 50.43 – –

15% v/v 52.29 – –

20% v/v 54.87 – –

25% v/v 52.45 – –

2 Long 20% v/v 41.2 37.7 – [158]

3 Woven Hydraulic press
and hot press

Warp direction 81 82 16.4 [159]

Weft direction 71 81 14.3

4 Long Injection
moulding

Long fibre pellet (LFP)
without LA-1

28 – 3.85 [160]

Long fibre pellet 65.2 – 4.39

Short fibre pellet (SFP)
with full flight

78.6 – 4.57

Short fibre pellet (SFP)
with mixing element

90.7 – 4.22

5 Mats Film stacking 40%, 180°C, 10 min 72.7 – – [154]

40%, 190°C, 3 min 89.3 – –

40%, 200°C, 3 min 93.5 – –

40%, 210°C, 3 min 100.5 – –

40%, 220°C, min 98.5 – –

(Continued)
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4.4 Jute Reinforced Biodegradable Polymer
A biodegradable polymer is one that degrades due to the action of living organisms such as microbes and

fungi. A bioplastic or biopolymer can be defined as a polymer that is manufactured into a commercial product
from a natural source or renewable resource. A bioplastic can be biodegradable, but a biodegradable plastic
does not mean the material was derived fully or in part from a biological source [162–164]. For example,
polymers such as polycaprolactone (PCL) and poly(butylene succinate) (PBS) are biodegradable but
petroleum based [165,166]. PBS is a white crystalline biodegradable polymer formed through the
polymerisation of succinic acid and butanediol. With a melting point around 90°C–120°C, PBS is
feasible for further processing various other products with better capabilities. Therefore, jute fibre and
PBS are suitable to form composites for their excellent properties and their processing temperature
compatibility [167–169]. Jute fibre reinforced PBS matrix polymer test was performed by Liu et al. [170].

The test was performed to investigate the effect of surface modification on jute fibre on the mechanical
properties of the composite. Jute/PBS composite had undergone tensile testing and flexural testing with
different jute content of 10 wt.%, 20 wt.% and 30 wt.%. The result obtained showed that the increase in
fibre content up to 20 wt.%, increased the mechanical properties but decreased or nearly remain constant
when fibre content was more than 20 wt.%. Another experiment conducted by Liu et al. worked on jute
reinforced PBS composite biodegradability. A similar weight content was used as in the previous
research. The fibre with less weight content, about 10 wt.%, has higher weight loss than the composite
with more weight fibre content. The 10 wt.% jute/PBS composite experiment resulted in a weight loss of
62.5% after 180 days [170].

The existing physical properties of PBS were changed slightly due to the addition of other materials such
as reinforcement, additive or filler. The physical properties of jute fibre reinforced PBS composites increase
water absorption because the fibre content increases. PBS reinforced with jute fibre improved tensile
strength, tensile modulus, flexural strength, and flexural modulus by 517.9%, 3529.8%, 302.6%, and
1949.1%, respectively. The mechanical properties of the composite were highest when using jute fibre
content up to 50% by weight [166].

Table 6 (continued)

No. Type of
reinforcement

Manufacturing
method

Condition Tensile
strength
(MPa)

Flexural
strength
(MPa)

Impact
strength
(J/m)

Reference

6 Short Injection
moulding

30 wt.% PLA 82.5 – – [161]

30 wt.% PHBV/Ecoflex 34.5 – –

7 Non-woven Compression
moulding

40 wt.% 24.8 25.8 – [156]

50 wt.%. 29.6 30.7 –

60 wt.% 37.1 38.4 –

70 wt.% 35. 9 36.3 –

80 wt.%. 31.4 32.1 –

Woven 40 wt.%. 22.4 21.9 –

50 wt.%. 27.7 29.2 –

60 wt.%. 35.6 33.5 –

70 wt.% 32.5 31.4 –

80 wt.%. 29.4 28.7 –
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5 Perspectives for Future Research

When utilized as reinforcing materials for thermoplastic and thermoset matrix polymers, jute fibers
provide several advantages as well as attractive prospects for application. Jute fiber processing and
treatment, fiber form and size, and various fabrication procedures may be the subject of future research
on jute fiber used as reinforcement for thermoplastic matrix polymers. This is necessary because jute
fibers generally have issues with moisture absorption, compatibility, and variability of fiber qualities,
which can significantly impact the ultimate properties of the resulting composite material [171].

5.1 Jute Fiber Form and Size
Based on the literature survey, the jute fiber has been used in a variety of reinforcement form particularly

divided into the filler, short, long and textile. The form of fiber reinforcement is important in deciding the
bulk properties of the final product. Jute fiber is commercially available in all forms of reinforcement
such as filler, short [97,104], long [171,172] and textile [159,173], as it also has been utilized by
researcher in previous work. Different types of reinforcement have been investigated by the researcher in
various testing to determine mechanical and thermal properties. Each of the reinforcement form
influenced the properties of the composite in different ways. Diverse forms of reinforcement were
prepared to match the thermoplastic resin characteristic which are known to possess very high melt,
viscosities and difficulties when performing impregnation [153]. The textile fabric is made up of a long
fiber which goes through a various conventional textile process. Among all textile fabric, the jute in
woven form is observed at highest frequency compared to other forms of reinforcement material. Several
factors that influence the selection of woven fabric such as higher mechanical and physical properties,
modest processing technique, and inexpensive cost [174]. The woven fabric possesses significant
mechanical performance in terms of tensile, flexural and impact loading that the non-woven fabric does
not. The woven fabric possesses high strength due to the interlocking feature from the weaving of the
fiber. Different weaving pattern such as plain, twill, and basket are influencing the composite
performance [175].

Therefore, the composite made by several layers of woven fabric resulted in outstanding tensile
resistance and energy absorption characteristic. As demonstrated by Behera, the woven jute fabric
reinforced with soy-based resin composite performed better than non-woven jute fabric. The mechanical
properties of woven fabric reinforced with matrix polymer composite can be enhanced through
optimizing woven parameter and laminated parameter that cover fiber orientation and volume fraction,
respectively. The application of woven fabric has been hindered by high cost of production since it
involves multiple processes such as scotching, hackling and spinning to turn raw whole fiber to yarn [156].

Nevertheless, the short fiber is more significant in terms of processability and cost. Short fiber is more
versatile than the long fiber since it can be processed using fabrication method such as extrusion, injection,
and compression without thermal degradation. Moreover, short fiber is known for anisotropy and easy
dispersion [170]. Mechanical performance of short jute fiber composite, depends on several factors such
as mechanical and physical properties of jute, type of matrix polymer, aspect ratio, fiber orientation, and
volume fraction [176]. To enhance the mechanical properties of short fiber, two important parameters of
short fiber composites which are dispersion and aspect ratio are carefully optimized. The aspect ratio is
an important role in determining the properties of the short fiber composite. One of the reasons for
altering the aspect ratio is the manufacturing method. High viscous of the matrix can cause fiber breakage
during the manufacturing as the high shear stresses developed to form the viscous polymer which affects
the final length distribution. Thus, in order to achieve a high level of stress transfer in the fiber, the fiber
length (lf) must be considered to be exact to the critical length (lc) [176].

On the other hand, the certain length degradation on fiber takes place due to the high processing
temperature of compounding process. In addition, the strength of short fiber composite is controlled via
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interfacial adhesion between fiber and matrix polymer while the modulus is controlled by the fiber
orientation. The variation of short jute fiber length alters the mechanical properties composite [140].
Experiments conducted by Rashed et al. [140] showed that the effect of short hemp fibers reinforced with
PP composites using three fiber lengths of 1, 2, and 4 mm. The best results were obtained in specimens
with a fiber length of 2 mm. This happens because this specimen has tensile strength compared to other
specimens. When the fiber used has a fiber length of less than 2 mm, the tensile strength of the composite
is lower due to load transfer inefficiency. The use of jute fibers with a length that exceeds 3 mm also
results in a decrease in tensile strength as the fibers become incompatible with the matrix, resulting in
improper bonding between the fibers and the matrix. In addition, entanglement occurs which reduces
strength [140].

5.2 Jute Fiber Processing and Treatment
The main purpose of surface treatment on jute fiber is to improve or change its mechanical and chemical

properties. Jute fiber as well as other natural fibers, they suffer from the hydrophilic nature that contribute to
poor adhesion between fiber and polymer matrix. The compatibility issue between fiber and mechanical
properties reduced their physical and mechanical properties. There were numerous surface treatments that
were applied by researchers in previous works on jute fiber, which were categorized into two groups,
namely physical and chemical treatments. Both physical and chemical surface treatments have their own
advantages and disadvantages. Physical treatment is a dry method that produces less air, water and land
pollution compared to wet chemistry method [117,177,178]. The common chemical treatment used by
researcher and industry for natural fiber consisted of alkaline treatment [87,97,179,180], silane coupling
agent, permanganate, and peroxide [121]. Meanwhile, the popular physical treatment includes corona
discharge, electron beam treatment, thermal treatment Ultra Violet (UV) and oxygen plasma [143]. The
mechanical properties of jute fibre that is treated via physical and chemical treatment have mainly
depended on the type of treatment and amount of treatment agent [50].

5.3 Fabrication Methods of Jute Fiber Reinforced Composite
To ensure the optimal dispersion, orientation, and aspect ratio of the jute fiber in the composite for the

particular application, the fabrication procedure must be carefully determined. The final composite design,
size and shape, raw material qualities, process speed, and total cost are all factors to consider when
choosing a fabrication method. Moisture, fiber type, fiber content, and fiber orientation are all factors that
influence the fabrication of jute fiber-reinforced composite [69,171,181]. A high aspect ratio, as well as a
uniform distribution of jute fibers in the polymer matrix, are necessary to generate excellent mechanical
properties. Compression molding, resin transfer, injection, extrusion, molding, hand lay-up, pultrusion,
spray coating, and filament winding methods are some of the fabrication techniques typically utilized in
jute fiber-reinforced composite fabrication. These methods have been developed over years of industry
experience and research. Furthermore, researchers have made numerous adjustments to develop cost-
effective and defect-free jute fiber-reinforced composites [171,182]. Currently, hot compression and hand
lay-up have been the most prevalent methods for producing thermoplastic and thermoset plastic
composites [171].

5.4 Application of Jute Fiber Reinforced Thermoplastic Matrix Polymer Composites
Green composites, such as jute fiber-reinforced composites, are widely sought after in the aerospace and

automotive sectors. This is mostly owing to its favorable characteristics, including biodegradability,
improved strength and stiffness-density ratio, lightweight nature, high dependability and durability, cost-
effectiveness, and superior physical features [171,183,184]. The automobile industry has found several
applications for jute fiber-reinforced composites, such as the utilization of these composites in door panel
components, seatbacks, trunk liners, headliner materials, dashboards, car panels, and the front hood of
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off-road vehicles, specifically buggies [185,186]. There is a growing interest within certain sectors of the
aerospace industry to enhance the utilization of thermoplastics in composite materials, leading to a
progressive expansion in the range of applications. Thermoplastics offer a range of significant benefits in
comparison to thermosets when employed in composite materials, notably enhanced impact resistance,
increased fracture toughness, and elevated operating temperature capabilities. Certain thermoplastics
possess the desirable characteristics of transparency, toughness, and impact resistance, rendering them
well-suited for application in various components of aircraft such as windows, tails, wings, fuselages,
electronics racks for helicopter, aircraft wing boxes, aircraft materials and canopies [69,187]. The
utilization of jute fiber-reinforced composites in automobiles and aircraft contributes to weight reduction,
hence facilitating a decrease in fuel consumption and enhancement of overall performance [69,187].

The utilization of jute fibers as a reinforcing component in composites featuring a thermoplastic polymer
matrix has novel prospects for applications within the realm of structural materials for building and
construction materials [188]. Jute composites have the potential to serve as a highly cost-effective
material within the building and construction sector. Furthermore, these composite materials exhibit
favorable characteristics such as high impact resistance, corrosion resistance, thermal and acoustic
insulation properties, making them highly suitable for utilization in the construction industry as perfect
building materials. The use of jute fiber-reinforced thermoplastic matrix polymer composites in building
materials could result in panels for false ceilings and partitions, as well as walls, floors, window and door
frames, roof tiles and prefabricated or mobile buildings that could be utilized in the event of a natural
disaster like a hurricane, earthquake, flood, etc. Furthermore, the utilization of jute fiber-reinforced
thermoplastic matrix polymer composites extends to several domestic applications, including but not
limited to doors, chairs, lampshades, roofing, luggage, tables, and bathtub units. Jute has the potential to
serve as a viable alternative to wood in the construction of interior spaces [188].

6 Conclusion

Numerous research works have been performed on jute fibre with regard to reinforced thermoset and
thermoplastic composites. Nevertheless, current demands on sustainable materials have required new
developments in thermoplastic composites. This review provides an overview of the sustainable of jute
plants as reinforcement material for thermoplastic matrix polymers. The overview on jute based
thermoplastic composites focused on the thermal behavior and mechanical properties. Apart from
physical, chemical, and mechanical properties, the study also covers the current and perspectives for
future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites. The
use of jute fibre-reinforced thermoplastic in the filler, short fibre, long fibre, and textile has produced a
variety of results. The woven fabric possesses significant mechanical performance in terms of tensile,
flexural and impact loading that the non-woven fabric does not. The woven fabric possesses high strength
due to the interlocking feature of the weaving of the fiber. The variation of short jute fiber length alters
the mechanical properties of the composite. The use of jute fiber with the right length, will improve the
mechanical properties of the composite material.

It is clear from the overview that thermoplastics reinforced with jute fibre have excellent mechanical
properties, such as high tensile strength, stiffness, and strong resistance to impacts. In a variety of
composite products from many industries, including those in automotive, building and construction,
aerospace, furniture, and sports equipment, jute fibre can be used for the reinforcement of polymer
composites. To put it briefly, it is important to support and conduct thorough research on jute fibre-
reinforced composites and hybrids in order to advance the development of numerous existing goods and
broaden the uses for jute fibre. Natural fibres like jute have some drawbacks when compared to synthetic
fibres, such as poor matrix-fibre adhesion, high water absorption, and a highly polar nature because of the
presence of hydroxyl groups (-OH) or hydrophilic groups. Jute fiber processing and treatment, fiber form
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and size, and various fabrication procedures may be the subject of future research on jute fiber used as
reinforcement for thermoplastic matrix polymers. This is necessary because jute fibers generally have
issues with moisture absorption, compatibility, and variability of fiber qualities, which can significantly
impact the ultimate properties of the resulting composite material.
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