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ABSTRACT

This study aims to realize the sharing of near-infrared analysis models of lignin and holocellulose content in pulp
wood on two different batches of spectrometers and proposes a combined algorithm of SPA-DS, MCUVE-DS and
SiPLS-DS. The Successive Projection Algorithm (SPA), the Monte-Carlo of Uninformative Variable Elimination
(MCUVE) and the Synergy Interval Partial Least Squares (SiPLS) algorithms are respectively used to reduce the
adverse effects of redundant information in the transmission process of the full spectrum DS algorithm model.
These three algorithms can improve model transfer accuracy and efficiency and reduce the manpower and
material consumption required for modeling. These results show that the modeling effects of the characteristic
wavelengths screened by the SPA, MCUVE and SiPLS algorithms are all greatly improved compared with the
full-spectrum modeling, in which the SPA-PLS result in the best prediction with RPDs above 6.5 for both
components. The three wavelength selection methods combined with the DS algorithm are used to transfer
the models of the two instruments. Among them, the MCUVE combined with the DS algorithm has the best
transfer effect. After the model transfer, the RMSEP of lignin is 0.701, and the RMSEP of holocellulose is
0.839, which was improved significantly than the full-spectrum model transfer of 0.759 and 0.918.

KEYWORDS

Near infrared spectroscopy; holocellulose; lignin; model transfer; wavelength optimization; direct standardization
algorithm

1 Introduction

Holocellulose (including cellulose and hemicellulose) and lignin are the main components of wood, and
they are closely related to other properties of wood, along with its processing and utilization of it. In the paper
industry, the content of holocellulose is closely related to wood pulp yield and quality, while the content of
lignin is an important basis for formulating cooking and bleaching process conditions [1]. Near-infrared
spectroscopy (NIRS) is a simple and fast new analytical method. With the continuous improvement of
NIRS instruments, the application of chemometrics and the rapid development of computers, NIRS
technology is widely used in petroleum, forestry, chemical, food and other industries [2,3]. The
absorption of NIR spectral radiation is mainly caused by overtones and combinatorial bands of the
fundamental stretching vibrations of O-H, C-H and N-H, which represents the main chemical bonds in
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biological compounds. Mathematical methods were used to construct calibrated models combining NIR
spectral data and chemical component content for accurate quantitative prediction of lignin content in rice
and wood [4]. Establishing a good NIRS model required a sufficient amount of sample data to optimize
the method and model parameters, and the maintenance of the model required continuous investment of
material resources. Therefore, it is usually assumable that the established NIRS model can be shared
among different instruments [5,6]. However, the spectral response of the same sample on different
instruments of the same model is not exactly the same under the same test conditions due to the different
operating environments and lifetime of each instrument. As a result, the prediction error of the NIRS
model built on the master instrument for the target samples may be out of the allowed range, and various
model transfer methods are needed to correct the target spectra or the master model [7–9].

In recent years, many scholars have carried out a large number of model transfer studies on model
sharing between different instruments, most of which are standard sample algorithms [10]. These
algorithms need to select a certain number of samples to form a standard set, such as Slope/Bias
algorithm (S/B) [11], Direct Standardization algorithm (DS) [12,13] and Piecewise Direct Standardization
(PDS) [14]. However, due to the relatively stable storage and detection environment, the near-infrared
spectrometer used in the laboratory has high wavelength accuracy and wide wavelength range, and the
collected spectrum contains too much information. These collected sample spectral data inevitably
contain a lot of redundant information [15], which is mixed with the component information to be
measured, leading to slow modeling and poor robustness and applicability of the model. Therefore, if the
characteristic wavelengths can be extracted for the components to be measured and the redundant
information in the spectrum can be removed. It can not only improve the operation speed but also
improve the robustness and adaptability of the transmission and prediction of the near-infrared analysis
model [16]. At present, many scholars have carried out research on the problem of characteristic
wavelength selection. The commonly used wavelength selection algorithms include correlation analysis
(CA) [17], analysis of variance (AOV) [18], Successive Projection Algorithm (SPA) [19], Monte-Carlo of
Uninformative Variable Elimination (MCUVE) [20,21], Synergy Interval Partial Least Squares (SiPLS)
[22] et al. In recent years, many scholars have also published literature on model transfer combined with
wavelength selection algorithm [23] and found that after wavelength selection not only can remove
redundant variables and increase the stability of the model, but also can prevent over-correction problems
in model transfer algorithms. Therefore, this paper studies the transfer effect of SPA, MCUVE and SiPLS
wavelength selection methods combined with DS algorithm between these two instruments and compares
the transfer effect with that of DS algorithm alone. The optimization strategy for sharing the near-infrared
analysis models of lignin and holocellulose among different instruments provides a method reference for
the application of near-infrared spectroscopy detection technology in the rapid determination of pulpwood
properties.

2 Materials and Methods

2.1 Materials

2.1.1 Sample Preparation and Analysis of Holocellulose and Lignin Content
The wood powder samples used in the experiments were provided by the Institute of Chemical Industry

of Forest Products, Chinese Academy of Forestry (China), with a total of 82 log samples and their
holocellulose and lignin content values. The logs were cut into wood chips and ground, and then the
wood powder samples with a particle size of 0.250 to 0.425 mm (40 to 60 mesh) were selected to
determine their holocellulose and lignin content according to GB/T2677 (1994). The results are shown
in Table 1.
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2.1.2 Instrumentation and Spectral Acquisition
The experiment employed two S450 near-infrared spectrometers produced by Shanghai Lengguang

Technology Co., Ltd. (China), one of which was a new instrument (target) that had just been debugged
by the company, and the other was an old instrument (master) used for two years. The old and new
instruments were shown in Fig. 1. This type of instrument was a grating scanning near-infrared
spectrometer, using an indium gallium arsenide detector with a wavelength range of 900 to 2500 nm, a
wavelength interval of 1 nm, and a total of 1601 wavelength points. The biggest difference between the
two instruments was the production time. One of the instruments was older and has the problem of aging
parts compared to the new instrument. Therefore, although the factory design and structure of the
instruments were exactly the same, the models cannot be directly shared.

Spectral collection was performed on the prepared wood powder samples on two Benchtop NIR
Spectrometers. When collecting samples, the samples were placed in a measuring cup and flattened with
a 50 g weight to make them evenly distributed. Normally each sample was repeatedly loaded several
times to take the average spectrum as the measured results. After scanning a sample, use a brush was
used to remove the residual wood powder in the sample cup so as not to avoid adverse effects on the
accuracy of subsequent sample spectrum collection. Since the S450 near-infrared spectrometer was
equipped with a rotating table, repeated sample loading steps can be omitted. Each sample was rotated

Table 1: The statistical table of the content of holocellulose and lignin in wood

Component Types of wood powder Number Minimum (%) Maximum (%) Average (%)

Holocellulose

Eucalyptus 24 78.04 82.61 80.87

Chinese fir 23 66.08 70.25 67.97

Poplar 13 79.09 86.28 82.20

Acacia 12 76.70 80.58 78.53

Masson pine 10 71.54 74.01 72.80

Total 82 66.08 86.28 76.14

Lignin

Eucalyptus 24 21.49 27.56 23.74

Chinese fir 23 32.55 34.20 33.44

Poplar 13 14.82 20.51 18.00

Acacia 12 24.62 27.15 25.69

Masson pine 10 28.48 28.95 28.63

Eucalyptus 24 21.49 27.56 23.74

Total 82 14.82 34.20 26.43

Figure 1: The physical picture of S450 (left: new target; right: old master)
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and measured 6 times, and the average spectrum was taken as the final sample spectrum. The spectral
comparison of the two instruments is shown in Fig. 2.

2.2 Methods

2.2.1 SPA, MCUVE and SiPLS Wavelength Selection Algorithm
The successive projection algorithm (SPA) is a forward cyclic variable selection method [19]. Starting

from a selected wavelength, the projection on the unselected wavelength is calculated in each cycle, and the
wavelength with the largest projection vector is introduced into the wavelength combination. Each newly
selected wavelength has the smallest linear relationship with the previous one. In the wavelength
selection, it is assumed that n is the initial number of wavelengths, m is the number of wavelength points,
and k(0) is the initial wavelength point. The steps of SPA calculation are as follows:

Before the start of the first iteration (Z = 1), choose any column of the wavelength vector Xj in the
spectral matrix denoted as

kð0Þ ¼ j; j 2 1; � � � ; n (1)

The set of unselected column vector positions is denoted as S.

S ¼ fj; 1 � j � n; j 2 fkð0Þ; � � � kðZ � 1Þgg (2)

Calculate the projection of the remaining column vector xj j 2 Sð Þ to the currently selected imaginary
xk Z�1½ �, respectively.

Pxj ¼ xj � xTj xk Z�1ð Þ
h i

xk Z�1ð Þ xk Z�1ð ÞTxk Z�1ð Þ
� ��1

; j 2 S (3)

Extraction of the largest projection values of the wavelength variables ordinate.

kðZÞ ¼ arg max Pxj

�� ��� �� �
; j 2 S (4)

Let xj ¼ Pxj , j 2 S; Z = Z + 1, if Z < m, return to the second step of the loop.

k Zð Þ; Z ¼ 0; � � � ;m� 1f g is the final combination of selected wavelength variables. The algorithm
performs MLR or PLS modeling prediction analysis is performed to judge the merit of the model built by

900 1100 1300 1500 1700 1900 2100 2300 2500

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ecnabrosb
A

Wavelength(nm)

Master
Target

Figure 2: Comparison of two S450 spectrometers
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the root mean square error of prediction RMSEP, which corresponds to the optimal initial wavelength point n
and the optimal number of wavelength points m of the wavelength set.

The Monte Carlo uninformative variable elimination (MCUVE) algorithm [20] combines the Monte
Carlo algorithm with the uninformative variable elimination (UVE) algorithm, inheriting the idea of the
UVE algorithm, and using the MC technique in the algorithm instead of the leave-one-out method for
cross-validation. The specific calculation steps are as follows.

The matrix is randomly sampled n times by the MC method, N PLS models are established, and the
regression coefficient bij of the jth variable of the ith model is calculated, where i = 1, 2, …, p, the
expectation of recording the regression coefficient of the jth variable is bj and the variance is D(bj).

The importance of the variable is defined using the UVE method and the importance indicator S is
calculated for the jth variable.

Sj ¼ meanðbjÞ=stdðbjÞ (5)

Among them, mean(bj) and std(bj) represent the mean and variance of variable j in the nth regression
model, respectively.

Arrange the p variables according to the absolute value of the importance index S from large to small,
and define a threshold which is less than the threshold value variables are excluded as uninformative
variables, and the size of the threshold is determined by the RMSEP of the prediction set.

The basic idea of the Synergy intervals PLS (SiPLS) algorithm [22] is to divide the full spectrum band
into several intervals, then by combining the intervals, the partial least squares modeling is performed on the
combined intervals, and the optimal combination band is screened out according to the prediction results.

2.2.2 Direct Standardization Algorithm (DS)
An important development in the multivariate model transfer is direct standardization (DS), which

relates the spectra Am measured on the master instrument to the spectra At measured on the target
instrument by the transformation matrix F.

Am ¼ At � F (6)

The transformation matrix F is estimated as

F ¼ Aþ
t Am (7)

where A+
t is the generalized inverse of At.

Once F is calculated, the spectrum of a new, unknown sample (Xunknown), measured on the target
instrument, can be projected to the master instrument space, and then the property values can be
predicted by the old model.

Xstd ¼ XunknownF (8)

2.3 Modeling and Model Evaluation Methods
The modeling method in this study is the partial least square regression (PLSR) algorithm, and the

interactive verification adopts the leave-one-out method [24]. The correlation coefficient (R), corrected
standard deviation (RMSECV), predicted standard deviation (RMSEP), Akaike Information Criterion
(AIC) and relative standard deviation (RPD) were used for comprehensive evaluation. Among them, the
closer the correlation coefficient (R) is to 1, the better the regression or prediction results of the model.
The smaller the RMSECV and RMSEP, the better the model effect is; RPD is used to verify the stability
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and predictive ability of the model, and RPD > 3 indicates that the model has high stability and good
predictive ability [25,26]. AIC [27] is defined as

AIC ¼ n lnRMSEP þ 2p (9)

where n is the number of samples; p is the number of features of the sample, that is, the number of variables
involved in the transfer of the model. The smaller the value of AIC, the more simplified the model, and the
higher the transfer efficiency of the model.

3 Results and Discussion

3.1 Establishment of Master Model and Selection of Characteristic Wavelength
Due to the large number of wavelength points of the sample spectrum collected by S450 spectrometers,

the use of full spectrum results in slower speed and more irrelevant information on whether to build an
analysis model or transfer the model. The wavelength selection algorithm was used to select characteristic
wavelengths for different components and remove redundant wavelengths, which can not only speed up
the establishment of the analysis model but also improve the prediction accuracy of the model. Therefore,
this study used SPA, MCUVE, SiPLS algorithms combined with DS method to conduct model transfer
research, the results were compared with the full-spectrum model transfer prediction results.

3.1.1 Establishment of the Full Spectrum Model
The 82 wood powder samples used in this study required the elimination of one spectrum with excessive

noise due to measurement problems before dividing the correction set and prediction set. The SPXY
algorithm [28,29] was used to divide the remaining 81 sample sets into a calibration set containing
61 samples and a prediction set of 20 samples, which was used for the establishment of the quantitative
analysis model. The calibration set and prediction set samples of the master and the target corresponds
one by one. The 61 calibration set sample spectra were preprocessed by MSC combined with 5-point
MAF method to eliminate useless information, such as noise in the acquisition process [30,31]. The
appropriate latent variables (LV) were selected by leave-one-out cross-validation to establish the PLS
quantitative analysis model of lignin and holocellulose, respectively, and the following modeling was
based on this method. The performance of the master to establish the quantitative analysis model of
lignin and holocellulose and the prediction results of the master prediction set samples are shown in Table 2.

3.1.2 SPA, MCUVE and SiPLS Wavelength Selection Results
The SPA algorithm selected wavelengths for the two components of lignin and holocellulose

respectively, and the threshold was set to select at least 10 wavelength points and at most 100 wavelength
points. Based on the principle of minimum predicted RMSEP, 13 and 19 wavelength points were finally
selected for lignin and holocellulose, respectively. The selected wavelength positions are shown in Fig. 3.

The MCUVE algorithm set the number of Monte Carlo simulations to 1000 times and used the minimum
predicted RMSEP as the standard to select the wavelengths for lignin and holocellulose respectively. Finally,

Table 2: Full-spectrum modeling results

Component Instrument LV Calibration set Prediction set

R RMSECV R RMSEP RPD

Lignin Master 8 0.983 1.002 0.989 0.791 5.832

Holocellulose Master 9 0.982 0.998 0.998 0.969 6.019
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607 wavelengths were selected for lignin and 639 wavelengths for holocellulose. The wavelengths selected
for the two components are shown in Fig. 4.

Different from the previous two characteristic wavelength selection methods, SiPLS was selected for the
wavelength band. According to the principle of minimum RMSEP, the following best results were obtained
for the two components respectively, after multiple parameter settings. For both the band selection of lignin
and holocellulose, the spectral interval was divided into 16, and 4 intervals were selected for combination.
When the cross-validation number was 6, a total of 400 wavelength points in the 4th, 5th, 8th, and 14th
intervals were selected for lignin. The combination interval had the best prediction effect, the specific
bands are shown in Fig. 5. For the best result of the selection of the holocellulose band, the spectrum was
divided into 16 intervals, and 4 intervals were selected, and the cross-validation number was 7, and the
best prediction result was chosen for intervals 8, 11, 12, and 14, which contain 400 wavelength points in
the combination of 4 intervals. The interval positions for holocellulose are shown in Fig. 6.

Figure 3: The optimal variables obtained from SPA

Figure 4: The optimal variables obtained from MCUVE
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3.2 Modeling Results and Analysis of Three Algorithms of SPA, SiPLS, MCUVE
Figs. 7 and 8 show the comparison charts of characteristic wavelengths screened for lignin and

holocellulose by three-wavelength selection methods, SPA, SiPLS, and MCUVE. The dotted line in
Fig. 7 was the location of the characteristic functional groups of lignin [32]. It can be seen from Fig. 7
that there was secondary frequency doubling of C-H and aromatic C-H near 1170 nm, and both the SPA
algorithm and the MCUVE algorithm could select this characteristic wavelength. Near 1410 and 1417 nm
combined frequency of C-H, near 1680 nm contained the first-order frequency doubling of C-H and the
absorption information of aromatic C-H, near 2200 nm combined frequency of C-H and C=O. Therefore,
the main characteristic wavelengths for lignin could be selected by all three algorithms around these
wavelength points.

Figure 5: The selected intervals for lignin obtained from SiPLS

Figure 6: The selected intervals for holocellulose obtained from SiPLS
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Fig. 8 shows the characteristic wavelengths selected by the three wavelength selection algorithms for the
prediction of holocellulose. The dotted line in the figure was the position of the characteristic functional
group of the holocellulose [33]. It can be seen from Fig. 8 that there was a second-order frequency
doubling of O-H near 996 nm, a first-order frequency doubling of O-H near 1450 and 1490 nm, a
combined frequency of O-H and C-O near 1820 nm, and C-H and C-C near 2347, 2355 and 2488 nm.

Figure 7: The optimal variables selected by SPA, MCUVE and SiPLS for the prediction of lignin

Figure 8: Comparison of the wavelengths selected by SPA, MCUVE and SiPLS for holocellulose
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These groups could be selected by SPA and MCUVE; the first-order frequency doubling of O-H near
2090 nm, C-H cellulose at 2270 nm, the combined frequency of C-H and CH2 near 2280–2330,
2335 nm. The characteristic wavelengths could be selected by all three algorithms for these functional
group positions.

Table 3 shows the prediction comparison results of the three algorithms combined with PLS modeling
and full spectrum modeling. It can be seen from Table 3 that the RPDs of the master model using these three
algorithms and the full spectrum to predict the lignin and holocellulose content of the master samples are
greater than 5.0, which indicates that the master model had good prediction performance. However, using
SPA-PLS, SiPLS-PLS and MCUVE-PLS and the full-spectrum master model had poor prediction effects
on the target samples directly, and the RPDs were all less than 2.5, which meant that although the master
and target instruments had the same parts. The old instrument had some aging compared to the new
instrument due to the different factory years, so the model transfer method was still needed to correct the
differences between the two instruments.

In terms of calculation principle, the SPA algorithm was based on the principle of selecting collinear
minimum variables [34–36], which can greatly reduce redundant variables. Among the several
wavelength selection algorithms, the SPA algorithm selected the fewest characteristic variables, 13 and
19 wavelength points were selected for lignin and holocellulose respectively, accounting for only 0.81%
and 1.18% of the total spectral variables. And among several variable selection algorithms, SPA
combined with PLS modeling had the best prediction effect on the master spectrum, the predicted RPD of
the master spectrum for both components was greater than 6.0. This showed that the use of SPA for
wavelength selection in the master modeling process can not only simplify the spectrum, but also
maximize the retention of the characteristic wavelengths of the components to be measured, which
greatly improved the prediction accuracy of the model. However, this model had a poor prediction effect
on the target instrument. A model transfer algorithm was still required to correct for differences between
instruments.

The MCUVE algorithm judged the reliability of the variable by calculating the stability value of the
variable, the number of variables selected was related to the set standard [37]. In this study, 607 and
639 variables were selected for lignin and holocellulose, respectively, accounting for 37.91% and 39.91%
of the total spectral variables, and the wavelength range of the characteristic functional groups of all the
tested components could be selected. Compared with the full spectrum modeling, the prediction effect of

Table 3: Comparison of the predicted results for lignin and holocellulose obtained by PLS, SPA-PLS,
SiPLS-PLS and MCUVE-PLS

Component Wavelength
selection

Number of
wavelengths

LV Master Target

R RMSEP RPD R RMSEP RPD

Lignin

Full spectrum 1601 8 0.989 0.791 5.832 0.991 3.158 1.845

SPA 13 8 0.990 0.676 6.820 0.983 2.299 2.006

MCUVE 607 9 0.990 0.704 6.551 0.989 2.348 1.964

SiPLS 400 9 0.991 0.746 6.178 0.980 1.931 2.388

Holocellulose

Full spectrum 1601 9 0.998 0.969 6.019 0.992 2.214 2.083

SPA 19 9 0.994 0.813 7.161 0.989 7.346 0.793

MCUVE 639 9 0.991 0.957 6.086 0.990 3.052 1.909

SiPLS 400 8 0.991 0.878 6.637 0.989 15.712 0.371
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MCUVE-PLS was greatly improved. However, due to a large number of wavelengths, redundant
wavelengths will appear, so the prediction effect of the two components was slightly worse than that of
the SPA algorithm. On the other hand, although requiring the model transfer due to its poor RPD, the
MCUVE algorithm selected the largest number of wavelengths to establish a model for the master
instrument, which generally also had the best prediction effect on the target and the relatively lower
RMSEP meant that the model transfer was less difficult.

The SiPLS algorithm was different from the above two wavelength selection methods. Instead of
selecting a single wavelength point, the spectrum was evenly divided the full spectral range into multiple
bands, and then the bands were combined to establish a PLS model. With the minimum RMSEP as the
standard, the optimal band combination was selected [38]. Therefore, the SiPLS method selected
wavelength points in the band contained some irrelevant redundant variables, resulting in slightly worse
prediction results than the SPA algorithm for the model built by this method and poor prediction results
for the target instrument.

3.3 Model Transfer Results and Analysis of Holocellulose and Lignin Content in Pulp Wood
The two near-infrared instruments used in this study have high precision, a wide wavelength range, and

small inter-instrument differences, which can be corrected by a simpler model transfer algorithm. However,
the large wavelength range and a large number of wavelength points also lead to an increase in the amount of
calculation, long operation time, and longer model transfer time. Therefore, before the model was transferred,
several wavelength selection algorithms were used to simplify the variables of the master spectral data. The
SPXY algorithm was used to select 10, 15, 20, 25, and 30 data from all the samples numbered
correspondingly measured on the master instrument and two target instruments, respectively as the
transfer set. Since the wavelength selection algorithm can eliminate the collinearity between wavelength
points, the total number of wavelengths after wavelength selection was very small, it was not necessary
to use the CCA and PDS algorithms, and a simple DS algorithm can be used to obtain a better model
transfer effect. The prediction results of the master model for the target samples are shown in Table 4.

It can be seen from Table 4 that 20 and 15 transfer set samples need to be selected respectively in the full
spectrum model transfer process for lignin and holocellulose, and the RPDs were all greater than 6.0,
indicating the satisfied transfer performance. The SPA-DS method involved the least wavelength variables
in the model transfer process for the two components, and the AIC values were reduced from
3179.664 and 3195.088 to 5.458 and 48.542, respectively, and the model transfer process was greatly
simplified. However, the model transfer accuracy for these two components was slightly worse than that
of the MCUVE-DS and full spectrum methods. This was because wavelength selection calculations were

Table 4: Comparison of predicted result for lignin and holocellulose after model transfer

Component Methods Transform set Number of wavelengths AIC R RMSEP RPD

Lignin

Full spectrum 20 1601 3179.664 0.995 0.759 6.075

SPA-DS 25 13 5.458 0.988 0.776 5.944

MCUVE-DS 20 607 1185.225 0.993 0.701 6.580

SiPLS-DS 25 400 793.598 0.981 0.924 4.988

Holocellulose

Full spectrum 15 1601 3195.088 0.988 0.918 6.350

SPA-DS 15 19 48.542 0.988 1.139 5.116

MCUVE-DS 25 639 1263.781 0.992 0.839 6.950

SiPLS-DS 15 400 791.646 0.989 0.902 6.469
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calculated only for the master spectrum, and the characteristic wavelength of the target was slightly offset
from the master. The wavelength filtered out by SPA algorithm was too small to contain the
characteristics of holocellulose in the target spectrum, resulting in poor model transfer effect.

Although the MCUVE algorithm was not the best in the prediction process of the master model, this
method combined with the DS algorithm had the best transfer effect, and the prediction accuracy of the
target lignin and holocellulose had been greatly improved compared with that of full-spectrum and SPA-
DS methods. The AIC values were reduced from 3179.664 and 3195.088 to 1185.225 and 1263.781,
respectively, indicating that the model transfer efficiency of the MCUVE-DS method was significantly
improved. This was due to the fact that the MCUVE algorithm selected more wavelengths, avoiding the
problem that the wavelengths selected by the method like the SPA algorithm cannot contain the
characteristic wavelengths of the target spectra. The method selected wavelengths with higher stability
and removed some redundant wavelengths. Therefore, it had better transfer effect than the full spectrum
and SPA-DS methods, but its transfer efficiency was poor compared with the SPA-DS method.

The prediction accuracy of SiPLS algorithm for lignin was not very good because the near-infrared
spectral characteristics of lignin were relatively scattered, and SiPLS was a band combination algorithm,
which was not flexible enough compared with the two other algorithms of single point selection.
However, the characteristic wavelengths of holocellulose were concentrated in the second half of the
whole spectral range, which contained multiple characteristic wavelength points and the selected
characteristic wavelengths in the same band, and the total number of wavelength points in the band was
also more than that of the SPA algorithm. Therefore, the transfer effect of the holocellulose model is
better than that of the full spectrum and the SPA algorithm. Compared with the full spectrum, the AIC

values of the SiPLS-DS method for the model transfer process of the above two components decreased
from 3179.664 and 3195.088 to 793.598 and 791.646, respectively, indicating that the method can
simplify the model transfer process to a certain extent.

4 Conclusions

To address the problem of sharing NIR analysis models of lignin and holocellulose content in pulpwood
between two different batches of NIR instruments, model transfer studies were carried out using SPA,
MCUVE and SiPLS combined with DS algorithm. The results show that the spectral modeling effects of
characteristic wavelength selection by the above three algorithms are greatly improved compared with
full-spectrum modeling. The SPA-PLS model has the best prediction effect on the master, selects the least
characteristic wavelength and has a fast calculation speed. For lignin, only 13 wavelengths were selected,
19 wavelengths were selected for holocellulose, and the RPDs were all above 6.8, but the prediction
performances for target samples were poor. Using these three algorithms combined with the DS algorithm
can better realize the model transfer between the two instruments and also simplify the model transfer
process drastically. Among them, the model transfer strategy of MCUVE-DS algorithm has the best
prediction effect and is obviously better than the effect of the full spectrum model transfer. The model
transfer result of SPA on holocellulose is not as good as that of the full-spectrum model, which also
means that to ensure a satisfying model transfer, the number of wavelengths in the transferred model
should not be too small.
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